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ON THE GALOIS STRUCTURE OF ARITHMETIC
COHOMOLOGY I: COMPACTLY SUPPORTED

p-ADIC COHOMOLOGY

DAVID BURNS

Abstract. We investigate the Galois structures of p-adic cohomology groups

of general p-adic representations over finite extensions of number fields. We

show, in particular, that as the field extensions vary over natural families the

Galois modules formed by these cohomology groups always decompose as the

direct sum of a projective module and a complementary module of bounded p-

rank. We use this result to derive new (upper and lower) bounds on the changes

in ranks of Selmer groups over extensions of number fields and descriptions of

the explicit Galois structures of natural arithmetic modules.

Introduction

Let F/k be a finite Galois extension of number fields with group G. Let M

be a motive defined over k and write LG(M, s) for the complex L-function

of the base change MF of M through F/k, regarded as defined over k and

with coefficients the rational group ring Q[G].

The equivariant Tamagawa number conjecture predicts a precise con-

nection between the leading term at s= 0 of LG(M, s) and an Euler

characteristic that belongs to the relative algebraic K0-group of the ring

extension Z[G]→ R[G] and encodes the various motivic cohomology groups,

realizations, comparison isomorphisms and regulators that are associated to

both MF and its Kummer dual.

However, extracting fine and explicit predictions out of this technical

formalism in any general setting requires detailed knowledge, for each prime

p and a suitable full Galois-stable sublattice Tp of the p-adic realization

of M , of the structure as Zp[G]-modules of (depending on the approach

used) either the Bloch–Kato Selmer group SelF (Tp) of Tp over F or of the

compactly supported p-adic étale cohomology groups H i
c(OF,Σ, Tp) for any

finite set of places Σ of k that contains all archimedean places, all places

which divide p and all places at which MF has bad reduction.
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In special cases there are also other strong reasons to investigate the

explicit Galois structure of such cohomology groups.

For example, if Tp = Zp(1), then H2
c (OF,Σ, Tp) identifies with the Galois

group of the maximal abelian pro-p extension of F that is unramified

outside Σ and aspects of the detailed Galois structures of such groups are

linked to the validity, or otherwise, of Leopoldt’s conjecture. In this context

such Galois structures have been much studied in the literature, both in

relatively simple cases and in more involved Iwasawa-theoretic contexts (see,

for example, the recent work of Khare and Wintenberger [15]).

In another concrete direction, if Tp is the p-adic Tate module of an

abelian variety A over k, then an investigation of the structure of SelF (Tp)

as a Zp[G]-module can in certain circumstances be used to extract useful

information concerning the changes in rank of A(F ′) as F ′ varies over

intermediate fields of F/k and to shed light on various “equivariant”

refinements of the Birch and Swinnerton–Dyer conjecture for A over F that

are studied in the literature (see, for example, the results of Macias Castillo,

Wuthrich and the present author in this direction in [7] and in the references

contained therein).

Unfortunately, however, despite the interest in such investigations, under-

standing the explicit Galois structure of arithmetic cohomology groups

in any general setting is a very difficult problem, not least because the

relevant theory of integral representations is notoriously complicated (see,

for example, Heller and Reiner [13]).

Notwithstanding the above difficulties, in this short series of articles our

aim is to show that if p is odd, then it is possible to prove some interesting,

and arithmetically useful, results concerning the structures of the Zp[G]-

modules SelF (Tp), H
i(OF,Σ, Tp) and H i

c(OF,Σ, Tp) as F varies in natural

families of Galois extensions.

In this first note we shall establish a general “bound” on the complexity of

Zp[G]-modules of the form H i(OF,Σ, Tp) and H i
c(OF,Σ, Tp) by showing that

in all cases they contain a projective direct summand with a complement

the p-rank of which can be explicitly bounded (for a precise statement see

Theorem 1.1).

This observation has several interesting, and (to us) quite surprising,

consequences. For example, it leads to general “finiteness results” concerning

indecomposable Zp[G]-lattices occurring as direct summands of the lattices

obtained by consideringH i(OF,Σ, Tp) andH i
c(OF,Σ, Tp) modulo their torsion
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subgroups and hence, upon specialization, to concrete structure results con-

cerning natural arithmetic modules including unit groups, higher algebraic

K-groups and ray class groups (see, for example, Corollaries 3.1 and 4.1,

Theorem 4.3 and the computations in Section 4.3).

In another direction, we show the result gives concrete, and very general,

information about the change in rank of the Selmer groups of Tp over F and

k (see Corollary 1.2).

In subsequent articles we develop in greater detail two aspects of this

general approach. First, in joint work with Kumon [6], we explain how

structure results for ray class groups of the sort discussed here can be

used to extract concrete results and predictions from the formalism of

the equivariant Tamagawa number conjecture for h0(Spec(F ))(1) and, in

addition, to shed new light on the validity of Leopoldt’s conjecture. Second,

by using Selmer complexes defined by Nekovář in the role played here

by compactly supported p-adic cohomology complexes, in [3] we prove

analogous results about the explicit Galois structure of the Bloch–Kato

Selmer groups of critical motives and so extend the results obtained by

Macias Castillo, Wuthrich and the present author in [7].

§1. Statement of the main results

1.1 At the outset we fix a number field k, an algebraic closure kc of k,

an odd prime p and a finite set of places Σ of k containing the sets Σ∞ of

all archimedean places and Σp of all p-adic places and we set Σf := Σ \ Σ∞.

We also write kΣ for the maximal extension of k in kc that is unramified

outside Σ and set Gk,Σ := Gal(kΣ/k).

We assume to be given a finitely generated free Zp-module T of rank

rk(T ) and a continuous homomorphism of the form

ρ :Gk,Σ→AutZp(T ).(1)

We regard T as a left Zp[Gk,Σ]-module via ρ and write T ∗(1) for the linear

Kummer dual HomZp(T, Zp(1)), regarded as a (left) Zp[Gk,Σ]-module via

the action given by (σ ◦ θ)(t) = σ(θ(ρ(σ)−1(t))) for all σ in Gk,Σ, θ in T ∗(1)

and t in T .

If L is a finite extension of k, then for any set of places Σ′ of k we write

Σ′L for the set of places of L above Σ′ and, if Σ′ contains Σ∞, we write OL,Σ′
for the subring of L comprising elements that are integral at all places of L

outside Σ′L and ClΣ′(L) for the ideal class group of OL,Σ′ .

https://doi.org/10.1017/nmj.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.41


GALOIS STRUCTURE OF P -ADIC COHOMOLOGY 297

We identify both T and T ∗(1) with étale pro-sheaves on Spec(OL,Σ) in

the usual way and for any such sheaf B we abbreviate H i(Spec(OL,Σ)ét, B)

and H i
c(Spec(OL,Σ)ét, B) to H i(OL,Σ, B) and H i

c(OL,Σ, B), respectively.

For a Galois extension F/E we shall usually abbreviate the group

Gal(F/E) to GF/E .

1.2 In the sequel we write µp for the group of pth roots of unity in kc.

We also write kT for the finite Galois extension of k(µp) that corresponds to

the kernel of the action of Gk(µp),Σ on T/p that is induced by ρ, and hence

also to the kernel of the induced action of Gk(µp),Σ on T ∗(1)/p∼= (T/p)∨(1).

For any extension F of k in kc we then write FT for the compositum kTF

of kT and F .

We write Fp for the finite field of cardinality p and for any finitely

generated Zp-module M we write rkp(M) for its “p-rank” dimFp(M/p).

We can now state our main result.

Theorem 1.1. Let F/E be a Galois extension of fields with k ⊆ E ⊆
F ⊂ kc, F/k finite and F/E unramified outside ΣE. Then in each degree i

there are decompositions of Zp[GF/E ]-modules

H i(OF,Σ, T ) = P iF/E,T ⊕R
i
F/E,T

and

H i
c(OF,Σ, T ) = P iF/E,T,c ⊕R

i
F/E,T,c

where the modules P iF/E,T and P iF/E,T,c are projective and one has

rkp(R
i
F/E,T )6mi

F/E,T · rk(T ) and rkp(R
i
F/E,T,c)6m

i
F/E,T,c · rk(T )

for integers mi
F/E,T and mi

F/E,T,c depending only on i, [F : E], rkp(ClΣ(FT ))

and #Σf,F .

Explicit expressions for the integers mi
F/E,T and mi

F/E,T,c will be given

in the course of the proof of Theorem 1.1 in Section 2.3.

This result is of interest as the dimensions of the Qp-spaces spanned by

H i(OF,Σ, T ) and H i
c(OF,Σ, T ) are in general unbounded as F varies, whilst it

is often possible to give universal bounds for both rkp(ClΣ(FT )) and #Σf,F

as F ranges over natural families of extensions of k of unbounded degree

(see, for example, Example 3.2 and the proof of Proposition 4.2).

In addition, in Section 3 we show that for representations ρ of the form

(1) that have pro-p image one can often weaken the explicit dependence of
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the bounds given in Theorem 1.1 on either ρ or the behavior of class groups

(for details see Corollary 3.1).

In Section 3 we also deduce the following result showing that Theorem 1.1

gives concrete information about changes in the dimension rk(SelF (T )) of

the Qp-space spanned by the Bloch–Kato Selmer group SelF (T ) of T over

finite extensions F of k. (Note that if T is the p-adic Tate module of an

abelian variety over k for which the classical Tate–Shafarevich group over

F is finite, then rk(SelF (T )) coincides with the dimension of the rational

space spanned by the Mordell–Weil group of A over F .)

Corollary 1.2. For each natural number r there exists a finite Galois

extension kΣ,r of k in kΣ with the following property: as T ranges over p-adic

representations of Gk,Σ that have pro-p image and rank at most r and F/E

over finite p-power degree Galois extensions of fields with k ⊆ E ⊆ F ⊂ kc,
E/k finite and F/E unramified outside ΣE, one has

[F : E] · rk(SelE(T ))− n1 6 rk(SelF (T ))6 [F : E] · rk(SelE(T )) + n2

where n1 and n2 are integers that depend only on [F : Q], rkp(ClΣ(kΣ,rF ))

and #Σf and are made explicit in Section 3.2.

Remark 1.3. The degree of kΣ,r over k can be large (see the proof

of Corollary 3.1). As a special case, Corollary 1.2 implies the existence of

constants m1 and m2 depending only on k, Σ and r such that for any p-adic

representation T of Gk,Σ with pro-p image and rank at most r and any

Galois extension F of k of p-power degree in kΣ,r one has

[F : k] · rk(Selk(T ))−m1 6 rk(SelF (T ))6 [F : k] · rk(Selk(T )) +m2.

This strongly restricts the structure of SelF (T ). For instance, if F/k

has degree p, then a classical result of Diederichsen [10] implies there

exist nonnegative integers aF (T ), bF (T ) and cF (T ) and an isomorphism of

Zp[GF/k]-modules of the form

SelF (T )tf
∼= Zp[GF/k]aF (T ) ⊕

(
Zp[GF/k]

/( ∑
g∈GF/k

g

))bF (T )

⊕ ZcF (T )
p

where SelF (T )tf denotes the quotient of SelF (T ) by its torsion subgroup,

and the above inequalities now imply that

−m1/(p− 1)6 bF (T )− cF (T )6m2/(p− 1).
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Finally we note that Theorem 1.1 has concrete consequences concerning

natural arithmetic modules (including unit groups, higher algebraic K-

groups and ray class groups) and that in special cases our methods can be

used to give much more explicit structural results concerning such modules.

These aspects of the theory are considered in Section 4.

§2. The proof of Theorem 1.1

In this section we first prove a purely algebraic result that may itself be of

some independent interest. We then combine this result with some general

properties of p-adic étale cohomology to prove Theorem 1.1.

For any Zp-module X we write Xtor for the torsion submodule of X, Xtf

for the quotient of X by Xtor, X
∗ for the linear dual HomZp(X, Zp) and X∨

for the Pontryagin dual HomZp(X,Qp/Zp) of continuous homomorphisms.

If X is endowed with the action of a finite group G, then we always endow

both X∗ and X∨ with the natural contragredient action of G.

For any abelian group X we write X[p] for the subgroup of X comprising

elements annihilated by p. For any finitely generated Zp-module X we set

rk(X) := dimQp(Qp ⊗Zp X) and note that rkp(X) = dimFp(X[p]) + rk(X).

In the sequel we also often use, without explicit comment, the fact that for

any exact sequence of finitely generated Zp-modules X1
θ1−→X2

θ2−→X3 one

has rkp(im(θi))6 rkp(X2)6 rkp(X1) + rkp(X3) for i= 1 and i= 2.

For a finite group G we write trG for the “trace” element
∑

g∈G g of Z[G].

We recall that a “Zp[G]-lattice” is a finitely generated Zp[G]-module that is

torsion-free.

2.1 The following result is key to our approach and may also itself be

of some independent interest (see, for example, Remark 2.2).

Proposition 2.1. Let G be a finite group of p-power order, X a Zp[G]-

lattice and {xi}16i6t a finite subset of X. Then the images in H0(G, X)/p

of the elements {trG(xi)}16i6t are linearly independent over Fp if and only

if the Zp[G]-submodule of X that is generated by {xi}16i6t is both a direct

summand of X and free of rank t.

Proof. Write X for the Zp[G]-submodule of X generated by {xi}16i6t.
If X is free of rank t, then H0(G, X ) = trG(X ) is a free Zp-module of

rank t and is generated by the elements {trG(xi)}16i6t. The images in

H0(G, X )/p of these elements are therefore linearly independent over Fp.
If, in addition, the Zp[G]-module X is a direct summand of X, then the Fp-
module H0(G, X )/p is a direct summand of H0(G, X)/p and so the images
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in H0(G, X)/p of the given elements are also linearly independent over Fp,
as claimed.

To prove the converse implication we use the homomorphism of Zp[G]-

modules

ψ : Zp[G]t� X ⊆X

that sends each element bi of the standard basis {bi}16i6t of Zp[G]t to xi.

We write ψ for the homomorphism Fp[G]t→X/pX induced by ψ and

note that if ker(ψ) is nontrivial, then H0(G, ker(ψ)) is also nontrivial

(as G is a p-group). However, the group H0(G, Fp[G]t) is generated by

the images in Fp[G]t of the elements trG(bi) and so the nontriviality of

H0(G, ker(ψ)) would contradict the linear independence hypothesis on

the elements trG(xi). The map ψ is therefore injective and so one has

ker(ψ)⊆ p · Zp[G]t.

On the other hand, X is a free Zp-module so the tautological exact

sequence of Zp-modules 0→ ker(ψ)→ Zp[G]t→X → 0 splits and one has

ker(ψ) = ker(ψ) ∩ p · Zp[G]t = p · ker(ψ). This shows that ker(ψ) vanishes

and hence that X is a free Zp[G]-module of rank t (as claimed).

In addition, the fact that X is a free G-module implies both that

H0(G, X ) = trG(X ) and that the group H1(G, X ) vanishes. Thus, writing

ι for the inclusion X ⊆X, the long exact sequence of G-cohomology

associated to the tautological sequence

0→X ι−→X → cok(ι)→ 0(2)

gives an exact sequence of Zp-modules

0→ trG(X )→H0(G, X)→H0(G, cok(ι))→ 0.(3)

Now, the images in H0(G, X)/p of the generating elements {trG(xi)}16i6t
of trG(X ) are, by assumption, linearly independent over Fp and so can

be extended to an Fp-basis of H0(G, X)/p. Nakayama’s lemma therefore

implies that the elements {trG(xi)}16i6t belong to a basis of the Zp-
module H0(G, X) and, given this, the exact sequence (3) implies that the

Zp-module H0(G, cok(ι)) is free. This in turn implies that the module

H0(G, cok(ι))tor =H0(G, cok(ι)tor) vanishes, and hence, since G is a p-

group, that the module cok(ι)tor itself vanishes.

Then, as cok(ι) is free over Zp, the exact sequence (2) induces, upon

taking linear duals, an exact sequence of Zp[G]-modules

0→ cok(ι)∗→X∗
ι∗−→X ∗→ 0.
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Since the Zp[G]-module Zp[G]∗ is free of rank one (by, for example,

[8, Theorem (10.29)]), the Zp[G]-module X ∗ is free of rank t and so this

sequence splits. Thus, upon taking linear duals, one deduces that (2) also

splits as a sequence of Zp[G]-modules, as required to complete the proof.

Remark 2.2. The result of Proposition 2.1 leads immediately to the

following observation regarding indecomposable lattices: if G is any finite

p-group and I any indecomposable Zp[G]-lattice, then either trG(I) is

contained in p ·H0(G, I) or I is isomorphic to Zp[G].

2.2 In this section we fix an odd prime p and data F/E, Σ and T as

in Theorem 1.1 and set G :=GF/E . For any noetherian ring R we write

D(R) for the derived category of left R-modules and Dp(R) for the full

triangulated subcategory of D(R) comprising perfect complexes.

In the following result we record some relevant (and essentially well-

known) properties of the compactly supported étale cohomology complexes

RΓc(OF,Σ, T ) that arise in the context of Theorem 1.1. We recall that these

complexes are defined so as to lie in natural exact triangles in D(Zp[G]) of

the form

RΓc(OF,Σ, T )→RΓ(OF,Σ, T )→
⊕
w∈ΣF

RΓ(Fw, T )→RΓc(OF,Σ, T )[1],(4)

with the second arrow denoting the natural diagonal localization map.

In the sequel we also set BF (T ) :=
⊕

w∈Σ∞,F
H0(Fw, T ).

Proposition 2.3. For data F/E, Σ, T and G as above the following

claims are valid.

(i) Let J be a normal subgroup of G. Then there are natural isomorphisms

in D(Zp[GFJ/E ])Zp[GFJ/E ]⊗L
Zp[G] RΓ(OF,Σ, T )∼=RΓ(OFJ ,Σ, T ),

Zp[GFJ/E ]⊗L
Zp[G] RΓc(OF,Σ, T )∼=RΓc(OFJ ,Σ, T ).

(ii) The complexes RΓ(OF,Σ, T ) and RΓc(OF,Σ, T ) are respectively acyclic

outside degrees zero, one and two and degrees one, two and three. In

addition, there is an isomorphism of Zp[G]-modules

H1
c (OF,Σ, T )∼=BF (T )⊕H2(OF,Σ, T ∗(1))∗(5)
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and for both i= 2 and i= 3 a canonical short exact sequence of Zp[G]-

modules

0 → (H4−i(OF,Σ, T ∗(1))tor)
∨→H i

c(OF,Σ, T )

→ H3−i(OF,Σ, T ∗(1))∗→ 0.(6)

(iii) RΓ(OF,Σ, T ) and RΓc(OF,Σ, T ) belong to Dp(Zp[G]).

(iv) The Euler characteristic of RΓc(OF,Σ, T ) in K0(Zp[G]) vanishes.

Proof. The first isomorphism in claim (i) is the standard “projection

formula” isomorphism in étale cohomology. The second isomorphism then

results by combining this with the analogous isomorphisms for the com-

plexes RΓ(Fw, T ) and the definition of compactly supported cohomology

via the triangles (4) for F and F J .

Next we note that, since p is odd, the complex RΓ(OF,Σ, T ) is well

known to be acyclic outside degrees zero, one and two. In addition, setting

C :=RΓ(OF,Σ, T ∗(1)), the Artin–Verdier duality theorem implies there is a

canonical exact triangle in D(Zp[G])

BF (T )[−1]→RΓc(OF,Σ, T )→R HomZp(C, Zp[−3])→BF (T )[0](7)

(see, for example, [5, Lemma 12b]). By using the universal coefficient

spectral sequence

Ep,q2 = ExtpZp
(H3−q(C), Zp) =⇒Hp+q(R HomZp(C, Zp[−3]))

(cf. [19, III.4.6.10]) one can also compute the cohomology groups of the third

term in the above triangle in terms of those of C.

In this way one finds the long exact sequence of cohomology of (7)

implies RΓc(OF,Σ, T ) is acyclic outside degrees one, two and three and

gives rise both to the exact sequences (6) and also to a short exact

sequence 0→BF (T )→H1
c (OF,Σ, T )→H2(OF,Σ, T ∗(1))∗→ 0. In addition,

since BF (T ) is a projective Zp[G]-module (by Lemma 2.4(i) below) and the

module H2(OF,Σ, T ∗(1))∗ is torsion-free, the same argument as used at the

end of the proof of Proposition 2.1 shows this sequence of Zp[G]-modules

splits to give an isomorphism of the form (5), as required to complete the

proof of claim (ii).

Finally, we note that claims (iii) and (iv) are special cases of a result of

Flach [11, Theorem 5.1] and of Flach and the present author [5, Lemma 7],

respectively.

https://doi.org/10.1017/nmj.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.41


GALOIS STRUCTURE OF P -ADIC COHOMOLOGY 303

In the sequel we will also find the following observations to be useful.

Lemma 2.4. For data F/E, T and G as in Proposition 2.3 the following

claims are valid.

(i) BF (T ) is a projective Zp[G]-module.

(ii) If J is any subgroup of G of odd order, then rk(BF (T )) is equal to

#J · rk(BFJ (T )).

Proof. For each place v in Σ∞,E we choose a corresponding embedding

σv : E→ Ev and write Gv for the decomposition subgroup in G of a fixed

place of F above v. Then there is a natural isomorphism of Zp[G]-modules

BF (T )∼=
⊕

v∈Σ∞,E

H0

(
Gv, T ⊗Zp

∏
Σv

Zp
)

where Σv denotes the set of embeddings F → (Ev)
c that extend σv and on

the tensor product Gv acts diagonally (via postcomposition with elements

of Σv) and G acts only on the second factor (via precomposition with

elements of Σv).

This isomorphism immediately implies claim (i) since each Zp[G]-module

T ⊗Zp

∏
Σv

Zp is free and the order of each subgroup Gv is prime to p.

If #J is odd, then each place v in Σ∞,E is totally split in F/F J . This

implies that there are isomorphisms of Zp-modules

BF (T ) =
⊕

w∈Σ∞,F

H0(Gw, T )

∼= Zp[J ]⊗Zp

( ⊕
s∈Σ∞,FJ

H0(Gs, T )

)
= Zp[J ]⊗Zp BFJ (T ).

Claim (ii) follows immediately from this composite isomorphism.

2.3 Turning now to the proof of Theorem 1.1 we proceed by a number

of reductions.

In the sequel we often use, without explicit comment, the fact that the

numbers rk(T ) and rkp(ClΣ(FT )) are both unchanged if one replaces T

by T ∗(1).

Lemma 2.5. It is enough to prove the result of Theorem 1.1 as it applies

to H2
c (OF,Σ, T ).
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Proof. At the outset we note H0(OF,Σ, T ) is a submodule of T and hence

that in this case the claim of Theorem 1.1 is obviously true with P 0
F/E,T = 0

and m0
F/E,T = 1.

Next, the long exact cohomology sequence of the sequence

0→ T
p−→ T → T/p→ 0

induces both a surjective homomorphism H0(OF,Σ, T/p)→H1(OF,Σ, T )[p]

and an isomorphism H2(OF,Σ, T )/p∼=H2(OF,Σ, T/p), and hence implies

rkp(H
1(OF,Σ, T )[p])6 rk(T ) and rkp(H

2(OF,Σ, T )) = rkp(H
2(OF,Σ, T/p)),

respectively.

The inequality rkp(H
1(OF,Σ, T )[p])6 rk(T ) combines with the exact

sequences (6) (with T replaced by T ∗(1)) to give two consequences.

First, it implies a decomposition of the required sort for H3
c (OF,Σ, T )

with P 3
F/E,T,c = 0 and m3

F/E,T,c = 2.

Second, since (6) implies H1(OF,Σ, T )tf is naturally isomorphic to

H2
c (OF,Σ, T ∗(1))∗, it shows that a decomposition of the claimed sort for

H2
c (OF,Σ, T ∗(1)) implies a corresponding decomposition of H1(OF,Σ, T )

with m1
F/E,T =m2

F/E,T,c + 1.

We now note that, since the complexes RΓ(OFT ,Σ, T ) and RΓ(OF,Σ, T )

are acyclic in degrees greater than two the first descent isomorphism in

Proposition 2.3(i) induces an identification H0(GFT /F , H
2(OFT ,Σ, T ))∼=

H2(OF,Σ, T ) and hence implies that

rkp(H
2(OF,Σ, T )) 6 rkp(H

2(OFT ,Σ, T ))

= rkp(H
2(OFT ,Σ, T/p))

= rk(T ) · rkp(H2(OFT ,Σ, µp))

= rk(T ) · (rkp(ClΣ(FT )) + #Σf,FT
− 1).(8)

Here the second equality follows from the fact that over FT the module T/p

is isomorphic to a direct sum of rk(T ) copies of µp and the last follows by

combining the canonical short exact sequence

0→H1(OFT ,Σ,Gm)/p→H2(OFT ,Σ, µp)→H2(OFT ,Σ,Gm)[p]→ 0

with the fact H1(OFT ,Σ,Gm) = ClΣ(FT ) and an explicit computation of

H2(OFT ,Σ,Gm) using class field theory (as, for example, in [16, Chapter III,

Example 2.22, Case (f)]).
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This immediately gives a decomposition for H2(OF,Σ, T ) of the required

sort with P 2
F/E,T = 0 and m2

F/E,T = rkp(ClΣ(FT )) + [FT : F ] ·#Σf,F − 1.

We observe finally this decomposition (with T replaced by T ∗(1))

combines with the isomorphism (5) to give a corresponding decomposition

of H1
c (OF,Σ, T ) with m1

F/E,T,c =m2
F/E,T .

In the sequel, for any finite group Γ, any Γ-module Y and any integer

i we write Ĥ i(Γ, Y ) for the Tate cohomology group of Y in degree i, as

discussed for example in [1, Section 6].

Since Lemma 2.5 allows us to focus on the module H2
c (OF,Σ, T ) we now

set

X :=H2
c (OF,Σ, T ).

We also abbreviate GF/E to G.

Lemma 2.6. Theorem 1.1 is valid if and only if rkp(Ĥ
0(G, Xtf))

is bounded by an explicit multiple of rk(T ) depending only on #G,

rkp(ClΣ(FT )) and #Σf,F .

Proof. Necessity of the given condition is clear. To prove sufficiency we

note first that the exact sequence (6) implies

rkp(Xtor) = rkp(H
2(OF,Σ, T ∗(1))tor)6 rkp(H

2(OF,Σ, T ∗(1))).(9)

This combines with the bound (8) (with T replaced by T ∗(1)) to show that

X has a decomposition of the form stated in Theorem 1.1 if and only if the

lattice Xtf has the same sort of decomposition.

To analyse Xtf we fix a Sylow p-subgroup P of G and note the natural

restriction map Ĥ0(G, Xtf)→ Ĥ0(P, Xtf) is bijective (as a consequence of

[1, Proposition 8]).

We set

r := rk(H0(P, Xtf)) and rp := rkp(Ĥ
0(P, Xtf)) = rkp(Ĥ

0(G, Xtf)),

note that the integer

d := r − rp = rkp(H
0(P, Xtf)/p)− rkp(H

0(P, Xtf)/(p, trP (Xtf)))

is nonnegative and choose a set of elements {xi}16i6d of X such that the

images in H0(P, Xtf)/p of the elements trP (xi) are linearly independent

over Fp.
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By applying Proposition 2.1 to this data we deduce that the Zp[P ]-

submodule X ′ of X generated by {xi}16i6d is both free of rank d and a

direct summand of X. Fixing a complement X ′′ to the direct summand X ′

in X one has

rk(X ′′) = rk(X)− rk(X ′) = rk(X)−#P · d

= (rk(X)−#P · rk(H0(P, X))) + #P · rp.(10)

Now, if J denotes either P or the identity subgroup of G, then one has

rk(H0(J, X))

= rk(H2
c (OFJ ,Σ, T ))

= rk(H1
c (OFJ ,Σ, T )) + rk(H3

c (OFJ ,Σ, T ))

= rk(BFJ (T )) + rk(H2(OFJ ,Σ, T
∗(1))) + rk(H0(OFJ ,Σ, T

∗(1))).

(The second equality here is a consequence of Proposition 2.3(iv) and the

third a consequence of the descriptions given in Proposition 2.3(ii)).

Taken in conjunction with Lemma 2.4(ii), the last displayed equality

implies that

rk(X)−#P · rk(H0(P, X)) 6 rk(X)−#P · rk(BFP (T ))

= rk(X)− rk(BF (T ))

= rk(H2(OF,Σ, T ∗(1))) + rk(H0(OF,Σ, T ∗(1)))

6 rk(T )(m2
F/E,T + 1),

where m2
F/E,T is the explicit integer defined in the proof of Lemma 2.5.

This fact combines with (10) to imply there is an isomorphism of Zp[G]-

modules

Zp[G]⊗Zp[P ] X ∼=X1 ⊕X2(11)

where X1 := Zp[G]⊗Zp[P ] X
′ is free and X2 := Zp[G]⊗Zp[P ] X

′′ satisfies

rk(X2) = [G : P ] · rk(X ′′)6 [G : P ] · rk(T ) · (m2
F/E,T + 1) + #G · rp.(12)

We next claim that Xtf is a direct summand of the Zp[G]-module

Zp[G]⊗Zp[P ] Xtf . To show this write t for the index of P in G and choose

a set of coset representatives {ci}16i6t for P in G. Then t is prime to p
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and the homomorphism of Zp[G]-modules Xtf → Zp[G]⊗Zp[P ] Xtf that sends

each x to t−1
∑i=t

i=1 c
−1
i ⊗ ci(x) is a section to the natural surjective map

Zp[G]⊗Zp[P ] Xtf →Xtf , as required.

In particular, if one decomposes Xtf as a direct sum of Zp[G]-modules

Π⊕Π′ where Π is projective and Π′ is a direct sum of nonprojective

indecomposable modules, then the isomorphism (11) and upper bound (12)

combine with the Krull–Schmidt theorem to imply that Π′ is isomorphic to

a direct summand of X2 and hence that

rkp(X2)6 [G : P ] · rk(T ) · (m2
F/E,T + 1) + #G · rp.

The claimed result now follows immediately from Lemma 2.5.

In view of Lemma 2.6 the proof of Theorem 1.1 is completed by the

following result.

Lemma 2.7. One has

rkp(Ĥ
0(G, Xtf))

6 rk(T ) ·#G · (2 + (1 + #G)(rkp(ClΣ(FT )) + #Σf,FT
− 1)).

Proof. Since Proposition 2.3 implies RΓc(OF,Σ, T ) is perfect over Zp[G]

and acyclic outside degrees one, two and three a standard argument of

homological algebra (as, for example, in [9, Rapport, Lemma 4.7]) shows

that this complex is isomorphic in D(Zp[G]) to a complex of finitely

generated Zp[G]-modules of the form

Q1 d1

−→Q2 d2

−→Q3

where each module Qi occurs in degree i, the modules Q2 and Q3 are free

and Q1 is cohomologically trivial for G. This representative of RΓc(OF,Σ, T )

in turn gives rise to tautological short exact sequences of Zp[G]-modules{
0→X1→Q1→ im(d1)→ 0, 0→ im(d1)→ ker(d2)→X2→ 0,

0→ ker(d2)→Q2→ im(d2)→ 0, 0→ im(d2)→Q3→X3→ 0,

where we set Xi :=H i
c(OF,Σ, T ) in each degree i (so that X2 =X).

Since the modules Q1, Q2 and Q3 are cohomologically trivial over G, the

long exact cohomology sequences of these sequences combine to give an
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exact sequence

Ĥ−2(G, X3)→ Ĥ0(G, X)→ Ĥ2(G, H2(OF,Σ, T ∗(1))∗).

Here we also use the fact that Lemma 2.4(i) combines with the isomorphism

(5) to imply the groups Ĥ2(G, X1) and Ĥ2(G, H2(OF,Σ, T ∗(1))∗) are

naturally isomorphic.

In addition, the tautological exact sequence 0→Xtor→X →Xtf → 0

also gives rise to an exact sequence Ĥ0(G, X)→ Ĥ0(G, Xtf)→H1(G, Xtor)

and this combines with the last displayed exact sequence to imply that the

p-rank rkp(Ĥ
0(G, Xtf)) is at most

rkp(Ĥ
0(G, X)) + rkp(H

1(G, Xtor))

6 rkp(Ĥ
−2(G, X3)) + rkp(Ĥ

2(G, H2(OF,Σ, T ∗(1))∗)) + rkp(H
1(G, Xtor))

6#G · rkp(X3) + (#G)2 · rkp(H2(OF,Σ, T ∗(1))∗) + #G · rkp(Xtor)

6#G · [rkp(X3) + #G · rkp(H2(OF,Σ, T ∗(1))∗) + rkp(H
2(OF,Σ, T ∗(1)))]

6#G · rk(T ) · [2 + (#G+ 1)(rkp(ClΣ(FT )) + #Σf,FT
− 1)],

where the second inequality is obtained by three applications of Lemma 2.8,

the third follows from (9) and the last is a consequence of the bound

rkp(X
3)6 2 · rk(T ) obtained in the course of proving Lemma 2.5 and the

bound for rkp(H
2(OF,Σ, T ∗(1))∗)6 rkp(H

2(OF,Σ, T ∗(1))) given by (8). This

proves the claimed result.

Lemma 2.8. Let G be a finite group and X a finitely generated Zp[G]-

module. Then for each integer i one has

rkp(Ĥ
i(G, X))6 (#G)ni · rkp(X)

with ni equal to i if i> 0 and to −(i+ 1) if i < 0.

Proof. The tensor product X ⊗Zp Zp[G] is endowed with a natural

diagonal action of G and lies in two natural short exact sequences of Zp[G]-

modules {
0→X

ιX−→X ⊗Zp Zp[G]→ cok(ιX)→ 0

0→ ker(πX)→X ⊗Zp Zp[G]
πX−−→X → 0.

These sequences imply rkp(cok(ιX)) and rkp(ker(πX)) are both at

most rkp(X ⊗Zp Zp[G]) = #G · rkp(X). In addition, since X ⊗Zp Zp[G] is

a cohomologically trivial G-module, the long exact cohomology sequences
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associated to these sequences induce isomorphisms

Ĥ i(G, X)∼= Ĥ i−1(G, cok(ιX)) and Ĥ i(G, X)∼= Ĥ i+1(G, ker(πX)).(13)

In particular, if i> 0, respectively i < 0, then after repeatedly applying

isomorphisms of the first, respectively second, kind in (13) one finds that

rkp(Ĥ
i(G, X)) =

{
rkp(Ĥ

0(G, Xi)) if i> 0,

rkp(Ĥ
−1(G, Xi)) if i < 0,

where in each case Xi is a Zp[G]-module with rkp(Xi)6 (#G)ni · rkp(X).

The claimed result thus follows from the last displayed equality since both

of the groups Ĥ0(G, Xi) and Ĥ−1(G, Xi) are, by definition, subquotients of

Xi and hence of p-rank at most rkp(Xi).

§3. Representations with pro-p image

In this section we discuss applications of Theorem 1.1 in the setting of

representations with pro-p image.

3.1 We start by deducing a result which shows that, in certain natural

cases, one can weaken the explicit dependence of the bounds given in

Theorem 1.1 on either the given p-adic representation or the behavior of

class groups.

In the sequel we write kpΣ for the maximal pro-p extension of k in kΣ and

kp,ab
Σ for the maximal abelian extension of k in kpΣ.

Corollary 3.1. Fix an abstract finite group G, a finite set Σ of places

of k containing Σ∞ ∪ Σp and natural numbers r and b.

Then there exists a finite Galois extension kΣ,r of k in kΣ with the

following property: as T ranges over all p-adic representations of Gk,Σ that

have pro-p image and rank at most r and F/E over all G-extensions of

number fields that contain k, are unramified outside ΣE and such that

rkp(ClΣ(kΣ,rF )) + #Σf,F 6 b, there are, up to projective direct summands,

only finitely many isomorphism classes of Zp[G]-modules that can arise from

the modules H i(OF,Σ, T )tf and H i
c(OF,Σ, T )tf for any choice of degree i.

Proof. If ρ is a representation Gk,Σ→AutZp(T ) with pro-p image and

rank at most r, then the kernel of the induced modular representation

Gk,Σ→AutZp(T/p) can be computed as the kernel of a homomorphism

Gk,Σ→GLr(Fp) with pro-p image and so has index dividing the maximal
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power pir of p that divides #GLr(Fp). The field kT that occurs in

Theorem 1.1 is thus the compositum of k(µp) and a Galois extension k′T
of k in kΣ of exponent dividing pir .

Write k′Σ,r for the compositum of the fields k′T as ρ runs over all such

representations. Then k′Σ,r is a Galois extension of k in kpΣ of exponent

dividing pir and, since GkpΣ/k
is topologically finitely generated, this implies

k′Σ,r is a finite extension of k. We thus obtain a finite Galois extension of k

in kΣ by setting kΣ,r := k′Σ,r(µp).

The proof of Theorem 1.1 shows that the same bounds on rkp(R
i
F/E,T )

and rkp(R
i
F/E,T,c) are valid if one replaces FT with the larger field FΣ,r :=

kΣ,rF . Hence, since the given bound on rkp(ClΣ(FΣ,r)) + #Σf,F implies a

bound on both rkp(ClΣ(FΣ,r)) and #Σf,F , this argument gives a bound on

the Zp-ranks of the lattices RiF/E,T,tf and RiF/E,T,c,tf .

The claimed result now follows since, by the Jordan–Zassenhaus theorem

[8, Theorem (24.2)], there are, up to isomorphism, only finitely many Zp[G]-

lattices of any given rank.

For a concrete arithmetical application of this result for the represen-

tations T = Zp(r) for varying integers r, see Corollary 4.1 (and Proposi-

tion 4.2).

In general, the following example shows the bounds required by Corol-

lary 3.1 arise in natural families of extensions.

In the sequel we write Ecyc for the cyclotomic Zp-extension of a number

field E.

Example 3.2. Assume k contains µp, fix a pro-p p-adic analytic exten-

sion K of k containing kcyc and unramified outside Σ and set EΣ,r := kΣ,rE

for each subfield E of K. Fix a finite group G of p-power order and

a natural number e and write Ext(G, K/k, e) for the family of Galois

extensions F/E with GF/E isomorphic to G, k ⊆ E ⊂ F ⊂K, E/k finite

and [E : E ∩ kcyc]6 e. For any such F/E the degree over kcyc of the Galois

closure of Fcyc over kcyc is at most the maximal power pm of p that divides

(e#G)! In addition, since in this caseKΣ,r is a pro-p p-adic analytic extension

of kcyc, the compositum Kr,m of kΣ,r with the largest Galois extension of

kcyc in K of exponent dividing pm is of finite p-power degree over kcyc.

Now (FΣ,r)cyc is one of the finitely many intermediate fields L of Kr,m/kcyc

and if the Iwasawa µ-invariant of kcyc vanishes (as conjectured by Iwasawa

[14]) one can show G
Lp,ab

Σ /L
is a finitely generated Zp-module for each

such L. By using [20, Proposition 13.23] this gives a finite upper bound
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on rkp(ClΣ(FΣ,r)) that depends only on Kr,m/k. Since every place in Σf is

only finitely decomposed in Kr,m/k one can also give a similar bound on

#Σf,F and so Corollary 3.1 applies to the family Ext(G, K/k, e).

3.2 In this section we prove Corollary 1.2. To do so we first recall details

concerning the finite support cohomology and Selmer groups introduced by

Bloch and Kato.

With F denoting either T or W := (Qp/Zp)⊗Zp T , for each place w of

each finite extension L of k in kc we write H1
f (Lw, F) for the “finite support

cohomology” subgroup of H1(Lw, F) defined in [2]. Then the Bloch–Kato

Selmer group SelL(W ) of W over L is defined to be the kernel of the natural

diagonal localization map

H1(OL,Σ, W )→
⊕
w∈ΣL

H1(Lw, W )

H1
f (Lw, W )

.

Setting SelL(T ) := SelL(W )∨, Artin–Verdier duality gives rise (via, for

example, the computations of [4, pp. 86–87]) to an exact sequence of finitely

generated Zp-modules⊕
w∈Σf,L

H1
f (Lw, T )→H2

c (OL,Σ, T )→ SelL(T )→ 0

and hence to an inequality

rk(H2
c (OL,Σ, T ))−

∑
w∈Σf,L

rk(H1
f (Lw, T )) 6 rk(SelL(T ))

6 rk(H2
c (OL,Σ, T )).(14)

It is also well known that for each w ∈ Σf,L one has

rk(H1
f (Lw, T ))6

{
rk(T )([Lw : Qp] + 1) if w is p-adic,

rk(T ) otherwise
(15)

(for example, this follows directly from [4, (1.5) and (1.7)] and the fact that

if w is p-adic, then the Qp-dimension of the tangent space of Qp ⊗Zp T over

Lw is at most [Lw : Qp] · rk(T )).

Turning to the proof of Corollary 1.2 we assume the notation and

hypotheses of that result, we set G :=GF/E and we fix a decomposition

H2
c (OF,Σ, T ) = P 2

F/E,T,c ⊕R
2
F/E,T,c of the form stated in Theorem 1.1.
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As G is here assumed to be a p-group, the Zp[G]-module P 2
F/E,T,c is free

and so one has rk(P 2
F/E,T,c) = #G · rk(H0(G, P 2

F/E,T,c)). In addition, since

the isomorphism in Proposition 2.3(i) induces an identification of Qp-spaces

H0(G,Qp ⊗Zp H
2
c (OF,Σ, T ))∼= Qp ⊗Zp H

2
c (OE,Σ, T ), one has

rk(H0(G, P 2
F/E,T,c)) = rk(H0(G, H2

c (OF,Σ, T )))− rk(H0(G, R2
F/E,T,c))

= rk(H2
c (OE,Σ, T ))− rk(H0(G, R2

F/E,T,c))

and hence

rk(H2
c (OF,Σ, T ))

= rk(P 2
F/E,T,c) + rk(R2

F/E,T,c)

= #G · rk(H0(G, P 2
F/E,T,c)) + rk(R2

F/E,T,c)

= #G(rk(H2
c (OE,Σ, T ))− rk(H0(G, R2

F/E,T,c))) + rk(R2
F/E,T,c)

= #G · rk(H2
c (OE,Σ, T )) + δF/E,T

with δF/E,T := rk(R2
F/E,T,c)−#G · rk(H0(G, R2

F/E,T,c)) so that

−#G · rkp(R2
F/E,T,c,tf)6 δF/E,T 6 rkp(R

2
F/E,T,c,tf).

These facts combine with (14) and (15) (for both L= F and L= E) to

give inequalities

rk(SelF (T ))

6 rk(H2
c (OF,Σ, T )) = #G · rk(H2

c (OE,Σ, T )) + δF/E,T

6#G(rk(SelE(T )) + rk(T )(#Σf,E + [E : Q])) + δF/E,T

6#G · rk(SelE(T )) + rk(T )(#G ·#Σf,F + [F : Q]) + rkp(R
2
F/E,T,c,tf)

6#G · rk(SelE(T )) + r(#G ·#Σf,F + [F : Q]) + rkp(R
2
F/E,T,c,tf)

and

rk(SelF (T ))

> rk(H2
c (OF,Σ, T ))− rk(T )(#Σf,F + [F : Q])

= #G · rk(H2
c (OE,Σ, T )) + δF/E,T − rk(T )(#Σf,F + [F : Q])

>#G · rk(SelE(T ))− rk(T )(#Σf,F + [F : Q])−#G · rkp(R2
F/E,T,c,tf)

>#G · rk(SelE(T ))− r(#Σf,F + [F : Q])−#G · rkp(R2
F/E,T,c,tf).
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To deduce Corollary 1.2 from these explicit inequalities it is enough to

note the argument of Corollary 3.1 gives an upper bound on rkp(R
2
F/E,T,c,tf)

that depends only on #G, rkp(ClΣ(kΣ,rF )) and #Σf,F .

§4. The representations T = Zp(r)

By means of concrete arithmetic examples, in this section we explore

consequences of Theorem 1.1 for the representations T = Zp(r) for varying

integers r.

We also show that in this context, and for special classes of extensions

F/E, our methods can lead to very explicit structural results.

4.1 We first record a general consequence of Corollary 3.1 in this case.

For any abstract finite group G, any finite set of rational places Σ that

contains p and any natural number b we write Ext(G, Σ, b) for the family

of Galois extensions of number fields F/E that satisfy all of the following

properties 
GF/E is isomorphic to G,
E contains µp,

F/E is unramified outside ΣE ,

rkp(ClΣ(F )) + #Σf,F 6 b.

Then Corollary 3.1 has the following concrete consequence concerning

Galois structures in these families.

Corollary 4.1. Fix data G, Σ and b as above. Then, as the extension

F/E ranges over Ext(G, Σ, b) there are, up to projective direct summands,

only finitely many isomorphism classes of Zp[G]-modules arising from either

Gal(F p,ab
Σ /F )tf or (Zp ⊗Z K2a+1(OF,Σ))tf for any nonnegative integer a.

Proof. If T = Zp(a) for any integer a, then the associated p-adic

representation of GQ(µp),Σ has pro-p image and for every field F as above

one has FT = F .

The claimed result thus follows directly from the proof of Corollary 3.1

(with k replaced by Q(µp)) and the fact that there are canonical isomor-

phisms of Zp[GF/E ]-modules
H1(OF,Σ, Zp(1))∼= Zp ⊗Z O×F,Σ = Zp ⊗Z K1(OF,Σ),

H1(OF,Σ, Zp(1 + a))∼= Zp ⊗Z K2a+1(OF,Σ) for a > 0,

H2
c (OF,Σ, Zp(1))∼= Gal(F p,ab

Σ /F ).

(16)
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Here the first isomorphism is induced by Kummer theory, the second by the

fact that the Chern class homomorphism

Zp ⊗Z K2a+1(OF,Σ)→H1(OF,Σ, Zp(1 + a))

is bijective (by the known validity of the Quillen–Lichtenbaum conjecture –

see Weibel [21]) and the third by the Artin–Verdier duality theorem.

In the sequel, for each natural number m and each number field E we

shall write Em for the field generated over E by a primitive pmth root of

unity.

The interest of Corollary 4.1 is explained by the following result.

Proposition 4.2. Let G be a finite group of odd order that has a

commutator subgroup of p-power order. Then for any large enough finite

set of rational places Σ and any large enough integer b the Zp-rank of

Gal(F p,ab
Σ /F )tf , and of (Zp ⊗Z K2a+1(OF,Σ))tf for any nonnegative inte-

ger a, is unbounded as F/E ranges over Ext(G, Σ, b).

Proof. As any such group G is both solvable and of order prime to the

number of roots of unity in Q there exists a Galois extension F of Q for

which GF/Q is isomorphic to G and p is unramified in F (see Neukirch [17,

Corollary 2, p. 156]). We write Σ for the set of rational places comprising

∞, p and those primes that ramify in F/Q.

We claim that for any large enough integer b, all of the extensions Fm/Qm

as m varies belong to Ext(G, Σ, b).
At the outset it is clear Qm contains µp, F

m/Qm is unramified outside Σ

and, as Qm/Q is disjoint from F/Q (since p is unramified in F ), GFm/Qm is

isomorphic to G.

We next write F∞ for the union of the fields Fm for m> 0. Then each

rational prime has open decomposition group in GF∞/Q and so #Σf,Fm is

bounded independently of m. In addition, since F 1 is (by our assumption

on the commutator subgroup of G) a Galois extension of p-power degree

of an abelian field, the Iwasawa µ-invariant of F∞/F 1 vanishes and so

rkp(ClΣ(Fm)) is bounded independently of m (by [20, Proposition 13.23]).

At this stage we know that, for any sufficiently large integer b, the

extensions Fm/Qm all belong to Ext(G, Σ, b). It is thus enough to note

that, since the number of complex places of Fm is [Fm : Q]/2, one has

rk(Gal((Fm)p,ab
Σ /Fm)tf)> [Fm : Q]/2− 1 and, for any nonnegative inte-

ger a, also rk((Zp ⊗Z K2a+1(OFm,Σ))tf)> [Fm : Q]/2.
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4.2 In this section we explain how techniques developed in [7] can be

used to make the structure results of Corollary 4.1 more precise in the case

of cyclic extensions of p-power degree. We thus fix such an extension F/k,

set G :=GF/k and [F : k] = pn and for each integer i with 06 i6 n, let Fi
denote the unique extension of k in F of degree pi.

For any nonnegative integer a and intermediate field Fi of F/k we write

capaF,i,Σ for the “p-primary capitulation kernel”{
Zp ⊗Z ker(ClΣ(Fi)→ ClΣ(F )) if a= 0,

Zp ⊗Z ker(K2a(OFi,Σ)→K2a(OF,Σ)) if a > 0

where the arrows denote the respective homomorphisms that are induced

by the ring inclusion OFi,Σ ⊆OF,Σ.

We write r1,E and r2,E for the number of real and complex places of a

number field E.

Theorem 4.3. Fix a nonnegative integer a for which the cohomology

group H0(Gk,Σ, (Qp/Zp)(1 + a)) vanishes.

Then the isomorphism class of the Zp[G]-module Zp ⊗Z K2a+1(OF,Σ) is

uniquely determined (in the sense described in [7, Section 3.2.1]) by the

diagram

capaF,0,Σ� capaF,1,Σ� · · ·� capaF,n−1,Σ,(17)

where the upper and lower arrows are the homomorphisms induced by the

field-theoretic norms F×i+1→ F×i and inclusions OFi,Σ ⊆OFi+1,Σ, respec-

tively, together with knowledge of
#ΣFi for each i with 06 i6 n if a= 0,

r2,k if a > 0 and a is odd,

r1,k + r2,k if a > 0 and a is even.

Proof. Fix a nonnegative integer a and an integer i with 06 i6 n.

Then the assumed vanishing of the group H0(Gk,Σ, (Qp/Zp)(1 + a))

implies that H0(GFi,Σ, (Qp/Zp)(1 + a)) also vanishes. This in turn implies

that the module Zp ⊗Z K2a+1(OF,Σ) is Zp-free and also combines with

the description of Proposition 2.3(ii), the exact sequence (6) and the

isomorphisms H2(OFi,Σ, Zp(1))tor
∼= Zp ⊗Z ClΣ(Fi) and H2(OF,Σ, Zp(1 +

a))∼= Zp ⊗Z K2a(OF,Σ) for a > 0 that are respectively induced by class field
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theory and the canonical Chern class homomorphism, to imply that the

complex Ci(a) :=RΓc(OFi,Σ, Zp(−a)) is acyclic outside one and two and is

such that there is a canonical short exact sequence

0→Ba
i →H2(Ci(a))→ (Zp ⊗Z K2a+1(OFi,Σ))∗→ 0

with B0
i := (Zp ⊗Z ClΣ(Fi))

∨ and Ba
i := (Zp ⊗Z K2a(OF,Σ))∨ for a > 0. In

addition, since Ci(a) is acyclic in degrees greater than two the descent

isomorphism Zp[GFi/k]⊗L
Zp[G] Cn(a)∼= Ci(a) from Proposition 2.3(i) induces

an identification H0(GF/Fi
, H2(Cn(a)))∼=H2(Ci(a)).

Given these facts, one can simply follow the argument of [7, Section 3.2.1]

(with the terms X and Xi that occur in that argument being respectively

replaced by (Zp ⊗Z K2a+1(OF,Σ))∗ and Ba
i ) to deduce that the isomor-

phism class of the Zp[G]-lattice (Zp ⊗Z K2a+1(OF,Σ))∗, and hence also of

(Zp ⊗Z K2a+1(OF,Σ))tf = Zp ⊗Z K2a+1(OF,Σ), is uniquely determined, in a

sense that is made precise in [7, Lemma 3.5], by the (Pontryagin dual

of the) diagram (17) together with knowledge of the rank rai := rk(Zp ⊗Z
K2a+1(OFi,Σ)) for each i.

The claimed result thus follows from the fact that for each i one has r0
i =

#ΣFi − 1 and if a > 0 is odd, respectively even, also rai = r2,Fi = pi · r2,k,

respectively rai = r1,Fi + r2,Fi = pi(r1,k + r2,k).

Remark 4.4. An important special case of Theorem 4.3 arises when

capaF,i,Σ vanishes for each i with 06 i < n. In this case a closer analysis of

the argument in [7, Section 3.2.1] shows that Zp ⊗Z K2a+1(OF,Σ) is a free

Zp[G]-module if a > 0 and is isomorphic to the direct sum
⊕j=n

j=0Zp[GFj/k]
mj

if a= 0, where the nonnegative integers mj are determined by the equalities∑j=n
j=0 mj · pmin{j,b} = #ΣFb

− 1 for each b with 06 b6 n.

4.3 In this final section we show that, in special cases, our approach can

be used to make the result of Theorem 4.3 much more explicit.

To do this we fix an odd prime p and for each number field k and

nonnegative integer n write kn for the unique subfield of kcyc that has degree

pn over k. For each such n we also fix a primitive pnth root of unity ζn in

Qc with ζpn = ζn−1.

We assume throughout that the following hypothesis is satisfied.

Hypothesis 4.5. k is disjoint from Qcyc and does not contain a pth

root of ω · p for any root of unity ω.
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Remark 4.6. This hypothesis is satisfied if, for example, the absolute

ramification index of some p-adic place of k is prime to p.

We write Σ for the set of places of k that are either archimedean or

p-adic and for each n we study the structure of the Zp[Gkn/k]-module

H1(Okn,Σ, Zp(1))∼= Zp ⊗Z O×kn,Σ.

To do this we define an element of O×kn,Σ by setting

εn := NormQn+1/Qn
(ζn+1 − 1).

Proposition 4.7. Let k be any number field satisfying Hypothesis 4.5.

Then for each natural number n the element εn generates a Zp[Gkn/k]-
submodule of Zp ⊗Z O×kn,Σ that is both a direct summand and isomorphic

to Zp[Gkn/k].

Proof. The fact that k is disjoint from Qcyc implies that the restriction

map Gkn/k→GQn/Q is bijective and hence that

Normkn/k(εn) = NormQn/Q(εn) = NormQn+1/Q(ζn+1 − 1) = p.

Since k does not contain a pth root of ω · p for any root of unity ω, this

equality implies the image ε0n,p of Normkn/k(εn) in the lattice (Zp ⊗Z O×k,Σ)tf

is not divisible by p.

We set Γn :=Gkn/k, Un,p := Zp ⊗Z O×kn,Σ and µn,p := (Un,p)tor. Then by

applying the functor H0(Γn,−) to the tautological exact sequence

1→ µn,p→ Un,p→ (Un,p)tf → 1

one obtains an exact sequence of abelian groups

0→ (Zp ⊗Z O×k,Σ)tf
ιn,p−−→H0(Γn, (Un,p)tf)→H1(Γn, µn,p).

Let us assume for the moment that the group H1(Γn, µn,p) vanishes. Then

this sequence shows that ιn,p is bijective and so the above considerations

imply that the image εn,p of εn in (Un,p)tf is such that trΓn(εn,p) = ιn,p(ε
0
n,p)

is not divisible by p in H0(Γn, (Un,p)tf). Given this, we can apply Propo-

sition 2.1 to the data G= Γn, X = (Un,p)tf , t= 1 and x1 = εn,p to deduce

that εn,p generates a Zp[Gkn/k]-submodule of (Un,p)tf that is both a direct

summand and isomorphic to Zp[Gkn/k]. It is then clear that εn generates a

Zp[Gkn/k]-submodule of Un,p that is a direct summand and isomorphic to

Zp[Gkn/k], as claimed.
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It therefore suffices to check H1(Γn, µn,p) vanishes and this is clear if k

does not contain ζ1 since then the group µn,p vanishes.

If, on the other hand, k contains ζ1, then (as k is disjoint from Qcyc)

the torsion subgroup H0(Γn, µn,p) of Zp ⊗Z O×k,Σ is generated by ζ1 and the

group µn,p by ζn+1. Since Normkn/k(ζn+1) = ζ1 this shows that the Tate

cohomology group Ĥ0(Γn, µn,p) vanishes, and hence also (since Γn is cyclic)

that the group H1(Γn, µn,p) vanishes, as required.

This result implies some very explicit structural results. To explain this

we start with an easy special case.

Corollary 4.8. Let k be either Q or an imaginary quadratic field in

which p is not split. Then for each natural number n the Zp[Gkn/k]-module

(Zp ⊗Z O×kn,Σ)tf is free of rank one.

Proof. The stated conditions on k imply that it satisfies Hypothesis 4.5

and in addition that kn has pn archimedean places and a unique p-adic place

and hence that rk(Zp ⊗Z O×kn,Σ) is equal to (pn − 1) + 1 = rk(Zp[Gkn/k]). In

these cases, therefore, the result of Proposition 4.7 implies (Zp ⊗Z O×kn,Σ)tf

is equal to Zp[Gkn/k] · εn,p and so is a free Zp[Gkn/k]-module of rank one.

In the rest of this section we consider the next simplest case by assuming

that k is a real quadratic field in which p is inert.

In this case k satisfies Hypothesis 4.5 and Zp ⊗Z O×kn,Σ is a free Zp-module

of rank 2pn so that Proposition 4.7 implies there is an isomorphism of

Zp[kn/k]-modules

Zp ⊗Z O×kn,Σ
∼= Zp[Gkn/k]⊕ Vkn/k(18)

with rk(Vkn/k) = pn.

For each pair of integers i and j with 06 i6 j 6 n we now write

cap
kj
ki,p

:= Zp ⊗Z ker(Cl(ki)→ Cl(kj))

for the p-primary part of the kernel of the classical “capitulation” map on

ideal classes. Then, in terms of the notation in Theorem 4.3, for all such i

and j there are natural isomorphisms

Ĥ−1(Gkj/ki , V
∗
kj/k

) ∼= Ĥ−1(Gkj/ki , (Zp ⊗Z O×kj ,Σ)∗)

∼= (cap0
kj ,i,Σ

)∨ ∼= (cap
kj
ki,p

)∨(19)
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where the first follows directly from the Zp-linear dual of the isomorphism

(18) (with n replaced by j), the second from the argument of [7, Proposi-

tion 3.1] (modified as per the a= 0 case of the proof of Theorem 4.3) and

the third follows trivially from the fact that p is inert in k and so the unique

prime ideals of ki and kj above p are principal.

To further analyse the structure of Vkn/k we now restrict to the case n= 2

and use the Heller–Reiner classification of indecomposable Zp[Gk2/k]-lattices

from [12]. In fact, for our purposes, the relevant properties of these lattices

are conveniently displayed in [18, Table 2] and so in the following result we

shall use the same notation for indecomposable lattices as in that table.

Corollary 4.9. Let k be a real quadratic field in which p is inert. Set

G :=Gk2/k and write Q for the quotient of G of order p and Zp for the set

of integers i with 16 i6 p− 2. For integers a and b in {0, 1, 2} with a6 b
abbreviate capkbka,p to capba.

Then there is an isomorphism of Zp[G]-lattices Zp ⊗Z O×k2,Σ
∼= Zp[G]⊕ V ∗

where the lattice V is such that precisely one of the following cases arises.

(i) V = (R2, R1 ⊕ Zp, 1⊕ 1) and |cap1
0|= |cap2

0|= |cap2
1|= p.

(i)i V = (R2, R1 ⊕ Zp, 1⊕ λi0) with i ∈ Zp, |cap1
0|= |cap2

0|= p and |cap2
1|=

pi.

(ii) V = Zp[G] and |cap1
0|= |cap2

0|= |cap2
1|= 1.

(ii)i V = (R2, Zp[Q], λi0) with i ∈ Zp ∪ {p− 1}, |cap1
0|= 1, |cap2

0|= p and

|cap2
1|= pi.

(iii) V = (R2, Zp, 1)⊕R1, |cap1
0|= |cap2

0|= p and |cap2
1|= pp−1.

(iv) V =R2 ⊕ Zp[Q], |cap1
0|= 1, |cap2

0|= p and |cap2
1|= pp.

(v) V =R2 ⊕R1 ⊕ Zp, |cap1
0|= p, cap2

0
∼= (Z/p)2 and |cap2

1|= pp.

(vi) V = (R2, R1, 1), |cap1
0|= p, cap2

0
∼= Z/p2 and |cap2

1|= p.

(vi)i V = (R2, R1, λ
i
0) with i ∈ Zp, |cap1

0|= p, cap2
0
∼= (Z/p)2 and |cap2

1|=
pi+1.

Proof. The given conditions on k imply that it satisfies Hypothesis 4.5

and so (18) gives an isomorphism of the form Zp ⊗Z O×k2,Σ
∼= Zp[G]⊕ V ∗

with V = V ∗k2/k
. For each a ∈ {0, 1, 2} this decomposition implies that

rk(V Ja) = rk(Zp ⊗Z O×k2−a,Σ
)− rk(Zp[G/Ja]) = p2−a, where we write Ja for

the subgroup of G of order pa.

The stated list of possibilities for V is then obtained by explicitly

comparing these rank conditions and the cohomology computations in (19)

with the basic properties of the set of isomorphism classes of indecomposable
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Zp[G]-lattices, as recorded in [18, Table 2]. Since this process is entirely

routine we leave all further details to the reader.

Remark 4.10.

(i) Inspection of the list in Corollary 4.9 leads to several concrete observa-

tions about both Galois structures and capitulation kernels (under the

given hypotheses). For example, the list combines with (18) to imply

Zp ⊗Z O×k2,Σ
decomposes, in all cases, as a direct sum of ideals of Zp[G]

(whilst the Heller–Reiner classification implies that this is not true of

every Zp[G]-lattice). It also implies that

cap2
0 = 0⇐⇒ cap2

1 = 0⇐⇒ V ∼= Zp[G]

(as occurs, for example, whenever the class number of k is prime to p),

that

cap1
0 = 0⇐⇒ V ∼= Zp[G]

or

V ∼=R2 ⊕ Zp[Q]

or

V ∼= (R2, Zp[Q], λi0)

for some i in Zp, that

cap2
0 has an element of order p2 ⇐⇒ |cap2

1|6 |cap1
0|

⇐⇒ V ∼= (R2, R1, 1)

and that in all cases one has |cap2
0|6 p · |cap1

0|.
(ii) Corollary 4.9 shows, in addition, that the structure of the Zp[G]-module

Zp ⊗Z O×k2,Σ
is completely determined by the abstract structures of the

groups capk2
ka,p

and capk1
k,p. In particular, contrary to the more general

result of Theorem 4.3, in this case one does not require any information

about maps between these groups.
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