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TWISTED HASSE-WEIL L-FUNCTIONS
AND THE RANK OF MORDELL-WEIL GROUPS

LAWRENCE HOWE

ABSTRACT. Following amethod outlined by Greenberg, root number computations
give a conjectural lower bound for the ranks of certain Mordell-Weil groups of elliptic
curves. More specifically, for PQ, a PGL(Z /p"Z)-extension of Q and E an elliptic
curve over Q, define the motive E ® p, where p is any irreducible representation of
Gal(PQ, /Q). Under some restrictions, the root number in the conjectural functional
equation for the L-function of E & p is easily computable, and a‘—1' implies, by the
Birch and Swinnerton-Dyer conjecture, that p is found in E(PQ,) ® C. Summing the
dimensions of such p gives aconjectural lower bound of

p2n _ p2n—17 p— 1
for the rank of E(PQy,).

Introduction. In[3], Greenberg outlinesamethod for using root number calculations
to give lower bounds for the ranks of Mordell-Weil groups of elliptic curvesin certain
PGL(Z /p"Z)-extensions of Q. This paper pursues those cal culations using Silberger’s
work ([9]) on representations of PGL(Zp).

To recall Greenberg'smethod, let E be an elliptic curve over Q with conductor Ng. Let
p bean odd prime, andlet PQ, beaPGL»(Z /p"Z)-extension of Q, for somen. Weassume
that no prime factor of Ng ramifiesin PQ,. Such PQ,, may be constructed by taking an
auxiliary elliptic curve E' over Q without complex multiplication, and whose conductor
iscoprimewith Ng. For all but finitely many p, the p-power division pointsof E’ generate
aGLa(Zp)-extension of Q. Thefixed field of the centreis thus aPGL»(Zp)-extension PQ
of Q. Wemay then choose p so that no primein Ng ramifiesin PQ. Thefield PQ,, appears
asthefixed field of the kernel of the reduction map PGL»(Z,) — PGL2(Z/p"Z).

Let p be an even dimensional irreducible representation of Gal(PQ,, / Q). By twisting
the L-function of E by p a motivic L-function is obtained whose associated conjectural
functional equation has an e-factor computable solely in terms of properties of p (See
Theorem 1 below). Since any complex representation of PGL»(Z /p"Z) isisomorphic to
its contragredient, the functional equation for the L-function with I-factor has the form

NE®p,9) =c(E®@p,INE® p,2 —9),

which makese(E @ p, 1) = +1. The generalized Birch and Swinnerton-Dyer conjecture

implies that the order of vanishing at s = 1 of the twisted L-function is precisely

the multiplicity of p in E(PQ,) ® C. Thus, for a particular p, if e(E® p,1) = —1, then
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NA(E® p, 1) vanishes. Thisimpliesthat p occursin E(PQ,) ® C. Summing the dimensions
of al p having e(E ® p, 1) = —1 gives alower bound for the rank of E(PQ,,).

The first two sections fill out the sketch provided above. Section 1 reviews the
background of motivic L-functions. Section 2 contains a derivation of the conjectural
root number formula (Theorem 1)

£(E® p.1) = (~1)% det p(Ne).

where p is an even dimensiona irreducible representation of Gal(PQ, /Q) and d, is
the dimension of the (—1)-eigenspace of complex conjugation under p. Thisformulais
decadesold: in[11], Well attributesit to Langlands. However, hereit isexplicitly derived
from certain conjectures about mativic L-functions. Computing thetermsin thisformula
for the various p is done in Section 3, using the catalog of all complex representations
of PGL>(Z,) foundin [9].

Applying the results of the computations to obtain a lower bound for the rank of
E(PQp) givesthe following theorem:

THEOREM 3. Let E be an €lliptic curve defined over Q with conductor Ng, and let
PQ, be a PGL,(Z /p"Z)-extension of Q. Suppose that no prime in Ng ramifiesin PQ,
and that —Ng is a quadratic nonresidue modulo p. Then,

rank(E(PQy)) > p" —p™t —p— L.

| would like to thank Michagl Harris, Ralph Greenberg, David Rohrlich, and Glenn
Stevensfor their generous guidance, and the referees for their valuable suggestionsand
corrections.

Throughout, PQ, will be the PGL,(Z /p"Z)-extension of Q described above.

1. Twisted Hasse-Weil L-functions. Let E isan elliptic curve defined over Q with
conductor Ng and let p be an irreducible complex representation of Gal(PQ, /Q) realiz-
ableover somenumber field K . Thetensor product E® p givesamotive with coefficients
in K. To make the calculations straightforward, we shall assume that no prime in Ng
ramifiesin PQ,, so that by the conductor-discriminant product formula ([ 7], p. 104), Ng
is coprime to the conductor of any irreducible representation p of Gal(PQ, / Q).

1.1. Motivic L-functions. Werecall the definition of the L-function attachedto amotive
M. For each prime number p, let Wq,, be aWeil group for Q, over Qp, where Q, denotes
an algebraic closure of Qp. We follow Deligne’s convention that under the reciprocity
law isomorphism,

QS—LVV%?].

a uniformizer corresponds to a geometric Frobenius element, i.e., one which acts as
X — X" on Ep /Fp. We shall aways use @ to denote a geometric Frobenius element
and | to denote the inertia group in Wg, . Now let H, (M) be the A-adic realization of M,
where X isaprime of the coefficient field not over p. We then set

) Zp(M. 1) = det(1 — &t | Hy(M))) ™,

https://doi.org/10.4153/CJM-1997-037-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-037-7

TWISTED HASSE-WEIL L-FUNCTIONS 751

where the superscript | denotes the subspace of inertial invariants. In our case, Z,(M. t)
will alwaysbeapolynomial int with coefficientsin the coefficient field of M, independent
of the choice of .

Setting Lp(M, 5) = Zp(M, p~3), define the L-function of M to be

@) LM, s) = 1} Lo(M. 9).

which convergesfor the real part of s sufficiently large.

TheT -factor at infinity L.,(M, S) is completely determined by the Hodge decomposi-
tion of the ‘' Betti’ realization of M. A table of the possibilitiesisgivenin[2], Section 5.3.
Setting A(M, s) = Lo(M, s)L(M, s), the conjectural functional equation reads

©) AM, s) = (M. S)AM. 1 — ),

where M isthe dual motive of M, and where e(M, s), asafunction of s, is the product of
aconstant and an exponential function.

1.2. ThreeL-functions.

1. ForM =E, L(E, s) isthe Hasse-W&il L-function. InthiscaseH,(E) = V' isthefirst
étale cohomology group of E with coefficientsin Q,. For varying ¢, the corresponding
representations of the Weil-Deligne group "W, are compatible and ®-semisimple (see
[1]).

As a representation of the Weil-Deligne group, the ¢-adic representation V! of Wo,
correspondsto apair (o, N), where o is arepresentation of W, in V! trivial on an open
subgroup of I, and where N is a nilpotent endomorphism of V¢. With this, the definition
of Z,(E. t) becomes

Zo(E. 1) = det(L1 — ot | ker(N)'®) .
Compeatibility ensuresthat Z,(E, t) has coefficientsin Q.
Since E has a Hodge structure of type {(0, 1), (1,0)} (see, e.g., [6]) the [-factor
Lo(E,9) is
Lo(E, 8) =Tc(s) = 2(2n)°T (9).
SinceE = E(1) and A(M(n), s) = A(M. s+n) for any motive M, the functional equation
for E isusualy givenin the following form:

NA(E,s) = ¢(E,9A(E, 2 — 9).

Taking series expansionsabout s = 1 showsthat (E, 1) = 1.

2. For M = p, suppose that p has as representation space the K -vector space W.
Then the A-adic realization H, (p) is just K, @k W. From this the compatibility of the
Hy(p) is clear, as is the fact that Z,(p. t) has coefficientsin K independent of X. The
resulting L-function is the Artin L-function attached to p.
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At oo, p has a Hodge structure which is pure of type (0,0), and for which the
involution acts as complex conjugation (see[2], Section 6). If d, is the dimension of the
(—21)-eigenspace of complex conjugation, then

Loo(p, ) = Mr(s+ 1)¥TR(5)4MA)~,

where Mr(s) = 7792 (s/2).
Since p = p, the (proven) functional equation reads

N(p,S) = e(p. IN(p. 1 — 9).
Hence, £(p.1/2) = +1.
3. ForM = E® p, the A-adic realization H,(E @ p) is

Vk ®Q[ [KA ®K VV]

Theresulting L-function is atwisted Hasse-Weil L-function. By the compatibility of each
of the two previous representations, the H (E ® p) are also compatible, and Z,(E @ p, t)
has coefficientsin K independent of . Note, too, that the H, (E ® p) are ®-semisimple,
since both E and p are.

At oo, the Hodge structure is pure of type {(1,0), (0, 1)} and hence L, (E ® p,s) =
Fe(9)dmr. AsM = E® ) = E(1) @ p, the conjectural functional equation will be of the
form

NE®p,9) =c(E®@p,INE®@ p,2 —9),

from which one concludesthat ¢(E ® p, 1) = £+1.
Theterm root number will alwaysrefer to e(E ® p, 1).

1.3. A form of the Birch and Swinnerton-Dyer conjecture. Recall that the Birch and
Swinnerton-Dyer conjecture says that the order of vanishing at s = 1 of the L-function
of an elliptic curve E defined over anumber field K istherank of E(K). A generalization
of this conjecture also usesthe Deligne-Gross conjecture that the order of vanishing of a
motivic L-function at a critical point isindependent of the embedding of the coefficient
fieldin C (see[2], Conjecture 2.7). The following ([5]) supports assertions made in the
introduction:

ProPOSITION 1. The Birch and Swinnerton-Dyer and Deligne-Gross conjecturesto-
gether imply that
ords L(E @ p. s) = multiplicity of p in E(Q) ® C,
where (3 denotes an algebraic closure of Q.
2. Theroot number formula.

2.1. Local constants. To compute the root number ¢(E ® p, 1), we will make use of
the conjectural formulae for motivic epsilon factors (M, s) as products over all p of the
local factors ep(M, S, 1p, d%p) and of afactor at infinity e, (M, S. 1, UXso).
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1. For each prime p, set ¥p(X) = exp(—2rix), which gives an additive character
Yp: Qp — C* viathe isomorphism

Qp/Zp — p-primary partof Q/Z.

Let dx, be the Haar measure on Q, that gives J7, dx, = 1. Denote by ws the quasi-
character x — ||x||* of Qg hence of We, . If the A\-adic realization H, (M) of M corre-
spondsto the representation (o, N) of the Weil-Deligne group "W, then define

(@) epM. s Yp. dxp) = £(0 @ ws. Y. dxp) - det(—Dp~° | Hy(M)*V / ker(N)*D).

where (o @ ws. ¥p, dX,) isdefined by Deligne’stheory of local constants ([1], Section 4),
since o ® ws givesa complex representation of Wg, via an embedding K, — CoverK
(K = coefficient field of M). Compatibility makes the above definition independent of
and the choice of embedding of K, — C.

2. Atoo,if weset ., = exp(2rix) for x € R, and dx., to be L ebesgue measure, then
£00(M, S, ¥, UX) IS again dependent only on the Hodge structure of M, and everything
isgiveninatablein[2], Section 5.3.

2.2. Theformula.

THEOREM 1. Assumetheformulae for thelocal epsilonfactorsgiveninthe preceding
section. Let p be an irreducible representation of Gal(PQ, / Q). If dim(p) is even, then

e(E® p.1) = (—1)* detp(F (E)).

whereNg isthe conductor of E and d, isthe dimension of the (—1)-eigenspace of complex
conjugation under p.

We first prove the following formula holds for each prime p:

(5)  ep(E® p. L. tp. dXp) = ep(E. 1. thp, dXp) M e (. 1/ 2. 1p. dxp)? det p(p*®),

where a(E) is the exponent of the conductor of E.
We distinguish two cases.

Case 1. pis a prime of good reduction for E. By the criterion of Néron-Ogg-
Shafarevich, V! is unramified, so as a Weil-Deligne group representation we have N = 0
for E. Therefore, our three motives, E, p, and E® p, give only complex representations of
Wy, - We can consequently resolve the matter using Deligne’s theory of local constants,
since the determinant term in Equation (4) is 1.

LEMMA 1. If o isan unramified, ssmisimple representation of Wg,, then

ep(a, S, p. dXp) = (o ® ws, Yp, dxp) = 1.
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PROOF. The assumptions show that o isadirect sum of unramified quasi-characters;
hence, soiso ® ws for any s. By the choice of 1, and dx,, we have e(w, 1, dxp) = 1 for
any unramified quasi-character, using the definition of the local constantsin the abelian
case (see[10], Section 3.2.6). The lemmafollows easily. ]

In our case, we know that ® acts semisimply on V'. Hence, by the lemma,
ep(E, s ¥p, dxy) = 1 for any s. Setting s = 1 then gives ep(E, 1, ¢p. dXp) = 1. More-
over, a(E) = 0 since V' is unramified. Therefore the right-hand side of Equation 5
reducesto ep(p, 1/2. yip. dxp)?.

Another useful formula from the theory of local constants is found in [10], Sec-
tion 3.4.6.

LEMMA 2. If U and V are W, -representationsand V is unramified, then
(U @ V. . dxp) = £(U, 1p. dxp) ™™V det V(p*V)).
In our case we have

SE® p® wr. . dep)
(. U Oxp)? det V' @ o (p%0).

€p(E ® P, 1 ¢p~, dxp)

Now, det V! @ w; (pX)) = det V! (p")w,(p¥”)). As the uniformizer p correspondsto a
geometric Frobenius element ®, and as

det(1 — ®t) = 1 — agt + pt?

on V', we have det V' (p) = det V!(®) = p. Therefore, det V! @ wy (p?) = pa?)||pa0)|| =
p*a(ﬂ), and so

(. i Op)Pp)
[£(p. . i)y o (P12

ep(E® p. 1. ¢p, dxp)

Applying Lemma 2, the last term on theright is

£(p @ wjp. p. dXp)? = p(p. 1/ 2. 1p. AXp)?.
which establishes Equation 5 in the case of p being a prime of good reduction of E.

CASE 2. pisa prime of bad reduction for E. The ¢-adic representation V' gives a
representation (o, N) of the Weil-Deligne group /WQD' Our Galois representation p gives
the representation (p, 0) of "Wq,, and so V! @ p gives (0 @ p. N @ 1). Thus, we need to
work with the general formula

Ep(E ®@ p, S, Pps dX’P)
= (0 © p @ ws, P, dxp) - det(—Pp~> [ [V' @ p] "7/ ker(N @ 1)),
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Since, by our assumptions, E and p have coprime conductors, p must be unramified.
Hence,
[V(’ ® p]U(Xp(I) — (VF)J(I) @ p,

and sinceker(N ® 1) = ker(N) ® p, we have
ker(N @ 17 = ker(N)’® @ p.
Putting the two together, we have the isomorphism
[V @ a1V / ker(N @ 270 = [(v)"0 / ker (N V] @ p.

As ® acts semisimply on both V! and p, we can then break up the determinant term
using the following elementary lemma:

LEMMA 3. If S€ End(U) and T € End(V) are both semisimple linear transforma-
tions, then _ .
det(S® T) = det(94™V det(T)4mY.

Thus, if we abbreviate o(l) by I, we have
det(—®p~° | [(V')'/ ker(N)'] @ p)

= (—p~S)dmAdm(v) dmker)]
) det(CD | v / ker(N) )dimﬂ - det(® | p)dim(vf’)' dimker(N)'
Thelast term on theright is
det p(pTimV) dimker(n)'y
Thefirst two terms combineto give
det(—dp~> | (V') / ker(N))"™”.
We can now use Lemma2 one(c @ p @ ws, 1p, dXp) to get
£(0 @ p @ ws, Y, AXp) = (0 @ ws, P, Axp) ™7 - det p(p*7 ).

Since ws is unramified, a(c @ ws) = a(o).
Combining everything, we have
en(E @ 0. S Up. 0%,)= [(0 @ ws, p. ) det(—Pp > | (V) / ker(N)' )™
- det p(pRlor+dm(v"Y —dimkerN)'y
= cp(E. . Up. dx,) 3™ det p(p®).
using the definition of the conductor (see, e.g., [10], Section 4.1.6) to obtain the last term
on theright. This provesthat Equation 5 holdsin this casetoo, since we have

Ep(pv 1/2~ wp~ pr) =1
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because p is unramified (Lemma 1).
To complete the proof, we only need to find the constants at co. From Deligne'stable
([2] Section 5.3) we easily read off the following:

EOO(E* S, Yoo, dxoo) =-1,
Eoo(p S, Voo OXo0) = ()%,
Exo(E @ p. S Yoo BXoo) = (D)™ = 0 (E. S. 0. X)) ™™

Now, assembling all the pieces, we have

eE®p.1)
= exo(E @ p, 1, Yoo, %) H ED(E @ p. 1, p, pr)
p
= e0o(E. 1, Yoo dxoo)dimﬂ
T1(2p(E. 1. thp. dxp) ™™ e p(p. 1/ 2. 1p. dx,)? det p(p*®))
3
= e(E. D)™ e(p. 1/2)%e00(p: 1/ 2, 1o dXo0) > det p[NE]
= ()™ (£1)*(~ 1) det p[Ne].
Since dimp is even by assumption, this completes the proof. ]

3. Computation of root numbers. Throughout, let O denote the ring Z, P the
maximal ideal of O, O the group of unitsin O, and U' the group O /1 + P'. To
simplify notation, let G be the profinite group PGL2(Zp), and G" the finite quotient
PGL2(Z /p"Z). The kernel of the canonical map G — G" will be denoted by G,. For
n=0,takeG® = {1} and Gy = G.

3.1. Complex representations of PGL(Z,). Every (continuous) representation p of G
in a complex vector space has a finite image, hence factors through some G". If a
representation p factors through G", but not through G, then p is said to be primitive
modulo P".

Any representations of G falls into one of four classes: the principal series, the un-
ramified discrete series, or one of the two ramified discrete series. Except for the two
one-dimensional characters and two p-dimensional representations, all these represen-
tations of G are even dimensional. Hence, the root number formula (Theorem 1) is
applicablein almost all cases.

A survey of the representation theory of G can befoundin[9].

3.2. Summary of results. The remaining sections are devoted to proving the following
theorem. Recall that we are assuming that Ng, the conductor of the elliptic curve E, is
unramified in PQ,.

THEOREM 2. Fromthe root number formula (Theorem 1) it follows that

E®p. 1) =+1
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for all even dimensional representations p except the representations p = u, of the
principal seriesand p = u,. of the discrete series. For both of these types,

E®@p.1)= (_TNE)

where the parentheses on the right denote the Legendre symbol.

Using this theorem, the lower bound for the rank of E(PQ,) is a straightforward
computation.

THEOREM 3. If —Ng is a quadratic nonresidue modulo p, then
rank(E(PQy)) > p™" —p™ ' —p— 1.

PROOF. The assumption that all primes in Ng are unramified in PQ, means that the
root number formula appliesto all the twists of the L-function of E by irreducible even-
dimensional representationsof Gal(PQ, /Q). In that case, the previous theorem together
with our assumption about the quadratic residuacity of —Ng showsthat all the u,, and u;;
above that are primitive modulo P! for 1 <i < nwill occur in E(PQ,,) ® C.

For every character o of Z; of conductor P!, u, is an irreducible representation
primitive modulo P' of dimension p' + p'~2. For i = 1, there are (p — 3),/2 isomorphism
classes of such representations, while for i > 2 there are p'—2(p — 1)? /2 distinct classes
(9], Section 3.4).

Given a character 7 on O of conductor P} (F = the unramified extension of Q,

£ = unitsin the ring of integers O, P = maximal ideal of Og), if we assume 7 is
trivial on Z 7, then u; is an irreducible representation primitive modulo P of dimension
p' — p'~L. Fori = 1, there are (p — 1) /2 such isomorphism classes, while for i > 2 there
arep'~%(p? — 1) /2 classes (loc. cit.).

Adding gives the result:

rank(En) > (P52 )+ 1+ (2550 1

+i %pi‘z(p — 1% +pY)

#3508~ )6~ )

which was to be shown. n

3.3. Theprincipal seriesrepresentations. Let o be a character on O* with conductor
P ™. Any such also gives a character on the subgroup B of upper triangular matrices in
G. For each such character «, the action of G on

Hy* = {v € L3G, C) | ¢(bg) = a(b)y(g). foralb € B.g € G}
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by right translation gives a unitary representation U* of G. The sets
H;* = {¢ € Hy" | v is constant on G; — cosets}

for i > 0 form an increasing chain of G-invariant subspaces. Denote the corresponding
representations by U®. For i > 1, let H* be the orthogonal complement of H,*, in H,,
and let the resulting representation be u..j. Clearly, for i > m, U is just the induced
representation IndS (a).

All irreducible representationsin the principal series are catalogued in the following
theorem.

THEOREM 4 ([9], P. 58). If « is real-valued, U§ decomposes as the sum of a one-
dimensional and a p-dimensional irreducible representation. For all other characters
a, if a has conductor P™, then the representation u, = Ug on H,% is irreducible, of
dimensionp™+p™1. For i > m, therepresentationsu, ; areall irreducible, of dimension

p—p-2
Recall the root number formula:
e(E® p.1) = (—1)% det p(Ne).

Because det p is either the trivial character or the unique quadratic character , which,
for g € PGL2(Z /p"Z), is the map

g— detg € (Z/p"2)*/[(Z/p"Z)*]? = {£1}.
the root number formula can be simplified.
LEMMA 4. If detpisthetrivial character then e(E® p, 1) = +1. If detp =y, then

(E®p.1) = (_TNE)

Proor. The parity of d, can be found by evaluating det p at complex conjugation,
since the representation space is then the direct sum of the +1 and —1 eigenspaces.
Clearly, if detp is the trivia character d, is even. If detp is x then d, is the Legendre

symbol
-1
(5):
since the 2 x 2-determinant of complex conjugation is —1, modulo squares. Similarly,

x(Ng) isalso just the Legendre symbol. ]

To determinedet p for the principal seriesit issufficient to do it for the representations
Uy, since we have
(6) detu,; = (det Uf")(det U7 ;)™

because u,; is the orthogonal complement of Ui* ; in UP. To check whether detU is
01

¢ € Z; isatopological generator. Since Uf* = Indg’ii (), we can use the formula for the
determinant of an induced representation:

the trivial character or not, it sufficesto evaluate it on the matrix [¢] = (C 0) , Where
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LEMMA 5 ([1] P. 508). If Gisa finite group and o a representation of a subgroup H,
then _
det IndS (o) = [det IndS(1)]9™) . (det o) o tS,

wheretS denoted the transfer map fromthe abelianization G of G to the abelianization
H® of H.

In our casethisyieldsthe formula
7) det U7 = (detIndg (1)) (a o t5).
The second term on the right is taken care of by the following lemma.

LEMMA 6. Thetransfer map tgi istrivial.

We will make use of the following transversal T for the coset space B' \ G'. First, set
the following notation:

M(2) = (i )
M'(Z) = (_Ol ;)
A(a. b =(g g)

Now define T by
®) T={M@.M(Z)|zc0/P'.Z P /P'}

PROOF OF LEMMA 6. The transfer map
tG' (Gl)ab (Bl)ab

can be defined asfollows. Lets:B'\ G' — G' be any section of the canonical projection;
then

t§(9(G)°) = T bgx (mod (B)°).

xeB\G

where by € B' is defined by s(x)g = byxS(xg), and where the superscript ¢ denotes the
commutator subgroup. Since (G')® ~ {£1}, it suffices to compute tg for [(] to see
whether it istrivial or not, since [(] represents the nontrivial element in the group. For
the section stake the transversal T.

Now,

9) M(@)AE. 1) = A DM(C2)
(10) M'(Z)A(. 1) = AL OM'(H2),

S0, byg.x = A 1) for x = M(2), and by x = A(1. ¢) for x = M’(Z). Hence,

€)= AC DAL P =P AE®, 1),
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ord(z) | #inorbit || ord(Z) | #in orbit
0 pl _ plfl 1 p|71 _ p|72
1 p-l_p-2 2 p=2 _pi-3

i—1 p—1 i—1 p—1
i 1 i 1

Table 1: Lengths of orbitsfor action of [(].

But¢?®) = 1in (O /P")*, sot§ isindeed trivial. .

We now turn to the determination of the character detlndgii (2). First, consider the
following basis for the representation space

{¢:G — C | ¥(bg) = ¥(g), fordlbe B,gec G}.
For eachx € B' \ G, define i by

_[1 ify=x
wx(y)_ 0 Ify#X

The action of [(] onthis basisis easily computed:

[Qux®) = vxOIQ) = 1 = VI = x <=y =x[(].

This shows that [(]vx = 1yc1y- Thus, [¢] permutes the basis elements in the same way
that right translation by [(~1] permutes the elements of the coset space B' \ G'. The
transversal T can be used to compute the orbits of [(~] in B' \ G'. From Equation 9 and
10,

BM(( 2. BM'(2)[¢Y]
B'M'(¢2).

BM@I¢

So, orbits are formed of all matrices M(2) (resp., M’(Z)) with z (resp., Z) of the same
order. The lengths of the orbits are recorded in Table 1. Thus, [¢~1] acts as a product of
2i — 1 digoint cycles of even length. As even cyclesare odd permutations, we conclude
that det U?[(] = (—1)*~! = —1, which says that det U is the nontrivial character x of
G.

By Equation 6 it follows that detu, = x and detu,; = 1 for i > m. Therefore,

S(EQ Uy 1) = (_TNE)

E(E® Uy, 1) = +1.

This proves Theorem 2 for p an even-dimensional representation in the principal series.
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3.4. On the discrete seriesrepresentations. Let F be one of the three quadratic exten-
sionsF of Qp, and let x,. be the corresponding quadratic character on Q.. Thus, x, is
trivial on N(F*), where N denotes the norm map.

Let Or bethering of integers of F, Pr the maximal ideal of O, O the group of units
in Of, and UL thegroup O /(1+P}). Thefunction that givesthe order of an element in
O (respectively, Or) will be denoted ord (respectively, ordg). We shall use || - || = || - ||
to denote the absolute value for which the product formula holds. Finally, the nontrivial
automorphism of F over Q,, will be denoted by x — X. With this notation, N(x) = xx, for
x € F*.

Starting with achoice of F, the corresponding discrete series can be constructed using
acharacter 7 = 7. of F* for which 7|qs = x. and for which 7(OF) is not contained in
R. Irreducible representations appear as subrepresentations of the space

D™ ={y € LAQ; x F*;C) | vt € Q;.¥(t.X) isafinite function of x
and vy € F*, (It %) = 71 0) 7| Y 2t vx)

where the term finite function in this case means that there are integers n, mwithn <m
such that ¥(t,x) = 0 if xisnot in P2, and y(t. x + &) = ¥(t. X) whenever ¢ € PD. For
future reference the second condition of the definition will be called the transformation
law:

(11) vy € P 0t ) = 7 )12 %),

The action of G on D™ isacomplicated businessin general. (See[9] for details.) But
for diagonal matricesitisstraightforward: for [a] = A(a, 1),a € O, [a]y(t. X) = ¥ (at, X).

For the computations, it is notationally helpful to distinguish between the ramified
and unramified cases.

3.5. The unramified discrete series representations. Let F now be the unramified ex-
tension of Qp. Fixing some nonsquare unit ¢ in O, say a topological generator, then
F = Qp(+/). Let 7 be auniformizer. Let N denote the kernel of the norm map. Let
have conductor P[™. Since  is not real-valued, m > 1.

The representation space D] can be decomposedas D" = D/, o, & D/ ([9] P. 72),

where o
D/aen = {v € D™ | y(t.x) = 0if ord(t) is odd;

(12) supp (L. ) € Op; (L. x +€) = (1.X). V€ € Pt}
D/oga = {v € D™ | ¥(t.x) = 0if ord(t) iseven;

(13) supp(r.-) C O v(r. x + €) = ¥(r. x). V¢ € P}

The map ¥(t. X) — ¥(r1t.x) embeds D ; into D[ as a unitary G-representation.
Let DT be the orthogonal complement of D[, in D/

THEOREM 5 ([9], P. 79). The representation u, = D[ is irreducible of dimension
p™ — p™L. (In this case D[ .y = {0}.) For i > m, D is irreducible of dimension
p' — p'~2, giving the representations u;;.
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We now construct aconvenient basisfor D[, i > m. Notethat under the multiplicative

action of N on O the P are invariant subgroups. Thus, N acts on all the quotients
Or/PL.

PROPOSITION 2. Let Sg/en be a set of representativesfor the N -orbitsin
{€ € O /PL | orde(¢) <i—m}
and Syqq be the same for
{€ € Og/PEt | orde(€) <i—1—m}.
For each x € Seyen Set _
w9 = {0 Yo 8 -
and for each x € Segq Set

_[1 y=x
1/1x(TsY)—[O Y € Soaa \ {X}.

Then, for €ach x € Seven (r€Sp., X € Sodd), ¥« extends uniquely to a function in Dy,
(resp., D{yqq)- Moreover,
{¢x | X € Seven U Sodd}

isabasisfor Df".

PROOF. First we show that any ¢ € Do, (resp., v € D[ y) is determined by
its values on Sgyen (resp., Sead). Once this has been established, the result follows by
showing that

#(Seven U Soaa) =p +p 1 — 2p™ Lt =dimD;.

Let € DJ. According to the transformation law (Equation 11)
W = ) 2o X).
so once Y (t. X) isknown for ord(t) = 0, 1, it is known for all t. Moreover, lett € O* and
pick some 3 € F* such that N(3) =t. Thenfor ¢ € D/ e,
w(t.x) = 78]V 6x).

so knowing 1 is the same as knowing (1, x) for al x. Moreover, by the definition of
D/oen (Equation 12), one only needs to know the value of ¢ (1., x) for x € O, and this
only up to addition by elements of PL. Asfor v € Dy, a similar result holds: 1 is
determined by its values (r, X) for x modulo P! (Equation 13).

Thus, for 1 € D/en, ¥(1, ) can be considered as a function on Og /PL. From the
transformation law withy € N , we have

YOV, %) = Y(L.X) = 7)Y 2 X,
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or,
(14) vy e N, (@ 7%) =70y, X).

In order for ¥(1, X) to be nonzero, n(Y) must be trivial whenever Yx = x + ¢ for some
¢ € PL,andsomey € N . Sincevx = x + ¢ if and only if ¥ = 1+ ¢x71, this condition
is equivalent to 7 being trivial on N N (1 + PL2*®). Now, the  we are using is not
arbitrary.

LEMMA 7. The assumptions on m (7|q; = X ; 7r|oFx not real-valued) imply that = is
never trivial onN N (1+PL) forj <m.

ProoF. If m = 1, we need to show = is not trivial on N . If it were, then since 7 is
trivial on norms (|q; = x.), wewould have 7 being trivial on N O*. But we have the
morphism of exact sequences:

1—>N—>OFXLOX—>1

[ | |

1—>N—>NOX—N—>(OX)2—>1

Thus, [0 : N O] = [0 : (0*)?] = 2. But then this says that the image of mlox has
order 2, i.e., that 7r|oFx is real-valued, contrary to assumption. Therefore the lemma is
trueform=1.

Now assumem > 1. It sufficesto provetheresult forj = m—1sincetheN N(1+ Pé)
form adecreasing chain of subgroups. So suppose 7 istrivial on N N (1 +P1). Then
7 is surely trivial on [N N (L +Pf1)](1 + P™1) since 1 + P™ 1 consists of norms.
Applying the simple group-theoretic lemma below, we see that 7 must then be trivial on
N (1+P™1) N1+ PM1). We again have a diagram of exact sequences:

1 - N — N@+Pry 5 14pmt 3

[ | I

1 — N — N@a+pm™y N qepmip 1

Butsincem > 2,1+P ™ = (1+P™1)2, So we concludethat the middle vertical arrow
isan isomorphism. Hence, 7 ustrivial on N (1+P™ )N (1+P™ 1) = 1+ P contrary
to the assumption that 7 has conductor P™. This proves the lemma. ]

The following easy lemmawas used in the above proof:

LeEmMMA 8. If A, B, C areall subgroups of some larger group, and if C C B, then
[ANB]C=ACNB.

Thus, for 7 to be trivial on N N (1 + PL%®), we must have i — orde(x) > m, or
equivalently, ordr(x) < i —m. Hence, v(1, -), asafunction on O /P is determined by
itsvaluesfor orde(X) < i — m. From Equation 14 it is then clear that one can specify the
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function by giving its value on a representative of each N -orbit of such x-classes. This
showsthat any ¢ € D/, is completely determined by its values on Seyen.

The Dr, caseis entirely analogous. Repeating the argument for (r, x) asafunction
on Og /P2 showsthat any v € Df, is determined by its values on Seqq.

It remains to count the size of the sets Seven and Seqq-

Thegroup of units O actstransitively on the set of elementsof orderj in O /PL. The
stabilizer of any element is 1+ P, Thus, the number of such elementsis #U". The
number of elementsin each N -orbit islikewise#N =1, whereN k=N /[N N(1+P})].
Dividing, we find that the number of N -orbitsis#U,-! /#N -1 But using the norm map
it is easy to seethat thisis #U', where U™ = 0> /(1 + P'7). Since #U' = ¢(p'~)
(Euler’s ¢ function), the total number of orbitsis

i—m L i .
S o) =3 o) =p' —p™ .
j=0 k=m
Thus, _
#Sevm = pl - pW1-
The similar calculation for Souq gives
#Sodd - pifl _ perl.

Adding the two cardinalities gives p' + p'~1 — 2p™ 1, which is precisely the dimension
of Diﬂ- [

Again, the root number computations only need be performed on the representations
Ur, sincefori > m,
detu,; = (detUr)(detUr ;).

To see whether detU[" is the trivial character or not, we evaluate it on [¢] = A(¢, 1),
where ¢ isatopological generator in O. For any 3 € O with N(3) = ¢, the action of
[¢] ony € Dr isgiven by

[Ju(t.¥) = Yt x) = 7 (B)u(t, 5%).
If welet OF acton D] by

W(t.X) ot Y. V8 € OF,

the results of the last section make this representation easily identifiable. Take the case
of D/en- We can define OF -invariant subspaces V;, where

V; = Span{yx | X € Seven. Orde(x) =j.}

Now, N acts on each of these through the character 7, and clearly the O,:X -translates of
any one € Vj spanthat V;. But OF actson V; through the quotient U, which hasas
exactly dimV,; elements. We can therefore conclude that

Vi = Ind ().
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Hence, using an analogous argument for D]y, e find that as O -representations,

Di7.Teven = IégllndLNJEjJ (m)
i=0
(15) ~ @ Ind% (r)
k=m
(16)
i1
17) Diloga = kE_B Indy (m).

Call the representation of O obtainedin thisway on D/, ,, (respectively, on D7y
0T ayenr (respectively, of 44). To get the action of [(], first choose 8 with N(8) = ¢, and
then let 3 act through the representations 7 @ o7 o o ad 71 @ 07 o, Examining these
representations, ' '

i K
Tl ®0Tgen X T ® {99 Ind,L\lJFk(w)}
=m
i
~ Pt @ Ind(n)
k=m

I Uk
~ @ Indyi (1)
k=m
i
(18) ~ @ ry«oN,
k=m
where ry« denotesthe regular representation of the group U% = 0> /1 + PX. Similarly,
i—1
(19) 7T71 ® U;TOdd =~ @ rUk o N
k=m

The determination of the character det U is now straightforward. Since( is primitive
modulo P, its image in each U is a generator. So under the regular representation it
acts as a cycle of length #U% = (p — 1)p*~1. Asthis length is even, [(] acts as an odd
permutation in each ry«. Asthere are an odd number of ry«’s, det UT'[(] = —1.

Therefore, det u,, isthe nontrivial character y, but all the detu, ; are the trivial char-
acter. By Lemma 4 this completes the proof of Theorem 2 in the case of the unramified
discrete series.

3.6. Theramified discreteseriesrepresentations. Let F now be one of the two ramified
extensions of Q. Choose a uniformizer 7 in O such that 7 = N(w). Then orde(w) = 1
and ordg(7) = 2. The norm map N sends O onto (0*)? and both 1+ P2 ~* and 1 + P2
onto 1+ Pi fori > 1. Thislatter condition can be rewritten as

N(L+P¥) =1+PUD/A (k> 1),
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where [] denotes the greatest integer function. Again, N will denote the elements of
Oy of norm 1.

For the character = of F* let m be the least positive integer such that = is trivial on
1+P2mL,

LEMMA 9. Onealwayshasm > 2.

ProoOF. If mwere 1, = would betrivial on 1+ P, and hence on (1 + Pg)(0*)? since
this latter group consists of norms. But

[0Z : 1+ POV =[Fy : (Fp)1=2.
so then 7(0F) C R, contrary to assumption. .
Starting with the representation space D™ defined in Section 3.4, for eachi definethe
representation U™ on the space ([9] p. 72)
" ={y € D" | suppi(a.-) € O and y(a, x + €) = ¥(a X),
(20) foralac O*.x e O ¢ € P21},

The decomposition into irreducibles follows the same pattern as in the unramified case:
Y(t,X) — Y(rt,x) embeds DI ; in DI as unitary G-representations. If DT is the
orthogonal complement of D™ ; in D/, then the following theorem holds.

THEOREM 6 ([9], P. 79). Therepresentation space D, gives an irreducible represen-
tation u, of G of dimension p™ — p™2. For i > m, the space DI gives an irreducible
representation u,; of dimension p' — p'—2.

REMARK. Thedimensionof D is
(21) dim Di7r — pi + pifl _ pwl _ pn’FZ,

as can be seen by adding the dimensions of the spaces D'
Weturn to the construction of abasisfor D;". Asbefore, let ¢ beatopological generator
for 0.

ProPOSITION 3. Let S be a set of representativesfor the N -orbitsin
{€ € O /P27 | orde(€) < 2(i — m) +1}.

Define a set of functions

{Yaxn: Yn | x €S},

where L ifye
(22) van(d-Y) = { g :f 3); ; ;(< yeS;
(23) Yaxn(@y)=0 foralyes,

and where the ¢ 5 are defined by switching 1 and ¢ on the lefthand side of the above
formulas. Then the 11,y and v extend uniquely to functions in D] and this set of
functions forms a basis.
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PROOF. We proceed asin the unramified case. Let 1 be an arbitrary function in D;".
Recalling the transformation law,

WYY, X) = 72V 2(t, vX).
if oneknows y(a. x) for all a € 0>, x € O, then one knows . Indeed, since T = N(w),
W(ar", x) = pawfe", x) = 7 W) | (E o).

Moreover, sinceall squaresin O* are norms, it is clear from the transformation law that
if one knows (1, X) and (¢, x) for al x € O, then one knows 1y completely.

Further, the two conditions
(24) Yl x+&) =y@x) foraleec PP
(25) Y@ x) = (@ x) foralyeN.,
imply that 7(Y) = 1 whenever yx = x + £ for some ¢ € P21, i.e., we need  trivial on
N N1 +P2~1%®) The following two lemmas are now useful.

LEMMA 10. Thecharacter ristrivial on 1 +P2™2,

LEMMA 11. Thecharacter 7 isnot trivial on N M (1 + P2™3).

Proofs will follow the completion of the proof of the proposition. The two lemmas
imply that ¢(a, X) = 0unless2i — 1 — orde(X) > 2m— 2. Rearranging, ¥(a, X) = O unless
orde(X) < 2(i —m) + 1. Putting the pieces together, to know some (t, X), it suffices to
know its values (1, X), ¥(¢. X) for eachx € S.

How many values are these?

If we let the number be ¢, by asimilar argument as in the unramified case,

2Ai—my+1 21
c= .
=0 #N 2-1-j
Viathe norm map, for k > 1,
(26) U,‘E/N Ko (OX)Z/(l + Plten/2y.

Substituting and rearranging gives

c=2 2iil #(OX)Z/(1+ P[(k+1)/2])'

k=2m-2
Considering that #0 /(1 +P1) = (p — )p'?,
c=2[(1/2)(p— (™2 +2p™ 1+ 2pM+ .- + 2072+ p Y]

— pi + pifl _ pwl _ pWZ
=dim Diﬂ,

where we have used Equation 21 for the second last line. This proves the proposition. =

https://doi.org/10.4153/CJM-1997-037-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-037-7

768 LAWRENCE HOWE

PROOF OF LEMMA 10. First, two little resullts:
L. NN@+PZ 1) =N Nn@+P2™2)

2 N@+P™1h) =N @1+P2m2)

Thefirst follows from the diagram

1 — NN@+Pzm2) — 1+Pzr2 B q4pmi g

I [ |
1 — Nn@+Pz~y — 1+pP2mt N q4pm g

noting that the last two vertical arrows are injections of subgroups of index p.
The second follows from the diagram

1 - N — N@+pPzr2) &, 14pmt _, 3

[ l |

1 - N — N@+Pm™y N, qepmiz _, 3

and thefact that (L+ P2 =1+P'fori > 1.
Now to prove the lemma. Since ristrivial on N N (1 +P2™1), result 1 implies that
mistrivid onN N (1 +P2™2). Then 7 istrivial on

[N N(@L+P&™2)@+P™1h),
since this latter group consists of norms. Using

[ANBJC=ACNB ifCCB.

thisgroupis N (1 +P™) N (1 +P2™2). Now result 2 finishes the proof. .
PROOF OF LEMMA 11. Suppose 7 were trivial on N N (1 + P2™3). Consider the
diagram

1 — Nn@+P2™3) — 1+pzm3 N, q4pm1 _, g

[ ] [

1 — Nn@+Pz™2) — 1+P2r2 N, q4pm1 9

One must have
[1+P2™3:1+P2™ 2 =[N Nn(@+P23):N n@+P2™?)].
which saysthat the map
N N@+P2™3) — (1+P2"3) /(1 +P2Z™2),
which haskernel N N (1 + P2™2), must be surjective. Thus, we have
1+PZ3 =[N N (1+P23)(L+P2Z™?)

By Lemma 10, wistrivial onthe second group ontheright side. Therefore our hypothesis
implies that 7 is also trivial on 1+ P2™3, contrary to our choice of m. This proves the
lemma. ]
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3.7. Computations for the ramified discrete series. As before, it suffices to compute
det U[¢] for i > m. To begin, we calculate the action of [¢] under UT".

@7 [J(1.%) = ¥(C. X)
(28) [ %) = v X) = 7 HQW(L ).

To determine the action of [¢] with respect to our basis, it is helpful to define two
subspaces:

V1 = C-linear span of the 11,5

V. = C-linear span of the ¢ )
On each of these subspacesitishel pful to definean O -representation asin theunramified
case:

Bt X) o wt Y. V8 € OF.
Reasoning similarly to the unramified case shows both V1 and V, are isomorphic to

2(i—m)+1 yz-1i 2i—1 Uk
29) D Ind (M= @ IndYm).
j=0 k=2m-2

Letx, y € S. Applying Equations 27 and 28,

(30) [Jvax (L y) = vaxy) =0

(31) [van@y) = 7 (QvaxL.¢y) = ocbay(L.y)
(32) [ClYex (L. Y) = Yex(CY) =y

(33) [ € Y) = 7 Qe (L.¢y) = 0.
where o, acts on V; according to the formula

(34) op(1.€) = HOU(L.¢E). V€ € O,

and where oy is the Kronecker delta. If o, has the matrix X with respect to the v x,
then the matrix of [(] isablock matrix of the form

o‘|
=T

where the blocks are sgquare of size dimV;. The determinant of this matrix is clearly
(—1)4mVi det 5. Since

dim Diﬂ — pi + pi—lpm—l _ pm—2 - (pm—l + pm—Z)(pi—rT‘H-l _ l),

and sincedim V1 is half this number, dim V1 must be even. Hence, (—1)@™1 = +1. Thus,
we are reduced to calculating the determinant of >.. To isolate Z, it is helpful to alter
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the action of [(] dlightly. If after performing [¢], one permutes the basis by interchanging
Yy and Y for al x € S, then the above calculation shows that the determinant of
the new action isthe same as that of the old. But now the matrix of the action is

=

Lo |
where again the blocks are square of size dimV;. So V; is now an invariant subspace
and restricting to this subspace gives [¢] the matrix .

It iseasy to identify the representation involved. By Equations 29 and 34, we see that
[¢€] acts on V; through the representation

1 2i—1 Uk 2i—1 Uk
e @ Indd(m= @ IndgiQ).
k=2m-2 k=2m—2

Now, Ind\J; (1) iss the regular representation of the group
UE/N k ~ (OX)Z/(1+ P[(k+l)/2]).

where the isomorphism is given by the norm map (cf. Equation 26). Note that ¢ on the
left correspondsto ¢? on the right.
Since the group (0*)? /(1 + P1<+Y/2)) has order (p — 1)pl&—b/2 /2 for the k we are

considering, ¢? acts as cycle of this length. So the determinant of [¢] on Ind“ék(l) is
(— 1)1 =14 /2 Hence, we obtain the result that

2i—-1

detx; = [[ (—Me-P /2= (),
k=2m—2 '

where -

i

e= Y (1+(p—1p«/3/2) =2 —2m+dimVy.
k=2m—2

AsdimV; iseven, soise, which showsthat det U7, and hencedetu, and detu,;, are all
thetrivial character. By Lemma 4, this completes the proof of Theorem 2. ]
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