TWISTED HASSE-WEIL L-FUNCTIONS AND THE RANK OF MORDELL-WEIL GROUPS

LAWRENCE HOWE

ABSTRACT. Following a method outlined by Greenberg, root number computations give a conjectural lower bound for the ranks of certain Mordell-Weil groups of elliptic curves. More specifically, for PQ_n a $PGL_2(\mathbf{Z}/p^n\mathbf{Z})$ -extension of \mathbf{Q} and E an elliptic curve over \mathbf{Q} , define the motive $E\otimes \rho$, where ρ is any irreducible representation of $Gal(PQ_n/\mathbf{Q})$. Under some restrictions, the root number in the conjectural functional equation for the L-function of $E\otimes \rho$ is easily computable, and a '-1' implies, by the Birch and Swinnerton-Dyer conjecture, that ρ is found in $E(PQ_n)\otimes \mathbf{C}$. Summing the dimensions of such ρ gives a conjectural lower bound of

$$p^{2n} - p^{2n-1} - p - 1$$

for the rank of $E(PQ_n)$.

Introduction. In [3], Greenberg outlines a method for using root number calculations to give lower bounds for the ranks of Mordell-Weil groups of elliptic curves in certain $PGL_2(\mathbf{Z}/p^n\mathbf{Z})$ -extensions of \mathbf{Q} . This paper pursues those calculations using Silberger's work ([9]) on representations of $PGL_2(\mathbf{Z}_p)$.

To recall Greenberg's method, let E be an elliptic curve over \mathbf{Q} with conductor N_E . Let p be an odd prime, and let $P\mathbf{Q}_n$ be a $PGL_2(\mathbf{Z}/p^n\mathbf{Z})$ -extension of \mathbf{Q} , for some n. We assume that no prime factor of N_E ramifies in $P\mathbf{Q}_n$. Such $P\mathbf{Q}_n$ may be constructed by taking an auxiliary elliptic curve E' over \mathbf{Q} without complex multiplication, and whose conductor is coprime with N_E . For all but finitely many p, the p-power division points of E' generate a $GL_2(\mathbf{Z}_p)$ -extension of \mathbf{Q} . The fixed field of the centre is thus a $PGL_2(\mathbf{Z}_p)$ -extension $P\mathbf{Q}$ of \mathbf{Q} . We may then choose p so that no prime in N_E ramifies in $P\mathbf{Q}$. The field $P\mathbf{Q}_n$ appears as the fixed field of the kernel of the reduction map $PGL_2(\mathbf{Z}_p) \to PGL_2(\mathbf{Z}/p^n\mathbf{Z})$.

Let ρ be an even dimensional irreducible representation of $\operatorname{Gal}(\operatorname{PQ}_n/\mathbf{Q})$. By twisting the L-function of E by ρ a motivic L-function is obtained whose associated conjectural functional equation has an ε -factor computable solely in terms of properties of ρ (See Theorem 1 below). Since any complex representation of $\operatorname{PGL}_2(\mathbf{Z}/p^n\mathbf{Z})$ is isomorphic to its contragredient, the functional equation for the L-function with Γ -factor has the form

$$\Lambda(E \otimes \rho, s) = \varepsilon(E \otimes \rho, s) \Lambda(E \otimes \rho, 2 - s),$$

which makes $\varepsilon(E\otimes\rho,1)=\pm 1$. The generalized Birch and Swinnerton-Dyer conjecture implies that the order of vanishing at s=1 of the twisted L-function is precisely the multiplicity of ρ in $E(PQ_n)\otimes C$. Thus, for a particular ρ , if $\varepsilon(E\otimes\rho,1)=-1$, then

Received by the editors August 24, 1995; revised August 1, 1996.

AMS subject classification: 11G05, 14G10. ©Canadian Mathematical Society 1997.

 $\Lambda(E \otimes \rho, 1)$ vanishes. This implies that ρ occurs in $E(PQ_n) \otimes \mathbb{C}$. Summing the dimensions of all ρ having $\varepsilon(E \otimes \rho, 1) = -1$ gives a lower bound for the rank of $E(PQ_n)$.

The first two sections fill out the sketch provided above. Section 1 reviews the background of motivic L-functions. Section 2 contains a derivation of the conjectural root number formula (Theorem 1)

$$\varepsilon(E \otimes \rho, 1) = (-1)^{d_{\rho}} \det \rho(N_E),$$

where ρ is an even dimensional irreducible representation of $\operatorname{Gal}(\operatorname{PQ}_n/\mathbf{Q})$ and d_{ρ} is the dimension of the (-1)-eigenspace of complex conjugation under ρ . This formula is decades old: in [11], Weil attributes it to Langlands. However, here it is explicitly derived from certain conjectures about motivic L-functions. Computing the terms in this formula for the various ρ is done in Section 3, using the catalog of all complex representations of $\operatorname{PGL}_2(\mathbf{Z}_{\rho})$ found in [9].

Applying the results of the computations to obtain a lower bound for the rank of $E(PQ_n)$ gives the following theorem:

THEOREM 3. Let E be an elliptic curve defined over \mathbf{Q} with conductor N_E , and let PQ_n be a $PGL_2(\mathbf{Z}/p^n\mathbf{Z})$ -extension of \mathbf{Q} . Suppose that no prime in N_E ramifies in PQ_n and that $-N_E$ is a quadratic nonresidue modulo p. Then,

$$\operatorname{rank} \left(E(\operatorname{PQ}_n) \right) \ge p^{2n} - p^{2n-1} - p - 1.$$

I would like to thank Michael Harris, Ralph Greenberg, David Rohrlich, and Glenn Stevens for their generous guidance, and the referees for their valuable suggestions and corrections.

Throughout, PQ_n will be the PGL₂($\mathbb{Z}/p^n\mathbb{Z}$)-extension of \mathbb{Q} described above.

- 1. Twisted Hasse-Weil L-functions. Let E is an elliptic curve defined over \mathbb{Q} with conductor N_E and let ρ be an irreducible complex representation of $\operatorname{Gal}(\operatorname{PQ}_n/\mathbb{Q})$ realizable over some number field K. The tensor product $E \otimes \rho$ gives a motive with coefficients in K. To make the calculations straightforward, we shall assume that no prime in N_E ramifies in PQ_n , so that by the conductor-discriminant product formula ([7], p. 104), N_E is coprime to the conductor of any irreducible representation ρ of $\operatorname{Gal}(\operatorname{PQ}_n/\mathbb{Q})$.
- 1.1. *Motivic L-functions*. We recall the definition of the *L*-function attached to a motive *M*. For each prime number *p*, let $W_{\mathbf{Q}_p}$ be a Weil group for $\bar{\mathbf{Q}}_p$ over \mathbf{Q}_p , where $\bar{\mathbf{Q}}_p$ denotes an algebraic closure of \mathbf{Q}_p . We follow Deligne's convention that under the reciprocity law isomorphism,

$$\mathbf{Q}_{p}^{\times} \xrightarrow{\sim} W_{\mathbf{Q}_{p}}^{ab},$$

a uniformizer corresponds to a *geometric* Frobenius element, *i.e.*, one which acts as $x \mapsto x^{p^{-1}}$ on $\bar{\mathbf{F}}_p/\mathbf{F}_p$. We shall always use Φ to denote a geometric Frobenius element and I to denote the inertia group in $W_{\mathbf{Q}_p}$. Now let $H_{\lambda}(M)$ be the λ -adic realization of M, where λ is a prime of the coefficient field not over p. We then set

(1)
$$Z_p(M,t) = \det(1 - \Phi t \mid H_{\lambda}(M)^I)^{-1},$$

where the superscript I denotes the subspace of inertial invariants. In our case, $Z_p(M, t)$ will always be a polynomial in t with coefficients in the coefficient field of M, independent of the choice of λ .

Setting $L_p(M, s) = Z_p(M, p^{-s})$, define the *L*-function of *M* to be

(2)
$$L(M,s) = \prod_{p} L_{p}(M,s),$$

which converges for the real part of s sufficiently large.

The Γ -factor at infinity $L_{\infty}(M, s)$ is completely determined by the Hodge decomposition of the 'Betti' realization of M. A table of the possibilities is given in [2], Section 5.3. Setting $\Lambda(M, s) = L_{\infty}(M, s)L(M, s)$, the conjectural functional equation reads

(3)
$$\Lambda(M, s) = \varepsilon(M, s) \Lambda(\check{M}, 1 - s),$$

where \check{M} is the dual motive of M, and where $\varepsilon(M,s)$, as a function of s, is the product of a constant and an exponential function.

1.2. Three L-functions.

1. For M=E, L(E,s) is the Hasse-Weil L-function. In this case $H_{\ell}(E)=V^{\ell}$ is the first étale cohomology group of E with coefficients in \mathbf{Q}_{ℓ} . For varying ℓ , the corresponding representations of the Weil-Deligne group $W_{\mathbf{Q}_{p}}$ are *compatible* and Φ -semisimple (see [1]).

As a representation of the Weil-Deligne group, the ℓ -adic representation V^{ℓ} of $W_{\mathbf{Q}_p}$ corresponds to a pair (σ, N) , where σ is a representation of $W_{\mathbf{Q}_p}$ in V^{ℓ} trivial on an open subgroup of I, and where N is a nilpotent endomorphism of V^{ℓ} . With this, the definition of $Z_p(E, t)$ becomes

$$Z_p(E,t) = \det(1 - \Phi t \mid \ker(N)^{\sigma(I)})^{-1}.$$

Compatibility ensures that $Z_p(E, t)$ has coefficients in **Q**.

Since E has a Hodge structure of type $\{(0,1),(1,0)\}$ (see, e.g., [6]) the Γ -factor $L_{\infty}(E,s)$ is

$$L_{\infty}(E, s) = \Gamma_{\mathbf{C}}(s) = 2(2\pi)^s \Gamma(s).$$

Since $\check{E} = E(1)$ and $\Lambda(M(n), s) = \Lambda(M, s+n)$ for any motive M, the functional equation for E is usually given in the following form:

$$\Lambda(E, s) = \varepsilon(E, s)\Lambda(E, 2 - s).$$

Taking series expansions about s = 1 shows that $\varepsilon(E, 1) = \pm 1$.

2. For $M=\rho$, suppose that ρ has as representation space the K-vector space W. Then the λ -adic realization $H_{\lambda}(\rho)$ is just $K_{\lambda}\otimes_{K}W$. From this the compatibility of the $H_{\lambda}(\rho)$ is clear, as is the fact that $Z_{p}(\rho,t)$ has coefficients in K independent of λ . The resulting L-function is the Artin L-function attached to ρ .

At ∞ , ρ has a Hodge structure which is pure of type (0,0), and for which the involution acts as complex conjugation (see [2], Section 6). If d_{ρ} is the dimension of the (-1)-eigenspace of complex conjugation, then

$$L_{\infty}(\rho, s) = \Gamma_{\mathbf{R}}(s+1)^{d_{\rho}} \Gamma_{\mathbf{R}}(s)^{\dim(\rho) - d_{\rho}},$$

where $\Gamma_{\mathbf{R}}(s) = \pi^{-s/2}\Gamma(s/2)$.

Since $\rho \cong \check{\rho}$, the (proven) functional equation reads

$$\Lambda(\rho, s) = \varepsilon(\rho, s)\Lambda(\rho, 1 - s).$$

Hence, $\varepsilon(\rho, 1/2) = \pm 1$.

3. For $M = E \otimes \rho$, the λ -adic realization $H_{\lambda}(E \otimes \rho)$ is

$$V^{\ell} \otimes_{\mathbf{O}_{\ell}} [K_{\lambda} \otimes_{K} W].$$

The resulting L-function is a *twisted Hasse-Weil L-function*. By the compatibility of each of the two previous representations, the $H_{\lambda}(E \otimes \rho)$ are also compatible, and $Z_p(E \otimes \rho, t)$ has coefficients in K independent of λ . Note, too, that the $H_{\lambda}(E \otimes \rho)$ are Φ -semisimple, since both E and ρ are.

At ∞ , the Hodge structure is pure of type $\{(1,0),(0,1)\}$ and hence $L_{\infty}(E\otimes\rho,s)=\Gamma_{\mathbf{C}}(s)^{\dim\rho}$. As $\check{M}=\check{E}\otimes\check{\rho}=E(1)\otimes\rho$, the conjectural functional equation will be of the form

$$\Lambda(E \otimes \rho, s) = \varepsilon(E \otimes \rho, s) \Lambda(E \otimes \rho, 2 - s),$$

from which one concludes that $\varepsilon(E \otimes \rho, 1) = \pm 1$.

The term *root number* will always refer to $\varepsilon(E \otimes \rho, 1)$.

1.3. A form of the Birch and Swinnerton-Dyer conjecture. Recall that the Birch and Swinnerton-Dyer conjecture says that the order of vanishing at s = 1 of the L-function of an elliptic curve E defined over a number field E is the rank of E(E). A generalization of this conjecture also uses the Deligne-Gross conjecture that the order of vanishing of a motivic E-function at a critical point is independent of the embedding of the coefficient field in E (see [2], Conjecture 2.7). The following ([5]) supports assertions made in the introduction:

PROPOSITION 1. The Birch and Swinnerton-Dyer and Deligne-Gross conjectures together imply that

$$\operatorname{ord}_{s=1} L(E \otimes \rho, s) = multiplicity \ of \ \rho \ in \ E(\bar{\mathbf{Q}}) \otimes \mathbf{C},$$

where $\bar{\mathbf{Q}}$ denotes an algebraic closure of \mathbf{Q} .

2. The root number formula.

2.1. Local constants. To compute the root number $\varepsilon(E \otimes \rho, 1)$, we will make use of the conjectural formulae for motivic epsilon factors $\varepsilon(M, s)$ as products over all p of the local factors $\varepsilon_p(M, s, \psi_p, dx_p)$ and of a factor at infinity $\varepsilon_\infty(M, s, \psi_\infty, dx_\infty)$.

1. For each prime p, set $\psi_p(x) = \exp(-2\pi i x)$, which gives an additive character $\psi_p: \mathbf{Q}_p \to \mathbf{C}^{\times}$ via the isomorphism

$$\mathbf{Q}_p/\mathbf{Z}_p \xrightarrow{\sim} p$$
-primary part of \mathbf{Q}/\mathbf{Z} .

Let dx_p be the Haar measure on \mathbf{Q}_p that gives $\int_{\mathbf{Z}_p} dx_p = 1$. Denote by ω_s the quasicharacter $x \mapsto ||x||^s$ of \mathbf{Q}_p^{\times} , hence of $W_{\mathbf{Q}_p}$. If the λ -adic realization $H_{\lambda}(M)$ of M corresponds to the representation (σ, N) of the Weil-Deligne group $W_{\mathbf{Q}_p}$, then define

$$(4) \quad \varepsilon_p(M, s, \psi_p, dx_p) = \varepsilon(\sigma \otimes \omega_s, \psi_p, dx_p) \cdot \det(-\Phi p^{-s} \mid H_{\lambda}(M)^{\sigma(I)} / \ker(N)^{\sigma(I)}),$$

where $\varepsilon(\sigma \otimes \omega_s, \psi_p, dx_p)$ is defined by Deligne's theory of local constants ([1], Section 4), since $\sigma \otimes \omega_s$ gives a complex representation of $W_{\mathbf{Q}_p}$ via an embedding $K_\lambda \to \mathbf{C}$ over K (K = coefficient field of M). Compatibility makes the above definition independent of λ and the choice of embedding of $K_\lambda \to \mathbf{C}$.

2. At ∞ , if we set $\psi_{\infty} = \exp(2\pi i x)$ for $x \in \mathbf{R}$, and dx_{∞} to be Lebesgue measure, then $\varepsilon_{\infty}(M, s, \psi_{\infty}, dx_{\infty})$ is again dependent only on the Hodge structure of M, and everything is given in a table in [2], Section 5.3.

2.2. The formula.

THEOREM 1. Assume the formulae for the local epsilon factors given in the preceding section. Let ρ be an irreducible representation of $\operatorname{Gal}(\operatorname{PQ}_n/\mathbb{Q})$. If $\dim(\rho)$ is even, then

$$\varepsilon(E\otimes\rho,1)=(-1)^{d_{\rho}}\det\rho\big(F(E)\big),$$

where N_E is the conductor of E and d_ρ is the dimension of the (-1)-eigenspace of complex conjugation under ρ .

We first prove the following formula holds for each prime p:

(5)
$$\varepsilon_p(E \otimes \rho, 1, \psi_p, dx_p) = \varepsilon_p(E, 1, \psi_p, dx_p)^{\dim \rho} \varepsilon_p(\rho, 1/2, \psi_p, dx_p)^2 \det \rho(p^{a(E)}),$$

where a(E) is the exponent of the conductor of E.

We distinguish two cases.

CASE 1. p is a prime of good reduction for E. By the criterion of Néron-Ogg-Shafarevich, V^{ℓ} is unramified, so as a Weil-Deligne group representation we have N=0 for E. Therefore, our three motives, E, ρ , and $E\otimes \rho$, give only complex representations of $W_{\mathbf{Q}_p}$. We can consequently resolve the matter using Deligne's theory of local constants, since the determinant term in Equation (4) is 1.

LEMMA 1. If σ is an unramified, semisimple representation of $W_{\mathbf{O}_n}$, then

$$\varepsilon_p(\sigma, s, \psi_p, dx_p) = \varepsilon(\sigma \otimes \omega_s, \psi_p, dx_p) = 1.$$

PROOF. The assumptions show that σ is a direct sum of unramified quasi-characters; hence, so is $\sigma \otimes \omega_s$ for any s. By the choice of ψ_p and dx_p , we have $\varepsilon(\omega, \psi_p, dx_p) = 1$ for any unramified quasi-character, using the definition of the local constants in the abelian case (see [10], Section 3.2.6). The lemma follows easily.

In our case, we know that Φ acts semisimply on V^{ℓ} . Hence, by the lemma, $\varepsilon_p(E,s,\psi_p,dx_p)=1$ for any s. Setting s=1 then gives $\varepsilon_p(E,1,\psi_p,dx_p)=1$. Moreover, a(E)=0 since V^{ℓ} is unramified. Therefore the right-hand side of Equation 5 reduces to $\varepsilon_p(\rho,1/2,\psi_p,dx_p)^2$.

Another useful formula from the theory of local constants is found in [10], Section 3.4.6.

LEMMA 2. If U and V are $W_{\mathbf{O}_n}$ -representations and V is unramified, then

$$\varepsilon(U \otimes V, \psi_p, dx_p) = \varepsilon(U, \psi_p, dx_p)^{\dim V} \det V(p^{a(U)}).$$

In our case we have

$$\varepsilon_p(E \otimes \rho, 1, \psi_p, dx_p) = \varepsilon(E \otimes \rho \otimes \omega_1, \psi_p, dx_p)$$
$$= \varepsilon(\rho, \psi_p, dx_p)^2 \det V^{\ell} \otimes \omega_1(p^{a(\rho)}).$$

Now, $\det V^{\ell} \otimes \omega_1(p^{a(\rho)}) = \det V^{\ell}(p^{a(\rho)})\omega_2(p^{a(\rho)})$. As the uniformizer p corresponds to a geometric Frobenius element Φ , and as

$$\det(1 - \Phi t) = 1 - a_n t + p t^2$$

on V^{ℓ} , we have $\det V^{\ell}(p) = \det V^{\ell}(\Phi) = p$. Therefore, $\det V^{\ell} \otimes \omega_1(p^{a(\rho)}) = p^{a(\rho)} ||p^{a(\rho)}|| = p^{-a(\rho)}$, and so

$$\varepsilon_p(E \otimes \rho, 1, \psi_p, dx_p) = \varepsilon(\rho, \psi_p, dx_p)^2 p^{-a(\rho)}$$
$$= [\varepsilon(\rho, \psi_p, dx_p)\omega_{1/2}(p^{a(\rho)})]^2.$$

Applying Lemma 2, the last term on the right is

$$\varepsilon(\rho\otimes\omega_{1/2},\psi_p,dx_p)^2=\varepsilon_p(\rho,1/2,\psi_p,dx_p)^2,$$

which establishes Equation 5 in the case of p being a prime of good reduction of E.

CASE 2. p is a prime of bad reduction for E. The ℓ -adic representation V^{ℓ} gives a representation (σ, N) of the Weil-Deligne group ${}'W_{\mathbf{Q}_p}$. Our Galois representation ρ gives the representation $(\rho, 0)$ of ${}'W_{\mathbf{Q}_p}$, and so $V^{\ell} \otimes \rho$ gives $(\sigma \otimes \rho, N \otimes 1)$. Thus, we need to work with the general formula

$$\varepsilon_p(E \otimes \rho, s, \psi_p, dx_p)$$

$$= \varepsilon(\sigma \otimes \rho \otimes \omega_s, \psi_p, dx_p) \cdot \det(-\Phi p^{-s} \mid [V^{\ell} \otimes \rho]^{\sigma \otimes \rho(I)} / \ker(N \otimes 1)^{\sigma \otimes \rho(I)}).$$

Since, by our assumptions, E and ρ have coprime conductors, ρ must be unramified. Hence,

$$[V^{\ell} \otimes \rho]^{\sigma \otimes \rho(I)} = (V^{\ell})^{\sigma(I)} \otimes \rho,$$

and since $\ker(N \otimes 1) = \ker(N) \otimes \rho$, we have

$$\ker(N \otimes 1)^{\sigma \otimes \rho(I)} = \ker(N)^{\sigma(I)} \otimes \rho.$$

Putting the two together, we have the isomorphism

$$[V^{\ell} \otimes \rho]^{\sigma \otimes \rho(I)} / \ker(N \otimes 1)^{\sigma \otimes \rho(I)} \cong [(V^{\ell})^{\sigma(I)} / \ker(N)^{\sigma(I)}] \otimes \rho.$$

As Φ acts semisimply on both V^{ℓ} and ρ , we can then break up the determinant term using the following elementary lemma:

LEMMA 3. If $S \in \text{End}(U)$ and $T \in \text{End}(V)$ are both semisimple linear transformations, then

$$\det(S \otimes T) = \det(S)^{\dim V} \det(T)^{\dim U}.$$

Thus, if we abbreviate $\sigma(I)$ by I, we have

$$\begin{split} \det \left(-\Phi p^{-s} \mid [(V^{\ell})^I / \ker(N)^I] \otimes \rho \right) \\ &= (-p^{-s})^{\dim \rho [\dim(V^{\ell})^I \dim \ker(N)^I]} \\ & \cdot \det \left(\Phi \mid (V^{\ell})^I / \ker(N)^I \right)^{\dim \rho} \cdot \det(\Phi \mid \rho)^{\dim(V^{\ell})^I \dim \ker(N)^I}. \end{split}$$

The last term on the right is

$$\det \rho(p^{\dim(V^{\ell})^{I}\dim\ker(N)^{I}}).$$

The first two terms combine to give

$$\det(-\Phi p^{-s} \mid (V^{\ell})^I / \ker(N)^I)^{\dim \rho}.$$

We can now use Lemma 2 on $\varepsilon(\sigma \otimes \rho \otimes \omega_s, \psi_p, dx_p)$ to get

$$\varepsilon(\sigma\otimes\rho\otimes\omega_s,\psi_p,dx_p)=\varepsilon(\sigma\otimes\omega_s,\psi_p,dx_p)^{\dim\rho}\cdot\det\rho(p^{a(\sigma\otimes\omega_s)}).$$

Since ω_s is unramified, $a(\sigma \otimes \omega_s) = a(\sigma)$.

Combining everything, we have

$$\varepsilon_{p}(E \otimes \rho, s, \psi_{p}, dx_{\rho}) = \left[\varepsilon(\sigma \otimes \omega_{s}, \psi_{p}, dx_{p}) \det\left(-\Phi p^{-s} \mid (V^{\ell})^{I} / \ker(N)^{I}\right) \right]^{\dim \rho} \\
\cdot \det \rho(p^{a(\sigma) + \dim(V^{\ell})^{I} - \dim \ker(N)^{I}}) \\
= \varepsilon_{p}(E, s, \psi_{p}, dx_{p})^{\dim \rho} \det \rho(p^{a(E)}),$$

using the definition of the conductor (see, e.g., [10], Section 4.1.6) to obtain the last term on the right. This proves that Equation 5 holds in this case too, since we have

$$\varepsilon_p(\rho, 1/2, \psi_p, dx_p) = 1$$

because ρ is unramified (Lemma 1).

To complete the proof, we only need to find the constants at ∞ . From Deligne's table ([2] Section 5.3) we easily read off the following:

$$\varepsilon_{\infty}(E, s, \psi_{\infty}, dx_{\infty}) = -1,$$

$$\varepsilon_{\infty}(\rho, s, \psi_{\infty}, dx_{\infty}) = (i)^{d_{\rho}},$$

$$\varepsilon_{\infty}(E \otimes \rho, s, \psi_{\infty}, dx_{\infty}) = (-1)^{\dim \rho} = \varepsilon_{\infty}(E, s, \psi_{\infty}, dx_{\infty})^{\dim \rho}.$$

Now, assembling all the pieces, we have

$$\begin{split} \varepsilon(E\otimes\rho,1) &= \varepsilon_{\infty}(E\otimes\rho,1,\psi_{\infty},dx_{\infty}) \prod_{p} \varepsilon_{p}(E\otimes\rho,1,\psi_{p},dx_{p}) \\ &= \varepsilon_{\infty}(E,1,\psi_{\infty},dx_{\infty})^{\dim\rho} \\ &\quad \cdot \prod_{p} \Big(\varepsilon_{p}(E,1,\psi_{p},dx_{p})^{\dim\rho} \varepsilon_{p}(\rho,1/2,\psi_{p},dx_{p})^{2} \det\rho(p^{a(E)}) \Big) \\ &= \varepsilon(E,1)^{\dim\rho} \varepsilon(\rho,1/2)^{2} \varepsilon_{\infty}(\rho,1/2,\psi_{\infty},dx_{\infty})^{-2} \det\rho[N_{E}] \\ &= (\pm 1)^{\dim\rho} (\pm 1)^{2} (-1)^{d_{\rho}} \det\rho[N_{E}]. \end{split}$$

Since dim ρ is even by assumption, this completes the proof.

- 3. Computation of root numbers. Throughout, let O denote the ring \mathbf{Z}_p , P the maximal ideal of O, O^{\times} the group of units in O, and U^i the group $O^{\times}/1 + P^i$. To simplify notation, let G be the profinite group $\mathrm{PGL}_2(\mathbf{Z}_p)$, and G^n the finite quotient $\mathrm{PGL}_2(\mathbf{Z}/p^n\mathbf{Z})$. The kernel of the canonical map $G \to G^n$ will be denoted by G_n . For n=0, take $G^0=\{1\}$ and $G_0=G$.
- 3.1. Complex representations of $PGL_2(\mathbf{Z}_p)$. Every (continuous) representation ρ of G in a complex vector space has a finite image, hence factors through some G^n . If a representation ρ factors through G^n , but not through G^{n-1} , then ρ is said to be *primitive* modulo P^n .

Any representations of G falls into one of four classes: the principal series, the unramified discrete series, or one of the two ramified discrete series. Except for the two one-dimensional characters and two p-dimensional representations, all these representations of G are even dimensional. Hence, the root number formula (Theorem 1) is applicable in almost all cases.

A survey of the representation theory of G can be found in [9].

3.2. Summary of results. The remaining sections are devoted to proving the following theorem. Recall that we are assuming that N_E , the conductor of the elliptic curve E, is unramified in PQ_n .

THEOREM 2. From the root number formula (Theorem 1) it follows that

$$\varepsilon(E\otimes\rho,1)=+1$$

for all even dimensional representations ρ except the representations $\rho = u_{\alpha}$ of the principal series and $\rho = u_{\pi}$ of the discrete series. For both of these types,

$$\varepsilon(E\otimes\rho,1)=\Big(\frac{-N_E}{p}\Big),$$

where the parentheses on the right denote the Legendre symbol.

Using this theorem, the lower bound for the rank of $E(PQ_n)$ is a straightforward computation.

THEOREM 3. If $-N_E$ is a quadratic nonresidue modulo p, then

$$rank(E(PQ_n)) \ge p^{2n} - p^{2n-1} - p - 1.$$

PROOF. The assumption that all primes in N_E are unramified in PQ_n means that the root number formula applies to all the twists of the L-function of E by irreducible even-dimensional representations of $Gal(PQ_n/Q)$. In that case, the previous theorem together with our assumption about the quadratic residuacity of $-N_E$ shows that all the u_α and u_π above that are primitive modulo P^i for $1 \le i \le n$ will occur in $E(PQ_n) \otimes \mathbb{C}$.

For every character α of \mathbf{Z}_p^{\times} of conductor P^i , u_{α} is an irreducible representation primitive modulo P^i of dimension $p^i + p^{i-1}$. For i = 1, there are (p-3)/2 isomorphism classes of such representations, while for $i \geq 2$ there are $p^{i-2}(p-1)^2/2$ distinct classes ([9], Section 3.4).

Given a character π on O_F^{\times} of conductor P_F^i (F = the unramified extension of \mathbb{Q}_p , O_F^{\times} = units in the ring of integers O_F , P_F = maximal ideal of O_F), if we assume π is trivial on \mathbb{Z}_p^{\times} , then u_{π} is an irreducible representation primitive modulo P^i of dimension $p^i - p^{i-1}$. For i = 1, there are (p-1)/2 such isomorphism classes, while for $i \geq 2$ there are $p^{i-2}(p^2-1)/2$ classes (loc. cit.).

Adding gives the result:

$$\operatorname{rank}(E(K_n)) \ge \left(\frac{p-3}{2}\right)(p+1) + \left(\frac{p-1}{2}\right)(p-1)$$

$$+ \sum_{i=2}^{n} \frac{1}{2}p^{i-2}(p-1)^2(p^i + p^{i-1})$$

$$+ \sum_{i=2}^{n} \frac{1}{2}p^{i-2}(p^2 - 1)(p^i - p^{i-1}))$$

$$= p^{2n} - p^{2n-1} - p - 1,$$

which was to be shown.

3.3. The principal series representations. Let α be a character on O^{\times} with conductor P^m . Any such also gives a character on the subgroup B of upper triangular matrices in G. For each such character α , the action of G on

$$H_0^{\alpha} = \{ \psi \in L^2(G, \mathbb{C}) \mid \psi(bg) = \alpha(b)\psi(g), \text{ for all } b \in B, g \in G \}$$

by right translation gives a unitary representation U^{α} of G. The sets

$$H_i^{\alpha} = \{ \psi \in H_0^{\alpha} \mid \psi \text{ is constant on } G_i - \text{cosets} \}$$

for $i \geq 0$ form an increasing chain of G-invariant subspaces. Denote the corresponding representations by U_i^{α} . For $i \geq 1$, let H_i^{α} be the orthogonal complement of H_{i-1}^{α} in H_i^{α} , and let the resulting representation be $u_{\alpha,i}$. Clearly, for $i \geq m$, U_i^{α} is just the induced representation $\operatorname{Ind}_{B^i}^{G^i}(\alpha)$.

All irreducible representations in the principal series are catalogued in the following theorem.

THEOREM 4 ([9], P. 58). If α is real-valued, U_1^{α} decomposes as the sum of a one-dimensional and a p-dimensional irreducible representation. For all other characters α , if α has conductor P^m , then the representation $u_{\alpha} = U_m^{\alpha}$ on H_m^{α} is irreducible, of dimension $p^m + p^{m-1}$. For i > m, the representations $u_{\alpha,i}$ are all irreducible, of dimension $p^i - p^{i-2}$.

Recall the root number formula:

$$\varepsilon(E\otimes\rho,1)=(-1)^{d_{\rho}}\det\rho(N_{E}).$$

Because det ρ is either the trivial character or the unique quadratic character χ , which, for $g \in PGL_2(\mathbf{Z}/p^n\mathbf{Z})$, is the map

$$g \mapsto \det g \in (\mathbf{Z}/p^n\mathbf{Z})^{\times}/[(\mathbf{Z}/p^n\mathbf{Z})^{\times}]^2 \cong \{\pm 1\},$$

the root number formula can be simplified.

LEMMA 4. *If* det *ρ* is the trivial character then $\varepsilon(E \otimes \rho, 1) = +1$. *If* det $\rho = \chi$, then

$$\varepsilon(E\otimes\rho,1)=\Big(\frac{-N_E}{p}\Big).$$

PROOF. The parity of d_{ρ} can be found by evaluating det ρ at complex conjugation, since the representation space is then the direct sum of the +1 and -1 eigenspaces. Clearly, if det ρ is the trivial character d_{ρ} is even. If det ρ is χ then d_{ρ} is the Legendre symbol

$$\left(\frac{-1}{p}\right)$$

since the 2 \times 2-determinant of complex conjugation is -1, modulo squares. Similarly, $\chi(N_E)$ is also just the Legendre symbol.

To determine det ρ for the principal series it is sufficient to do it for the representations U_i^{α} , since we have

(6)
$$\det u_{\alpha,i} = (\det U_i^{\alpha})(\det U_{i-1}^{\alpha})^{-1}$$

because $u_{\alpha,i}$ is the orthogonal complement of U_{i-1}^{α} in U_{i}^{α} . To check whether $\det U_{i}^{\alpha}$ is the trivial character or not, it suffices to evaluate it on the matrix $[\zeta] = \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix}$, where $\zeta \in \mathbf{Z}_{p}^{\times}$ is a topological generator. Since $U_{i}^{\alpha} \cong \operatorname{Ind}_{B^{i}}^{G^{i}}(\alpha)$, we can use the formula for the determinant of an induced representation:

LEMMA 5 ([1] P. 508). If G is a finite group and σ a representation of a subgroup H, then

$$\det \operatorname{Ind}_{H}^{G}(\sigma) = [\det \operatorname{Ind}_{H}^{G}(1)]^{\dim(\sigma)} \cdot (\det \sigma) \circ t_{H}^{G},$$

where t_H^G denoted the transfer map from the abelianization G^{ab} of G to the abelianization H^{ab} of H.

In our case this yields the formula

(7)
$$\det U_i^{\alpha} = \left(\det \operatorname{Ind}_{B^i}^{G^i}(1)\right) (\alpha \circ t_{B^i}^{G^i}).$$

The second term on the right is taken care of by the following lemma.

LEMMA 6. The transfer map $t_{B^i}^{G^i}$ is trivial.

We will make use of the following transversal **T** for the coset space $B^i \setminus G^i$. First, set the following notation:

$$M(z) = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix}$$
$$M'(z') = \begin{pmatrix} 0 & 1 \\ -1 & z' \end{pmatrix}$$
$$\Delta(a, b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

Now define T by

(8)
$$\mathbf{T} = \{ M(z), M'(z') \mid z \in O/P^{i}, z' \in P/P^{i} \}$$

PROOF OF LEMMA 6. The transfer map

$$t_{B^i}^{G^i}: (G^i)^{ab} \longrightarrow (B^i)^{ab}$$

can be defined as follows. Let $s: B^i \setminus G^i \to G^i$ be any section of the canonical projection; then

$$t_{B^i}^{G^i}(g(G^i)^c) = \prod_{x \in B^i \setminus G^i} b_{g,x} \pmod{(B^i)^c},$$

where $b_{g,x} \in B^i$ is defined by $s(x)g = b_{g,x}s(xg)$, and where the superscript c denotes the commutator subgroup. Since $(G^i)^{ab} \cong \{\pm 1\}$, it suffices to compute $t_{B^i}^{G^i}$ for $[\zeta]$ to see whether it is trivial or not, since $[\zeta]$ represents the nontrivial element in the group. For the section s take the transversal T.

Now,

(9)
$$M(z)\Delta(\zeta,1) = \Delta(\zeta,1)M(\zeta z)$$

(10)
$$M'(z')\Delta(\zeta,1) = \Delta(1,\zeta)M'(\zeta^{-1}z'),$$

So, $b_{[\zeta],x} = \Delta(\zeta, 1)$ for x = M(z), and $b_{[\zeta],x} = \Delta(1, \zeta)$ for x = M'(z'). Hence,

$$t_{B^{i}}^{G^{i}}([\zeta]) = \Delta(\zeta, 1)^{p^{i}} \Delta(1, \zeta)^{p^{i-1}} = \zeta^{p^{i-1}} \Delta(\zeta^{\phi(p^{i})}, 1).$$

ord(z)	# in orbit	ord(z')	# in orbit
0	$p^i - p^{i-1}$	1	$p^{i-1} - p^{i-2}$
1	$p^{i-1} - p^{i-2}$	2	$p^{i-2} - p^{i-3}$
:	:	:	:
i-1	p - 1	i-1	p - 1
i	1	i	1

Table 1: Lengths of orbits for action of $[\zeta]$.

But
$$\zeta^{\phi(p^i)}=1$$
 in $(O/P^i)^{\times}$, so $t_{B^i}^{G^i}$ is indeed trivial.

We now turn to the determination of the character det $\operatorname{Ind}_{B^i}^{G^i}(1)$. First, consider the following basis for the representation space

$$\{\psi: G^i \longrightarrow \mathbb{C} \mid \psi(bg) = \psi(g), \text{ for all } b \in B^i, g \in G^i\}.$$

For each $x \in B^i \setminus G^i$, define ψ_x by

$$\psi_x(y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}.$$

The action of $[\zeta]$ on this basis is easily computed:

$$[\zeta]\psi_x(y) = \psi_x(y[\zeta]) = 1 \iff y[\zeta] = x \iff y = x[\zeta^{-1}].$$

This shows that $[\zeta]\psi_x=\psi_{x[\zeta^{-1}]}$. Thus, $[\zeta]$ permutes the basis elements in the same way that right translation by $[\zeta^{-1}]$ permutes the elements of the coset space $B^i\setminus G^i$. The transversal **T** can be used to compute the orbits of $[\zeta^{-1}]$ in $B^i\setminus G^i$. From Equation 9 and 10,

$$B^{i}M(z)[\zeta^{-1}] = B^{i}M(\zeta^{-1}z), B^{i}M'(z')[\zeta^{-1}]$$

= $B^{i}M'(\zeta z').$

So, orbits are formed of all matrices M(z) (resp., M'(z')) with z (resp., z') of the same order. The lengths of the orbits are recorded in Table 1. Thus, $[\zeta^{-1}]$ acts as a product of 2i-1 disjoint cycles of even length. As even cycles are odd permutations, we conclude that $\det U_i^{\alpha}[\zeta] = (-1)^{2i-1} = -1$, which says that $\det U_i^{\alpha}$ is the nontrivial character χ of G^i .

By Equation 6 it follows that $\det u_{\alpha} = \chi$ and $\det u_{\alpha,i} = 1$ for i > m. Therefore,

$$\varepsilon(E \otimes u_{\alpha}, 1) = \left(\frac{-N_E}{p}\right),$$
$$\varepsilon(E \otimes u_{\alpha,i}, 1) = +1.$$

This proves Theorem 2 for ρ an even-dimensional representation in the principal series.

3.4. On the discrete series representations. Let F be one of the three quadratic extensions F of \mathbf{Q}_p , and let χ_F be the corresponding quadratic character on \mathbf{Q}_p^{\times} . Thus, χ_F is trivial on $N(F^{\times})$, where N denotes the norm map.

Let O_F be the ring of integers of F, P_F the maximal ideal of O_F , O_F^{\times} the group of units in O_F , and U_F^i the group $O_F^{\times}/(1+P_F^i)$. The function that gives the order of an element in O (respectively, O_F) will be denoted ord (respectively, ord $_F$). We shall use $\|\cdot\| = \|\cdot\|_F$ to denote the absolute value for which the product formula holds. Finally, the nontrivial automorphism of F over \mathbb{Q}_P will be denoted by $x \mapsto \bar{x}$. With this notation, $N(x) = x\bar{x}$, for $x \in F^{\times}$.

Starting with a choice of F, the corresponding discrete series can be constructed using a character $\pi = \pi_F$ of F^\times for which $\pi|_{\mathbf{Q}_p^\times} = \chi_F$ and for which $\pi(O_F^\times)$ is not contained in \mathbf{R} . Irreducible representations appear as subrepresentations of the space

$$D^{\pi} = \{ \psi \in L^{2}(\mathbf{Q}_{p}^{\times} \times F^{\times}; \mathbf{C}) \mid \forall t \in \mathbf{Q}_{p}^{\times}, \psi(t, x) \text{ is a finite function of } x \text{ and } \forall \gamma \in F^{\times}, \psi(\gamma \bar{\gamma}t, x) = \pi^{-1}(\gamma) \|\gamma\|^{1/2} \psi(t, \gamma x) \},$$

where the term *finite function* in this case means that there are integers n, m with $n \le m$ such that $\psi(t,x)=0$ if x is not in P_F^n , and $\psi(t,x+\xi)=\psi(t,x)$ whenever $\xi\in P_F^m$. For future reference the second condition of the definition will be called the *transformation law*:

(11)
$$\forall \gamma \in F^{\times}, \psi(\gamma \bar{\gamma}t, x) = \pi^{-1}(\gamma) \|\gamma\|^{1/2} \psi(t, \gamma x),$$

The action of G on D^{π} is a complicated business in general. (See [9] for details.) But for diagonal matrices it is straightforward: for $[a] = \Delta(a, 1), a \in O^{\times}, [a]\psi(t, x) = \psi(at, x)$.

For the computations, it is notationally helpful to distinguish between the ramified and unramified cases.

3.5. The unramified discrete series representations. Let F now be the unramified extension of \mathbf{Q}_p . Fixing some nonsquare unit ζ in O, say a topological generator, then $F = \mathbf{Q}_p(\sqrt{\zeta})$. Let τ be a uniformizer. Let N denote the kernel of the norm map. Let π have conductor P_F^m . Since π is not real-valued, $m \ge 1$.

The representation space D_i^π can be decomposed as $D_i^\pi = D_{i, \text{even}}^\pi \oplus D_{i, \text{odd}}^\pi$, ([9] p. 72), where

$$D_{i,\text{even}}^{\pi} = \{ \psi \in D^{\pi} \mid \psi(t, x) = 0 \text{ if } \text{ord}(t) \text{ is odd};$$

$$\text{supp } \psi(1, \cdot) \subseteq O_F; \psi(1, x + \xi) = \psi(1, x), \ \forall \xi \in P_F^i \}$$

$$D_{i,\text{odd}}^{\pi} = \{ \psi \in D^{\pi} \mid \psi(t, x) = 0 \text{ if } \text{ord}(t) \text{ is even};$$

$$\text{supp } \psi(\tau, \cdot) \subseteq O_F; \psi(\tau, x + \xi) = \psi(\tau, x), \ \forall \xi \in P_F^{i-1} \}$$

$$\text{(13)}$$

The map $\psi(t,x) \mapsto \psi(\tau^{-1}t,x)$ embeds D_{i-1}^{π} into D_i^{π} as a unitary *G*-representation. Let D_i^{π} be the orthogonal complement of D_{i-1}^{π} in D_i^{π} .

THEOREM 5 ([9], P. 79). The representation $u_{\pi} = D_m^{\pi}$ is irreducible of dimension $p^m - p^{m-1}$. (In this case $D_{m,\text{odd}}^{\pi} = \{0\}$.) For i > m, D_i^{π} is irreducible of dimension $p^i - p^{i-2}$, giving the representations $u_{\pi,i}$.

We now construct a convenient basis for D_i^{π} , $i \geq m$. Note that under the multiplicative action of N on O_F the P_F^i are invariant subgroups. Thus, N acts on all the quotients O_F/P_F^i .

Proposition 2. Let S_{even} be a set of representatives for the N-orbits in

$$\{\xi \in O_F/P_F^i \mid \operatorname{ord}_F(\xi) \le i - m\}$$

and S_{odd} be the same for

$$\{\xi \in O_F/P_F^{i-1} \mid \text{ord}_F(\xi) \le i - 1 - m\}.$$

For each $x \in S_{\text{even}}$ set

$$\psi_x(1,y) = \begin{cases} 1 & y = x, \\ 0 & y \in S_{\text{even}} \setminus \{x\} \end{cases},$$

and for each $x \in S_{\text{odd}}$ set

$$\psi_x(\tau, y) = \begin{cases} 1 & y = x, \\ 0 & y \in \mathcal{S}_{\text{odd}} \setminus \{x\}. \end{cases}$$

Then, for each $x \in S_{\text{even}}$ (resp., $x \in S_{\text{odd}}$), ψ_x extends uniquely to a function in $D_{i,\text{even}}^{\pi}$ (resp., $D_{i,\text{odd}}^{\pi}$). Moreover,

$$\{\psi_x \mid x \in S_{\text{even}} \cup S_{\text{odd}}\}$$

is a basis for D_i^{π} .

PROOF. First we show that any $\psi \in D^{\pi}_{i,\text{even}}$ (resp., $\psi \in D^{\pi}_{i,\text{odd}}$) is determined by its values on S_{even} (resp., S_{odd}). Once this has been established, the result follows by showing that

$$\#(S_{\text{even}} \cup S_{\text{odd}}) = p^i + p^{i-1} - 2p^{m-1} = \dim D_i^{\pi}.$$

Let $\psi \in D_i^{\pi}$. According to the transformation law (Equation 11)

$$\psi(\tau^{2n}t,x) = \pi^{-1}(\tau^n) \|\tau^n\|^{1/2} \psi(t,\tau^n x),$$

so once $\psi(t,x)$ is known for $\operatorname{ord}(t)=0,1$, it is known for all t. Moreover, let $t\in O^\times$ and pick some $\beta\in F^\times$ such that $N(\beta)=t$. Then for $\psi\in D^\pi_{i,\operatorname{even}}$,

$$\psi(t,x) = \pi^{-1}(\beta) \|\beta\|^{1/2} \psi(1,\beta x),$$

so knowing ψ is the same as knowing $\psi(1,x)$ for all x. Moreover, by the definition of $D_{i,\mathrm{even}}^\pi$ (Equation 12), one only needs to know the value of $\psi(1,x)$ for $x\in O_F$, and this only up to addition by elements of P_F^i . As for $\psi\in D_{i,\mathrm{odd}}^\pi$, a similar result holds: ψ is determined by its values $\psi(\tau,x)$ for x modulo P_F^{i-1} (Equation 13).

Thus, for $\psi \in D^{\pi}_{i,\text{even}}$, $\psi(1,\cdot)$ can be considered as a function on O_F/P_F^i . From the transformation law with $\gamma \in N$, we have

$$\psi(\gamma\bar{\gamma},x)=\psi(1,x)=\pi^{-1}(\gamma)\|\gamma\|^{1/2}\psi(1,\gamma x),$$

or, (14)
$$\forall \gamma \in N, \quad \psi(1, \gamma x) = \pi(\gamma)\psi(1, x).$$

In order for $\psi(1,x)$ to be nonzero, $\pi(\gamma)$ must be trivial whenever $\gamma x = x + \xi$ for some $\xi \in P_F^i$, and some $\gamma \in N$. Since $\gamma x = x + \xi$ if and only if $\gamma = 1 + \xi x^{-1}$, this condition is equivalent to π being trivial on $N \cap (1 + P_F^{i \operatorname{ord}_F(x)})$. Now, the π we are using is not arbitrary.

LEMMA 7. The assumptions on π ($\pi|_{\mathbf{Q}_p^{\times}} = \chi_F$; $\pi|_{\mathcal{O}_F^{\times}}$ not real-valued) imply that π is never trivial on $N \cap (1 + P_F^j)$ for j < m.

PROOF. If m=1, we need to show π is not trivial on N. If it were, then since π is trivial on norms $(\pi|_{\mathbf{Q}_p^\times}=\chi_{_F})$, we would have π being trivial on N O^\times . But we have the morphism of exact sequences:

Thus, $[O_F^{\times}:NO^{\times}]=[O^{\times}:(O^{\times})^2]=2$. But then this says that the image of $\pi|_{O_F^{\times}}$ has order 2, *i.e.*, that $\pi|_{O_F^{\times}}$ is real-valued, contrary to assumption. Therefore the lemma is true for m=1.

Now assume m>1. It suffices to prove the result for j=m-1 since the $N\cap (1+P_F^j)$ form a decreasing chain of subgroups. So suppose π is trivial on $N\cap (1+P_F^{m-1})$. Then π is surely trivial on $[N\cap (1+P_F^{m-1})](1+P^{m-1})$ since $1+P^{m-1}$ consists of norms. Applying the simple group-theoretic lemma below, we see that π must then be trivial on $N(1+P^{m-1})\cap (1+P_F^{m-1})$. We again have a diagram of exact sequences:

But since $m \ge 2$, $1 + P^{m-1} = (1 + P^{m-1})^2$. So we conclude that the middle vertical arrow is an isomorphism. Hence, π us trivial on $N(1 + P_F^{m-1}) \cap (1 + P_F^{m-1}) = 1 + P_F^{m-1}$ contrary to the assumption that π has conductor P_F^m . This proves the lemma.

The following easy lemma was used in the above proof:

LEMMA 8. If A, B, C are all subgroups of some larger group, and if $C \subset B$, then

$$[A \cap B]C = AC \cap B$$
.

Thus, for π to be trivial on $N \cap (1 + P_F^{i - \operatorname{ord}_F(x)})$, we must have $i - \operatorname{ord}_F(x) \ge m$, or equivalently, $\operatorname{ord}_F(x) \le i - m$. Hence, $\psi(1,\cdot)$, as a function on O_F/P_F^i is determined by its values for $\operatorname{ord}_F(x) \le i - m$. From Equation 14 it is then clear that one can specify the

function by giving its value on a representative of each N-orbit of such x-classes. This shows that any $\psi \in D_{i,\mathrm{even}}^\pi$ is completely determined by its values on S_{even} .

The $D_{i,\mathrm{odd}}^\pi$ case is entirely analogous. Repeating the argument for $\psi(\tau,x)$ as a function on O_F/P_F^{i-1} shows that any $\psi\in D_{i,\mathrm{odd}}^\pi$ is determined by its values on S_{odd} .

It remains to count the size of the sets S_{even} and S_{odd} .

The group of units O_F^{\times} acts transitively on the set of elements of order j in O_F/P_F^i . The stabilizer of any element is $1+P_F^{i-j}$. Thus, the number of such elements is $\#U_F^{i-j}$. The number of elements in each N-orbit is likewise $\#N^{i-j}$, where $N^k=N/[N\cap(1+P_F^k)]$. Dividing, we find that the number of N-orbits is $\#U_F^{i-j}/\#N^{i-j}$. But using the norm map it is easy to see that this is $\#U^{i-j}$, where $U^{i-j}=O^{\times}/(1+P^{i-j})$. Since $\#U^{i-j}=\phi(p^{i-j})$ (Euler's ϕ function), the total number of orbits is

$$\sum_{j=0}^{i-m} \phi(p^{i-j}) = \sum_{k=m}^{i} \phi(p^k) = p^i - p^{m-1}.$$

Thus,

$$\#S_{\text{even}} = p^i - p^{m-1}.$$

The similar calculation for S_{odd} gives

$$\#S_{\text{odd}} = p^{i-1} - p^{m-1}$$
.

Adding the two cardinalities gives $p^i + p^{i-1} - 2p^{m-1}$, which is precisely the dimension of D_i^{π} .

Again, the root number computations only need be performed on the representations U_i^{π} , since for i > m,

$$\det u_{\pi,i} = (\det U_i^{\pi})(\det U_{i-1}^{\pi})^{-1}.$$

To see whether $\det U_i^{\pi}$ is the trivial character or not, we evaluate it on $[\zeta] = \Delta(\zeta, 1)$, where ζ is a topological generator in O^{\times} . For any $\beta \in O_F^{\times}$ with $N(\beta) = \zeta$, the action of $[\zeta]$ on $\psi \in D_i^{\pi}$ is given by

$$[\zeta]\psi(t,x) = \psi(\zeta t, x) = \pi^{-1}(\beta)\psi(t,\beta x).$$

If we let O_F^{\times} act on D_i^{π} by

$$\psi(t,x) \stackrel{\beta}{\longmapsto} \psi(t,\beta x), \quad \forall \beta \in \mathbf{O}_F^{\times},$$

the results of the last section make this representation easily identifiable. Take the case of $D_{i,\text{even}}^{\pi}$. We can define O_F^{\times} -invariant subspaces V_i , where

$$V_i = \operatorname{Span}\{\psi_x \mid x \in S_{\operatorname{even}}, \operatorname{ord}_F(x) = j.\}$$

Now, N acts on each of these through the character π , and clearly the O_F^{\times} -translates of any one $\psi_x \in V_j$ span that V_j . But O_F^{\times} acts on V_j through the quotient U_F^{-j} , which has as exactly dim V_j elements. We can therefore conclude that

$$V_j \cong \operatorname{Ind}_{N_{i-j}}^{U_F^{ij}}(\pi).$$

Hence, using an analogous argument for $D_{i,\text{odd}}^{\pi}$, we find that as O_F^{\times} -representations,

$$D_{i,\text{even}}^{\pi} \cong \bigoplus_{j=0}^{i-m} \operatorname{Ind}_{N^{i-j}}^{U_F^{i-j}}(\pi)$$

$$\cong \bigoplus_{k=m}^{i} \operatorname{Ind}_{N^k}^{U_F^k}(\pi)$$
(15)

(16)

(17)
$$D_{i,\mathrm{odd}}^{\pi} \cong \bigoplus_{k=m}^{i-1} \mathrm{Ind}_{N^k}^{U_F^k}(\pi).$$

Call the representation of O_F^{\times} obtained in this way on $D_{i, \text{even}}^{\pi}$, (respectively, on $D_{i, \text{odd}}^{\pi}$) $\sigma_{i, \text{even}}^{\pi}$, (respectively, $\sigma_{i, \text{odd}}^{\pi}$). To get the action of $[\zeta]$, first choose β with $N(\beta) = \zeta$, and then let β act through the representations $\pi^{-1} \otimes \sigma_{i, \text{even}}^{\pi}$ and $\pi^{-1} \otimes \sigma_{i, \text{even}}^{\pi}$. Examining these representations,

$$\pi^{-1} \otimes \sigma_{i,\text{even}}^{\pi} \cong \pi^{-1} \otimes \left\{ \bigoplus_{k=m}^{i} \text{Ind}_{N^{k}}^{U_{F}^{k}}(\pi) \right\}$$

$$\cong \bigoplus_{k=m}^{i} \pi^{-1} \otimes \text{Ind}_{N^{k}}^{U_{F}^{k}}(\pi)$$

$$\cong \bigoplus_{k=m}^{i} \text{Ind}_{N^{k}}^{U_{F}^{k}}(1)$$

$$\cong \bigoplus_{k=m}^{i} r_{U^{k}} \circ N,$$

$$(18)$$

where r_{U^k} denotes the regular representation of the group $U^k = O^{\times}/1 + P^k$. Similarly,

(19)
$$\pi^{-1} \otimes \sigma_{i,\text{odd}}^{\pi} \cong \bigoplus_{k=m}^{i-1} r_{U^k} \circ N.$$

The determination of the character det U_i^{π} is now straightforward. Since ζ is primitive modulo P^i , its image in each U^k is a generator. So under the regular representation it acts as a cycle of length $\#U^k=(p-1)p^{k-1}$. As this length is even, $[\zeta]$ acts as an odd permutation in each r_{U^k} . As there are an odd number of r_{U^k} 's, det $U_i^{\pi}[\zeta]=-1$.

Therefore, det u_{π} is the nontrivial character χ , but all the det $u_{\pi,i}$ are the trivial character. By Lemma 4 this completes the proof of Theorem 2 in the case of the unramified discrete series.

3.6. The ramified discrete series representations. Let F now be one of the two ramified extensions of \mathbb{Q}_p . Choose a uniformizer τ in O such that $\tau = N(\omega)$. Then $\operatorname{ord}_F(\omega) = 1$ and $\operatorname{ord}_F(\tau) = 2$. The norm map N sends O_F^{\times} onto $(O^{\times})^2$ and both $1 + P_F^{2i-1}$ and $1 + P_F^{2i}$ onto $1 + P^i$, for $i \geq 1$. This latter condition can be rewritten as

$$N(1+P_F^k)=1+P^{[(k+1)/2]} \quad (k\geq 1),$$

where $[\cdot]$ denotes the greatest integer function. Again, N will denote the elements of O_F^{\times} of norm 1.

For the character π of F^{\times} let m be the least positive integer such that π is trivial on $1 + P_F^{2m-1}$.

LEMMA 9. One always has $m \ge 2$.

PROOF. If m were 1, π would be trivial on $1 + P_F$, and hence on $(1 + P_F)(O^{\times})^2$ since this latter group consists of norms. But

$$[O_F^{\times}: (1 + P_F)(O^{\times})^2] = [\mathbf{F}_p^{\times}: (\mathbf{F}_p^{\times})^2] = 2,$$

so then $\pi(O_F^{\times}) \subseteq \mathbf{R}$, contrary to assumption.

Starting with the representation space D^{π} defined in Section 3.4, for each i define the representation U_i^{π} on the space ([9] p. 72)

$$D_i^{\pi} = \{ \psi \in D^{\pi} \mid \operatorname{supp} \psi(a, \cdot) \subseteq O_F \text{ and } \psi(a, x + \xi) = \psi(a, x),$$
 (20) for all $a \in O^{\times}, x \in O_F, \xi \in P_F^{2i-1} \}.$

The decomposition into irreducibles follows the same pattern as in the unramified case: $\psi(t,x) \mapsto \psi(\tau^{-1}t,x)$ embeds D_{i-1}^{π} in D_i^{π} as unitary *G*-representations. If D_i^{π} is the orthogonal complement of D_{i-1}^{π} in D_i^{π} , then the following theorem holds.

THEOREM 6 ([9], P. 79). The representation space D_m^{π} gives an irreducible representation u_{π} of G of dimension $p^m - p^{m-2}$. For i > m, the space D_i^{π} gives an irreducible representation $u_{\pi i}$ of dimension $p^i - p^{i-2}$.

REMARK. The dimension of D_i^{π} is

(21)
$$\dim D_i^{\pi} = p^i + p^{i-1} - p^{m-1} - p^{m-2},$$

as can be seen by adding the dimensions of the spaces D_i^{π} .

We turn to the construction of a basis for D_i^{π} . As before, let ζ be a topological generator for O^{\times} .

Proposition 3. Let S be a set of representatives for the N-orbits in

$$\{\xi \in O_F/P_F^{2i-1} \mid \operatorname{ord}_F(\xi) \le 2(i-m)+1\}.$$

Define a set of functions

$$\{\psi_{(1,x)},\psi_{(\zeta,x)}\mid x\in S\},\$$

where

(22)
$$\psi_{(1,x)}(1,y) = \begin{cases} 1 & \text{if } y = x, \\ 0 & \text{if } y \neq x, y \in S; \end{cases}$$

(23)
$$\psi_{(1,x)}(\zeta,y) = 0 \quad \text{for all } y \in S,$$

and where the $\psi_{(\zeta,x)}$ are defined by switching 1 and ζ on the lefthand side of the above formulas. Then the $\psi_{(1,x)}$ and $\psi_{(\zeta,x)}$ extend uniquely to functions in D_i^{π} and this set of functions forms a basis.

PROOF. We proceed as in the unramified case. Let ψ be an arbitrary function in D_i^{π} . Recalling the transformation law,

$$\psi(t\gamma\bar{\gamma},x) = \pi^{-1}(\gamma) \|\gamma\|^{1/2} \psi(t,\gamma x),$$

if one knows $\psi(a, x)$ for all $a \in O^{\times}$, $x \in O_F$, then one knows ψ . Indeed, since $\tau = N(\omega)$,

$$\psi(a\tau^n, x) = \psi(a\omega^n \bar{\omega}^n, x) = \pi^{-1}(\omega^n) \|\omega^n\|^{1/2} \psi(a, \omega^n x).$$

Moreover, since all squares in O^{\times} are norms, it is clear from the transformation law that if one knows $\psi(1,x)$ and $\psi(\zeta,x)$ for all $x \in O_F$, then one knows ψ completely.

Further, the two conditions

(24)
$$\psi(a, x + \xi) = \psi(a, x) \quad \text{for all } \xi \in P_F^{2i-1},$$

(25)
$$\psi(a, \gamma x) = \pi(\gamma)\psi(a, x) \quad \text{for all } \gamma \in N,$$

imply that $\pi(\gamma)=1$ whenever $\gamma x=x+\xi$ for some $\xi\in P_F^{2i-1}$, *i.e.*, we need π trivial on $N\cap (1+P_F^{2i-1-{\rm ord}_F(x)})$. The following two lemmas are now useful.

LEMMA 10. The character π is trivial on $1 + P_F^{2m-2}$.

LEMMA 11. The character π is not trivial on $N \cap (1 + P_F^{2m-3})$.

Proofs will follow the completion of the proof of the proposition. The two lemmas imply that $\psi(a,x) = 0$ unless $2i - 1 - \operatorname{ord}_F(x) \ge 2m - 2$. Rearranging, $\psi(a,x) = 0$ unless $\operatorname{ord}_F(x) \le 2(i-m) + 1$. Putting the pieces together, to know some $\psi(t,x)$, it suffices to know its values $\psi(1,x)$, $\psi(\zeta,x)$ for each $x \in S$.

How many values are these?

If we let the number be c, by a similar argument as in the unramified case,

$$c = 2 \sum_{i=0}^{2(i-m)+1} \frac{\# U_F^{2i-1-j}}{\# N^{2i-1-j}}.$$

Via the norm map, for $k \ge 1$,

(26)
$$U_F^k/N^k \cong (O^{\times})^2/(1+P^{[(k+1)/2]}).$$

Substituting and rearranging gives

$$c = 2 \sum_{k=2m-2}^{2i-1} \#(O^{\times})^2 / (1 + P^{[(k+1)/2]}).$$

Considering that $\#O^{\times}/(1+P^j)=(p-1)p^{j-1}$,

$$c = 2[(1/2)(p-1)(p^{m-2} + 2p^{m-1} + 2p^m + \dots + 2p^{i-2} + p^{i-1})]$$

= $p^i + p^{i-1} - p^{m-1} - p^{m-2}$
= $\dim D_i^{\pi}$,

where we have used Equation 21 for the second last line. This proves the proposition.

PROOF OF LEMMA 10. First, two little results:

1.
$$N \cap (1 + P_F^{2m-1}) = N \cap (1 + P_F^{2m-2})$$

2. $N(1 + P^{m-1}) = N(1 + P_F^{2m-2})$

2.
$$N(1 + P^{m-1}) = N(1 + P_E^{2m-2})$$

The first follows from the diagram

noting that the last two vertical arrows are injections of subgroups of index p.

The second follows from the diagram

$$1 \rightarrow N \rightarrow N(1+P_F^{2m-2}) \xrightarrow{N} 1+P^{m-1} \rightarrow 1$$

$$\parallel \qquad \uparrow \qquad \uparrow$$

$$1 \rightarrow N \rightarrow N(1+P^{m-1}) \xrightarrow{N} (1+P^{m-1})^2 \rightarrow 1$$

and the fact that $(1 + P^i)^2 = 1 + P^i$ for i > 1.

Now to prove the lemma. Since π is trivial on $N \cap (1 + P_F^{2m-1})$, result 1 implies that π is trivial on $N \cap (1 + P_F^{2m-2})$. Then π is trivial on

$$[N \cap (1 + P_F^{2m-2})](1 + P^{m-1}),$$

since this latter group consists of norms. Using

$$[A \cap B]C = AC \cap B$$
 if $C \subseteq B$,

this group is $N(1 + P^{m1}) \cap (1 + P_F^{2m-2})$. Now result 2 finishes the proof.

PROOF OF LEMMA 11. Suppose π were trivial on $N \cap (1 + P_F^{2m-3})$. Consider the diagram

One must have

$$[1 + P_F^{2m-3} : 1 + P_F^{2m-2}] = [N \cap (1 + P_F^{2m-3}) : N \cap (1 + P_F^{2m-2})],$$

which says that the map

$$N \cap (1 + P_F^{2m-3}) \longrightarrow (1 + P_F^{2m-3})/(1 + P_F^{2m-2}),$$

which has kernel $N \cap (1 + P_F^{2m-2})$, must be surjective. Thus, we have

$$1 + P_F^{2m-3} = [N \cap (1 + P_F^{2m-3})](1 + P_F^{2m-2}).$$

By Lemma 10, π is trivial on the second group on the right side. Therefore our hypothesis implies that π is also trivial on $1 + P_F^{2m-3}$, contrary to our choice of m. This proves the lemma.

3.7. Computations for the ramified discrete series. As before, it suffices to compute det $U_i^{\pi}[\zeta]$ for $i \geq m$. To begin, we calculate the action of $[\zeta]$ under U_i^{π} .

(27)
$$[\zeta]\psi(1,x) = \psi(\zeta,x)$$

(28)
$$[\zeta]\psi(\zeta, x) = \psi(\zeta^2, x) = \pi^{-1}(\zeta)\psi(1, \zeta x).$$

To determine the action of $[\zeta]$ with respect to our basis, it is helpful to define two subspaces:

$$V_1 = \mathbf{C}$$
-linear span of the $\psi_{(1,x)}$

$$V_{\zeta} = \mathbf{C}$$
-linear span of the $\psi_{(\zeta,x)}$

On each of these subspaces it is helpful to define an O_F^{\times} -representation as in the unramified case:

$$\psi(t,x) \stackrel{\beta}{\longmapsto} \psi(t,\beta x), \quad \forall \beta \in O_F^{\times}.$$

Reasoning similarly to the unramified case shows both V_1 and V_ζ are isomorphic to

(29)
$$\bigoplus_{j=0}^{2(i-m)+1} \operatorname{Ind}_{N^{2i-1-j}}^{U_F^{2i-1-j}}(\pi) = \bigoplus_{k=2m-2}^{2i-1} \operatorname{Ind}_{N^k}^{U_F^k}(\pi).$$

Let $x, y \in S$. Applying Equations 27 and 28,

(30)
$$[\zeta]\psi_{(1,x)}(1,y) = \psi_{(1,x)}(\zeta,y) = 0$$

(31)
$$[\zeta]\psi_{(1,x)}(\zeta,y) = \pi^{-1}(\zeta)\psi_{(1,x)}(1,\zeta y) = \sigma_{\zeta}\psi_{(1,x)}(1,y)$$

(32)
$$[\zeta]\psi_{(\zeta,x)}(1,y) = \psi_{(\zeta,x)}(\zeta,y) = \delta_{xy}$$

(33)
$$[\zeta] \psi_{(\zeta,x)}(\zeta,y) = \pi^{-1}(\zeta) \psi_{(\zeta,x)}(1,\zeta y) = 0,$$

where σ_{ζ} acts on V_1 according to the formula

(34)
$$\sigma_{\zeta}\psi(1,\xi) = \pi^{-1}(\zeta)\psi(1,\zeta\xi), \quad \forall \xi \in \mathcal{O}_{F},$$

and where δ_{xy} is the Kronecker delta. If σ_{ζ} has the matrix Σ_{ζ} with respect to the $\psi_{(1,x)}$, then the matrix of $[\zeta]$ is a block matrix of the form

$$\left(egin{array}{c|c} 0 & I & I \ \hline \Sigma_{\zeta} & 0 & \end{array}
ight),$$

where the blocks are square of size dim V_1 . The determinant of this matrix is clearly $(-1)^{\dim V_1} \det \Sigma_{\ell}$. Since

$$\dim D_i^{\pi} = p^i + p^{i-1}p^{m-1} - p^{m-2} = (p^{m-1} + p^{m-2})(p^{i-m+1} - 1),$$

and since dim V_1 is half this number, dim V_1 must be even. Hence, $(-1)^{dimV_1} = +1$. Thus, we are reduced to calculating the determinant of Σ_{ζ} . To isolate Σ_{ζ} , it is helpful to alter

the action of $[\zeta]$ slightly. If after performing $[\zeta]$, one permutes the basis by interchanging $\psi_{(1,x)}$ and $\psi_{(\zeta,x)}$ for all $x \in S$, then the above calculation shows that the determinant of the new action is the same as that of the old. But now the matrix of the action is

$$\left(egin{array}{c|cccc} \Sigma_{\zeta} & 0 & & & \\ \hline & 0 & & I & & \\ \end{array}
ight),$$

where again the blocks are square of size dim V_1 . So V_1 is now an invariant subspace and restricting to this subspace gives $[\zeta]$ the matrix Σ_{ζ} .

It is easy to identify the representation involved. By Equations 29 and 34, we see that $[\zeta]$ acts on V_1 through the representation

$$\pi^{-1}\otimes igoplus_{k=2m-2}^{2i-1}\operatorname{Ind}_{N^k}^{U_F^k}(\pi) = igoplus_{k=2m-2}^{2i-1}\operatorname{Ind}_{N^k}^{U_F^k}(1).$$

Now, $\operatorname{Ind}_{N^k}^{U_k^k}(1)$ is the regular representation of the group

$$U_F^k/N^k \cong (O^{\times})^2/(1+P^{[(k+1)/2]}),$$

where the isomorphism is given by the norm map (*cf.* Equation 26). Note that ζ on the left corresponds to ζ^2 on the right.

Since the group $(O^{\times})^2/(1+P^{[(k+1)/2]})$ has order $(p-1)p^{[(k-1)/2]}/2$ for the k we are considering, ζ^2 acts as cycle of this length. So the determinant of $[\zeta]$ on $\mathrm{Ind}_{N^k}^{U_F^k}(1)$ is $(-1)^{1+(p-1)p^{[(k-1)/2]}/2}$. Hence, we obtain the result that

$$\det \Sigma_{\zeta} = \prod_{k=2m-2}^{2i-1} (-1)^{1+(p-1)p^{\lceil (k-1)/2 \rceil}/2} = (-1)^e,$$

where

$$e = \sum_{k=2m-2}^{2i-1} (1 + (p-1)p^{[(k-1)/2]}/2) = 2i - 2m + \dim V_1.$$

As dim V_1 is even, so is e, which shows that det U_i^{π} , and hence det u_{π} and det $u_{\pi,i}$, are all the trivial character. By Lemma 4, this completes the proof of Theorem 2.

REFERENCES

- P. Deligne, Les constantes des équations fonctionelles des fonctions L, Modular Functions of One Variable. II, Lecture Notes in Math. 349(1973), 501–595.
- Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math. (2) XXXIII(1979), 313–346.
- R. Greenberg, Non-vanishing of certain values of L-functions, Analytic Number Theory and Diophantine Problems, Prog. in Math. 70(1987), 223–235.
- M. Harris, Systematic growth of Mordell-Weil groups of abelian varieties in towers of number fields, Invent. Math. 51(1979), 123–141.
- D. Rohrlich, The vanishing of certain Rankin-Selberg convolutions, Automorphic Forms and Analytic Number Theory, Publications CRM, Montreal, 1990, 123–133.

- 6. J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou, 1969/70, **19**. **7.** _____, *Local Fields*, Springer-Verlag, New York, 1979.
- Propriétés des points d'ordre fini des courbes elliptiques, Invent. Math. 15(1972), 259–331.
 A. Silberger, PGL₂ over the p-adics, Lecture Notes in Math. 166(1970).
- 10. J. Tate, Number Theoretic Background, Proc. Sympos. Pure Math. (2) XXXIII(1979), 3–26.
- 11. André Weil, Dirichlet Series and Automorphic Functions, Lecture Notes in Math. 189(1971).