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TWISTED HASSE-WEIL L-FUNCTIONS
AND THE RANK OF MORDELL-WEIL GROUPS

LAWRENCE HOWE

ABSTRACT. Following a method outlined by Greenberg, root number computations
give a conjectural lower bound for the ranks of certain Mordell-Weil groups of elliptic
curves. More specifically, for PQn a PGL2(ZÛpnZ)-extension of Q and E an elliptic
curve over Q, define the motive E 
 ö, where ö is any irreducible representation of
Gal(PQn ÛQ). Under some restrictions, the root number in the conjectural functional
equation for the L-function of E 
 ö is easily computable, and a ‘�1’ implies, by the
Birch and Swinnerton-Dyer conjecture, that ö is found in E(PQn) 
 C. Summing the
dimensions of such ö gives a conjectural lower bound of

p2n � p2n�1 � p� 1

for the rank of E(PQn).

Introduction. In [3], Greenberg outlines a method for using root number calculations
to give lower bounds for the ranks of Mordell-Weil groups of elliptic curves in certain
PGL2(ZÛpnZ)-extensions of Q. This paper pursues those calculations using Silberger’s
work ([9]) on representations of PGL2(Zp).

To recall Greenberg’s method, let E be an elliptic curve over Q with conductor NE. Let
p be an odd prime, and let PQn be a PGL2(ZÛpnZ)-extension of Q, for some n. We assume
that no prime factor of NE ramifies in PQn. Such PQn may be constructed by taking an
auxiliary elliptic curve E0 over Q without complex multiplication, and whose conductor
is coprime with NE. For all but finitely many p, the p-power division points of E0 generate
a GL2(Zp)-extension of Q. The fixed field of the centre is thus a PGL2(Zp)-extension PQ
of Q. We may then choose p so that no prime in NE ramifies in PQ. The field PQn appears
as the fixed field of the kernel of the reduction map PGL2(Zp) ! PGL2(ZÛpnZ).

Let ö be an even dimensional irreducible representation of Gal(PQn ÛQ). By twisting
the L-function of E by ö a motivic L-function is obtained whose associated conjectural
functional equation has an ¢-factor computable solely in terms of properties of ö (See
Theorem 1 below). Since any complex representation of PGL2(ZÛpnZ) is isomorphic to
its contragredient, the functional equation for the L-function with Γ-factor has the form

Λ(E
 öÒ s) = ¢(E 
 öÒ s)Λ(E 
 öÒ 2 � s)Ò
which makes ¢(E 
 öÒ 1) = š1. The generalized Birch and Swinnerton-Dyer conjecture
implies that the order of vanishing at s = 1 of the twisted L-function is precisely
the multiplicity of ö in E(PQn) 
 C. Thus, for a particular ö, if ¢(E 
 öÒ 1) = �1, then
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750 LAWRENCE HOWE

Λ(E
öÒ 1) vanishes. This implies that ö occurs in E(PQn)
C. Summing the dimensions
of all ö having ¢(E 
 öÒ 1) = �1 gives a lower bound for the rank of E(PQn).

The first two sections fill out the sketch provided above. Section 1 reviews the
background of motivic L-functions. Section 2 contains a derivation of the conjectural
root number formula (Theorem 1)

¢(E 
 öÒ 1) = (�1)dö det ö(NE)Ò
where ö is an even dimensional irreducible representation of Gal(PQn ÛQ) and dö is
the dimension of the (�1)-eigenspace of complex conjugation under ö. This formula is
decades old: in [11], Weil attributes it to Langlands. However, here it is explicitly derived
from certain conjectures about motivic L-functions. Computing the terms in this formula
for the various ö is done in Section 3, using the catalog of all complex representations
of PGL2(Zp) found in [9].

Applying the results of the computations to obtain a lower bound for the rank of
E(PQn) gives the following theorem:

THEOREM 3. Let E be an elliptic curve defined over Q with conductor NE, and let
PQn be a PGL2(ZÛpnZ)-extension of Q. Suppose that no prime in NE ramifies in PQn

and that �NE is a quadratic nonresidue modulo p. Then,

rank
�
E(PQn)

� ½ p2n � p2n�1 � p � 1
I would like to thank Michael Harris, Ralph Greenberg, David Rohrlich, and Glenn

Stevens for their generous guidance, and the referees for their valuable suggestions and
corrections.

Throughout, PQn will be the PGL2(ZÛpnZ)-extension of Q described above.

1. Twisted Hasse-Weil L-functions. Let E is an elliptic curve defined over Q with
conductor NE and let ö be an irreducible complex representation of Gal(PQn ÛQ) realiz-
able over some number field K . The tensor product E
ö gives a motive with coefficients
in K . To make the calculations straightforward, we shall assume that no prime in NE

ramifies in PQn, so that by the conductor-discriminant product formula ([7], p. 104), NE

is coprime to the conductor of any irreducible representation ö of Gal(PQn ÛQ).

1.1. Motivic L-functions. We recall the definition of the L-function attached to a motive
M. For each prime number p, let WQp

be a Weil group for Q̄p over Qp, where Q̄p denotes
an algebraic closure of Qp. We follow Deligne’s convention that under the reciprocity
law isomorphism,

Qð
p

¾�! Wab
Qp
Ò

a uniformizer corresponds to a geometric Frobenius element, i.e., one which acts as
x 7! xp�1

on F̄pÛFp. We shall always use Φ to denote a geometric Frobenius element
and I to denote the inertia group in WQp

. Now let Hï(M) be the ï-adic realization of M,
where ï is a prime of the coefficient field not over p. We then set

Zp(MÒ t) = det(1 �Φt j Hï(M)I)�1Ò(1)

https://doi.org/10.4153/CJM-1997-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-037-7


TWISTED HASSE-WEIL L-FUNCTIONS 751

where the superscript I denotes the subspace of inertial invariants. In our case, Zp(MÒ t)
will always be a polynomial in t with coefficients in the coefficient field of M, independent
of the choice of ï.

Setting Lp(MÒ s) = Zp(MÒ p�s), define the L-function of M to be

L(MÒ s) =
Y
p

Lp(MÒ s)Ò(2)

which converges for the real part of s sufficiently large.
The Γ-factor at infinity L1(MÒ s) is completely determined by the Hodge decomposi-

tion of the ‘Betti’ realization of M. A table of the possibilities is given in [2], Section 5.3.
Setting Λ(MÒ s) = L1(MÒ s)L(MÒ s), the conjectural functional equation reads

Λ(MÒ s) = ¢(MÒ s)Λ(M̌Ò 1 � s)Ò(3)

where M̌ is the dual motive of M, and where ¢(MÒ s), as a function of s, is the product of
a constant and an exponential function.

1.2. Three L-functions.

1. For M = E, L(EÒ s) is the Hasse-Weil L-function. In this case H‡(E) = V‡ is the first
étale cohomology group of E with coefficients in Q‡. For varying ‡, the corresponding
representations of the Weil-Deligne group 0WQp

are compatible and Φ-semisimple (see
[1]).

As a representation of the Weil-Deligne group, the ‡-adic representation V‡ of WQp

corresponds to a pair (õÒN), where õ is a representation of WQp
in V‡ trivial on an open

subgroup of I, and where N is a nilpotent endomorphism of V‡. With this, the definition
of Zp(EÒ t) becomes

Zp(EÒ t) = det
�
1 �Φt j ker(N)õ(I)

��1
Compatibility ensures that Zp(EÒ t) has coefficients in Q.

Since E has a Hodge structure of type f(0Ò 1)Ò (1Ò 0)g (see, e.g., [6]) the Γ-factor
L1(EÒ s) is

L1(EÒ s) = ΓC(s) = 2(2ô)sΓ(s)
Since Ě = E(1) and Λ(M(n)Ò s) = Λ(MÒ s+n) for any motive M, the functional equation

for E is usually given in the following form:

Λ(EÒ s) = ¢(EÒ s)Λ(EÒ 2 � s)

Taking series expansions about s = 1 shows that ¢(EÒ 1) = š1.

2. For M = ö, suppose that ö has as representation space the K -vector space W.
Then the ï-adic realization Hï(ö) is just Kï 
K W. From this the compatibility of the
Hï(ö) is clear, as is the fact that Zp(öÒ t) has coefficients in K independent of ï. The
resulting L-function is the Artin L-function attached to ö.
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At 1, ö has a Hodge structure which is pure of type (0Ò 0), and for which the
involution acts as complex conjugation (see [2], Section 6). If dö is the dimension of the
(�1)-eigenspace of complex conjugation, then

L1(öÒ s) = ΓR(s + 1)döΓR(s)dim(ö)�dö Ò
where ΓR(s) = ô�sÛ2Γ(sÛ2).

Since ö ≤ ö̌, the (proven) functional equation reads

Λ(öÒ s) = ¢(öÒ s)Λ(öÒ 1 � s)
Hence, ¢(öÒ 1Û2) = š1.

3. For M = E 
 ö, the ï-adic realization Hï(E 
 ö) is

V‡ 
Q‡
[Kï 
K W]

The resulting L-function is a twisted Hasse-Weil L-function. By the compatibility of each
of the two previous representations, the Hï(E
 ö) are also compatible, and Zp(E
 öÒ t)
has coefficients in K independent of ï. Note, too, that the Hï(E
 ö) are Φ-semisimple,
since both E and ö are.

At 1, the Hodge structure is pure of type f(1Ò 0)Ò (0Ò 1)g and hence L1(E 
 öÒ s) =
ΓC(s)dim ö. As M̌ = Ě 
 ö̌ = E(1) 
 ö, the conjectural functional equation will be of the
form

Λ(E
 öÒ s) = ¢(E 
 öÒ s)Λ(E 
 öÒ 2 � s)Ò
from which one concludes that ¢(E 
 öÒ 1) = š1.

The term root number will always refer to ¢(E 
 öÒ 1).

1.3. A form of the Birch and Swinnerton-Dyer conjecture. Recall that the Birch and
Swinnerton-Dyer conjecture says that the order of vanishing at s = 1 of the L-function
of an elliptic curve E defined over a number field K is the rank of E(K). A generalization
of this conjecture also uses the Deligne-Gross conjecture that the order of vanishing of a
motivic L-function at a critical point is independent of the embedding of the coefficient
field in C (see [2], Conjecture 2.7). The following ([5]) supports assertions made in the
introduction:

PROPOSITION 1. The Birch and Swinnerton-Dyer and Deligne-Gross conjectures to-
gether imply that

ords=1 L(E
 öÒ s) = multiplicity of ö in E(Q̄) 
CÒ
where Q̄ denotes an algebraic closure of Q.

2. The root number formula.

2.1. Local constants. To compute the root number ¢(E 
 öÒ 1), we will make use of
the conjectural formulae for motivic epsilon factors ¢(MÒ s) as products over all p of the
local factors ¢p(MÒ sÒ †pÒ dxp) and of a factor at infinity ¢1(MÒ sÒ †1Ò dx1).
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1. For each prime p, set †p(x) = exp(�2ôix), which gives an additive character
†p: Qp ! Cð via the isomorphism

QpÛZp
¾�! p-primary part of QÛZ

Let dxp be the Haar measure on Qp that gives
R
Zp

dxp = 1. Denote by °s the quasi-
character x 7! kxks of Qð

p , hence of WQp
. If the ï-adic realization Hï(M) of M corre-

sponds to the representation (õÒN) of the Weil-Deligne group 0WQp
, then define

¢p(MÒ sÒ †pÒ dxp) = ¢(õ 
 °sÒ †pÒ dxp) Ð det
�
�Φp�s j Hï(M)õ(I)Û ker(N)õ(I)

�Ò(4)

where ¢(õ
°s Ò †pÒ dxp) is defined by Deligne’s theory of local constants ([1], Section 4),
since õ 
 °s gives a complex representation of WQp

via an embedding Kï ! C over K
(K = coefficient field of M). Compatibility makes the above definition independent of ï
and the choice of embedding of Kï ! C.

2. At1, if we set †1 = exp(2ôix) for x 2 R, and dx1 to be Lebesgue measure, then
¢1(MÒ sÒ †1Ò dx1) is again dependent only on the Hodge structure of M, and everything
is given in a table in [2], Section 5.3.

2.2. The formula.

THEOREM 1. Assume the formulae for the local epsilon factors given in the preceding
section. Let ö be an irreducible representation of Gal(PQn ÛQ). If dim(ö) is even, then

¢(E
 öÒ 1) = (�1)dö det ö�F (E)
�Ò

where NE is the conductor of E and dö is the dimension of the (�1)-eigenspace of complex
conjugation under ö.

We first prove the following formula holds for each prime p:

¢p(E
 öÒ 1Ò †pÒ dxp) = ¢p(EÒ 1Ò †pÒ dxp)dim ö¢p(öÒ 1Û2Ò †pÒ dxp)2 det ö(pa(E))Ò(5)

where a(E) is the exponent of the conductor of E.
We distinguish two cases.

CASE 1. p is a prime of good reduction for E. By the criterion of Néron-Ogg-
Shafarevich, V‡ is unramified, so as a Weil-Deligne group representation we have N = 0
for E. Therefore, our three motives, E, ö, and E
ö, give only complex representations of
WQp

. We can consequently resolve the matter using Deligne’s theory of local constants,
since the determinant term in Equation (4) is 1.

LEMMA 1. If õ is an unramified, semisimple representation of WQp
, then

¢p(õÒ sÒ †pÒ dxp) = ¢(õ 
 °sÒ †pÒ dxp) = 1
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PROOF. The assumptions show that õ is a direct sum of unramified quasi-characters;
hence, so is õ 
 °s for any s. By the choice of †p and dxp, we have ¢(°Ò†pÒ dxp) = 1 for
any unramified quasi-character, using the definition of the local constants in the abelian
case (see [10], Section 3.2.6). The lemma follows easily.

In our case, we know that Φ acts semisimply on V‡. Hence, by the lemma,
¢p(EÒ sÒ †pÒ dxp) = 1 for any s. Setting s = 1 then gives ¢p(EÒ 1Ò †pÒ dxp) = 1. More-
over, a(E) = 0 since V‡ is unramified. Therefore the right-hand side of Equation 5
reduces to ¢p(öÒ 1Û2Ò †pÒ dxp)2.

Another useful formula from the theory of local constants is found in [10], Sec-
tion 3.4.6.

LEMMA 2. If U and V are WQp
-representations and V is unramified, then

¢(U 
 VÒ †pÒ dxp) = ¢(UÒ †pÒ dxp)dim V det V(pa(U))

In our case we have

¢p(E
 öÒ 1Ò †pÒ dxp) = ¢(E
 ö 
 °1Ò †pÒ dxp)

= ¢(öÒ †pÒ dxp)2 det V‡ 
 °1(pa(ö))

Now, det V‡ 
 °1(pa(ö)) = det V‡(pa(ö))°2(pa(ö)). As the uniformizer p corresponds to a
geometric Frobenius element Φ, and as

det(1 � Φt) = 1 � apt + pt2

on V‡, we have det V‡(p) = det V‡(Φ) = p. Therefore, det V‡ 
 °1(pa(ö)) = pa(ö)kpa(ö)k =
p�a(ö), and so

¢p(E
 öÒ 1Ò †pÒ dxp) = ¢(öÒ †pÒ dxp)2p�a(ö)

= [¢(öÒ †pÒ dxp)°1Û2(pa(ö))]2

Applying Lemma 2, the last term on the right is

¢(ö 
 °1Û2Ò †pÒ dxp)2 = ¢p(öÒ 1Û2Ò †pÒ dxp)2Ò

which establishes Equation 5 in the case of p being a prime of good reduction of E.

CASE 2. p is a prime of bad reduction for E. The ‡-adic representation V‡ gives a
representation (õÒN) of the Weil-Deligne group 0WQp

. Our Galois representation ö gives
the representation (öÒ 0) of 0WQp

, and so V‡ 
 ö gives (õ 
 öÒN 
 1). Thus, we need to
work with the general formula

¢p(E
 öÒ sÒ †pÒ dxp)

= ¢(õ 
 ö 
 °sÒ †pÒ dxp) Ð det
�
�Φp�s j [V‡ 
 ö]õ
ö(I)Û ker(N 
 1)õ
ö(I)

�

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Since, by our assumptions, E and ö have coprime conductors, ö must be unramified.
Hence,

[V‡ 
 ö]õ
ö(I) = (V‡)õ(I) 
 öÒ
and since ker(N 
 1) = ker(N) 
 ö, we have

ker(N 
 1)õ
ö(I) = ker(N)õ(I) 
 ö
Putting the two together, we have the isomorphism

[V‡ 
 ö]õ
ö(I)Û ker(N 
 1)õ
ö(I) ≤ [(V‡)õ(I)Û ker(N)õ(I)] 
 ö
As Φ acts semisimply on both V‡ and ö, we can then break up the determinant term

using the following elementary lemma:

LEMMA 3. If S 2 End(U) and T 2 End(V) are both semisimple linear transforma-
tions, then

det(S 
 T) = det(S)dim V det(T)dim U
Thus, if we abbreviate õ(I) by I, we have

det
�
�Φp�s j [(V‡)IÛ ker(N)I] 
 ö�

= (�p�s)dim ö[dim(V‡)I dim ker(N)I]

Ð det
�
Φ j (V‡)IÛ ker(N)I

�dim ö Ð det(Φ j ö)dim(V‡)I dim ker(N)I 
The last term on the right is

det ö(pdim(V‡)I dim ker(N)I
)

The first two terms combine to give

det
��Φp�s j (V‡)IÛ ker(N)I

�dim ö
We can now use Lemma 2 on ¢(õ 
 ö 
 °sÒ †pÒ dxp) to get

¢(õ 
 ö 
 °sÒ †pÒ dxp) = ¢(õ 
 °sÒ †pÒ dxp)dim ö Ð det ö(pa(õ
°s))
Since °s is unramified, a(õ 
 °s) = a(õ).

Combining everything, we have

¢p(E
 öÒ sÒ †pÒ dxö)=
h¢(õ 
 °sÒ †pÒ dxp) det

�
�Φp�s j (V‡)IÛ ker(N)I

�idim ö

Ð det ö(pa(õ)+dim(V‡)I�dim ker(N)I
)

= ¢p(EÒ sÒ †pÒ dxp)dim ö det ö(pa(E))Ò
using the definition of the conductor (see, e.g., [10], Section 4.1.6) to obtain the last term
on the right. This proves that Equation 5 holds in this case too, since we have

¢p(öÒ 1Û2Ò †pÒ dxp) = 1
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because ö is unramified (Lemma 1).
To complete the proof, we only need to find the constants at1. From Deligne’s table

([2] Section 5.3) we easily read off the following:

¢1(EÒ sÒ †1Ò dx1) = �1Ò
¢1(öÒ sÒ †1Ò dx1) = (i)dö Ò

¢1(E
 öÒ sÒ †1Ò dx1) = (�1)dim ö = ¢1(EÒ sÒ †1Ò dx1)dim ö

Now, assembling all the pieces, we have

¢(E
 öÒ 1)

= ¢1(E 
 öÒ 1Ò †1Ò dx1)
Y
p
¢p(E
 öÒ 1Ò †pÒ dxp)

= ¢1(EÒ 1Ò †1Ò dx1)dim ö

ÐY
p

�¢p(EÒ 1Ò †pÒ dxp)dim ö¢p(öÒ 1Û2Ò †pÒ dxp)2 det ö(pa(E))
�

= ¢(EÒ 1)dim ö¢(öÒ 1Û2)2¢1(öÒ 1Û2Ò †1Ò dx1)�2 det ö[NE]

= (š1)dim ö(š1)2(�1)dö det ö[NE]
Since dim ö is even by assumption, this completes the proof.

3. Computation of root numbers. Throughout, let O denote the ring Zp, P the
maximal ideal of O, Oð the group of units in O, and Ui the group OðÛ1 + P i. To
simplify notation, let G be the profinite group PGL2(Zp), and Gn the finite quotient
PGL2(ZÛpnZ). The kernel of the canonical map G ! Gn will be denoted by Gn. For
n = 0, take G0 = f1g and G0 = G.

3.1. Complex representations of PGL2(Zp). Every (continuous) representation ö of G
in a complex vector space has a finite image, hence factors through some Gn. If a
representation ö factors through Gn, but not through Gn�1, then ö is said to be primitive
modulo P n.

Any representations of G falls into one of four classes: the principal series, the un-
ramified discrete series, or one of the two ramified discrete series. Except for the two
one-dimensional characters and two p-dimensional representations, all these represen-
tations of G are even dimensional. Hence, the root number formula (Theorem 1) is
applicable in almost all cases.

A survey of the representation theory of G can be found in [9].

3.2. Summary of results. The remaining sections are devoted to proving the following
theorem. Recall that we are assuming that NE, the conductor of the elliptic curve E, is
unramified in PQn.

THEOREM 2. From the root number formula (Theorem 1) it follows that

¢(E
 öÒ 1) = +1
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for all even dimensional representations ö except the representations ö = uã of the
principal series and ö = uô of the discrete series. For both of these types,

¢(E 
 öÒ 1) =
��NE

p

�
Ò

where the parentheses on the right denote the Legendre symbol.

Using this theorem, the lower bound for the rank of E(PQn) is a straightforward
computation.

THEOREM 3. If �NE is a quadratic nonresidue modulo p, then

rank
�
E(PQn)

� ½ p2n � p2n�1 � p � 1

PROOF. The assumption that all primes in NE are unramified in PQn means that the
root number formula applies to all the twists of the L-function of E by irreducible even-
dimensional representations of Gal(PQn ÛQ). In that case, the previous theorem together
with our assumption about the quadratic residuacity of �NE shows that all the uã and uô
above that are primitive modulo P i for 1 � i � n will occur in E(PQn)
 C.

For every character ã of Zð
p of conductor P i, uã is an irreducible representation

primitive modulo P i of dimension pi + pi�1. For i = 1, there are (p � 3)Û2 isomorphism
classes of such representations, while for i ½ 2 there are pi�2(p � 1)2Û2 distinct classes
([9], Section 3.4).

Given a character ô on Oð
F of conductor P i

F (F = the unramified extension of Qp,
Oð

F = units in the ring of integers OF, PF = maximal ideal of OF), if we assume ô is
trivial on Zð

p , then uô is an irreducible representation primitive modulo P i of dimension
pi � pi�1. For i = 1, there are (p � 1)Û2 such isomorphism classes, while for i ½ 2 there
are pi�2(p2 � 1)Û2 classes (loc. cit.).

Adding gives the result:

rank
�
E(Kn)

�
½
�p � 3

2

�
(p + 1) +

�p � 1
2

�
(p � 1)

+
nX

i=2

1
2

pi�2(p � 1)2(pi + pi�1)

+
nX

i=2

1
2

pi�2(p2 � 1)(pi � pi�1))

= p2n � p2n�1 � p � 1Ò

which was to be shown.

3.3. The principal series representations. Let ã be a character on Oð with conductor
P m. Any such also gives a character on the subgroup B of upper triangular matrices in
G. For each such character ã, the action of G on

H ã
0 = f† 2 L2(GÒC) j †(bg) = ã(b)†(g)Ò for all b 2 BÒ g 2 Gg
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by right translation gives a unitary representation Uã of G. The sets

H ã
i = f† 2 H ã

0 j † is constant on Gi � cosetsg
for i ½ 0 form an increasing chain of G-invariant subspaces. Denote the corresponding
representations by Uã

i . For i ½ 1, let Hã
i be the orthogonal complement of H ã

i�1 in H ã
i ,

and let the resulting representation be uãÒi. Clearly, for i ½ m, Uã
i is just the induced

representation IndGi

Bi (ã).
All irreducible representations in the principal series are catalogued in the following

theorem.

THEOREM 4 ([9], P. 58). If ã is real-valued, Uã
1 decomposes as the sum of a one-

dimensional and a p-dimensional irreducible representation. For all other characters
ã, if ã has conductor Pm, then the representation uã = Uã

m on H ã
m is irreducible, of

dimension pm +pm�1. For i Ù m, the representations uãÒi are all irreducible, of dimension
pi � pi�2.

Recall the root number formula:

¢(E 
 öÒ 1) = (�1)dö det ö(NE)
Because det ö is either the trivial character or the unique quadratic character ü, which,
for g 2 PGL2(ZÛpnZ), is the map

g 7! det g 2 (ZÛpnZ)ðÛ[(ZÛpnZ)ð]2 ≤ fš1gÒ
the root number formula can be simplified.

LEMMA 4. If det ö is the trivial character then ¢(E
 öÒ 1) = +1. If det ö = ü, then

¢(E 
 öÒ 1) =
��NE

p

�


PROOF. The parity of dö can be found by evaluating det ö at complex conjugation,
since the representation space is then the direct sum of the +1 and �1 eigenspaces.
Clearly, if det ö is the trivial character dö is even. If det ö is ü then dö is the Legendre
symbol ��1

p

�
Ò

since the 2 ð 2-determinant of complex conjugation is �1, modulo squares. Similarly,
ü(NE) is also just the Legendre symbol.

To determine det ö for the principal series it is sufficient to do it for the representations
Uã

i , since we have
det uãÒi = (det Uã

i )(det Uã
i�1)�1(6)

because uãÒi is the orthogonal complement of Uã
i�1 in Uã

i . To check whether det Uã
i is

the trivial character or not, it suffices to evaluate it on the matrix [ê] =
 ê 0

0 1

!
, where

ê 2 Zð
p is a topological generator. Since Uã

i ≤ IndGi

Bi (ã), we can use the formula for the
determinant of an induced representation:
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LEMMA 5 ([1] P. 508). If G is a finite group and õ a representation of a subgroup H,
then

det IndG
H(õ) = [det IndG

H(1)]dim(õ) Ð (detõ) Ž tGHÒ
where tG

H denoted the transfer map from the abelianization Gab of G to the abelianization
Hab of H.

In our case this yields the formula

det Uã
i =

�
det IndGi

Bi (1)
�
(ã Ž tGi

Bi )(7)

The second term on the right is taken care of by the following lemma.

LEMMA 6. The transfer map tGi

Bi is trivial.

We will make use of the following transversal T for the coset space Bi nGi. First, set
the following notation:

M(z) =
 

1 0
z 1

!

M0(z0) =
 

0 1
�1 z0

!

∆(aÒ b) =
 

a 0
0 b

!

Now define T by
T = fM(z)ÒM0(z0) j z 2 OÛP iÒ z0 2 PÛP ig(8)

PROOF OF LEMMA 6. The transfer map

tGi

Bi : (Gi)ab �! (Bi)ab

can be defined as follows. Let s: Bi nGi ! Gi be any section of the canonical projection;
then

tGi

Bi

�
g(Gi)c

�
=

Y
x2BinGi

bgÒx (mod (Bi)c)Ò

where bgÒx 2 Bi is defined by s(x)g = bgÒxs(xg), and where the superscript c denotes the
commutator subgroup. Since (Gi)ab ≤ fš1g, it suffices to compute tGi

Bi for [ê] to see
whether it is trivial or not, since [ê] represents the nontrivial element in the group. For
the section s take the transversal T.

Now,

M(z)∆(êÒ 1) = ∆(êÒ 1)M(êz)(9)

M0(z0)∆(êÒ 1) = ∆(1Ò ê)M0(ê�1z0)Ò(10)

So, b[ê]Òx = ∆(êÒ 1) for x = M(z), and b[ê]Òx = ∆(1Ò ê) for x = M0(z0). Hence,

tGi

Bi ([ê]) = ∆(êÒ 1)pi
∆(1Ò ê)pi�1

= êpi�1
∆(êû(pi)Ò 1)
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ord(z) # in orbit ord(z0) # in orbit
0 pi � pi�1 1 pi�1 � pi�2

1 pi�1 � pi�2 2 pi�2 � pi�3

...
...

...
...

i� 1 p � 1 i � 1 p � 1
i 1 i 1

Table 1: Lengths of orbits for action of [ê].

But êû(pi) = 1 in (OÛP i)ð, so tGi

Bi is indeed trivial.

We now turn to the determination of the character det IndGi

Bi (1). First, consider the
following basis for the representation space

f†: Gi �! C j †(bg) = †(g)Ò for all b 2 BiÒ g 2 Gig

For each x 2 Bi nGi, define †x by

†x(y) =
(

1 if y = x
0 if y 6= x.



The action of [ê] on this basis is easily computed:

[ê]†x(y) = †x(y[ê]) = 1 () y[ê] = x () y = x[ê�1]

This shows that [ê]†x = †x[ê�1 ]. Thus, [ê] permutes the basis elements in the same way
that right translation by [ê�1] permutes the elements of the coset space Bi n Gi. The
transversal T can be used to compute the orbits of [ê�1] in Bi nGi. From Equation 9 and
10,

BiM(z)[ê�1] = BiM(ê�1z)ÒBiM0(z0)[ê�1]

= BiM0(êz0)

So, orbits are formed of all matrices M(z) (resp., M0(z0)) with z (resp., z0) of the same
order. The lengths of the orbits are recorded in Table 1. Thus, [ê�1] acts as a product of
2i� 1 disjoint cycles of even length. As even cycles are odd permutations, we conclude
that det Uã

i [ê] = (�1)2i�1 = �1, which says that det Uã
i is the nontrivial character ü of

Gi.
By Equation 6 it follows that det uã = ü and det uãÒi = 1 for i Ù m. Therefore,

¢(E
 uãÒ 1) =
��NE

p

�
Ò

¢(E
 uãÒiÒ 1) = +1

This proves Theorem 2 for ö an even-dimensional representation in the principal series.
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3.4. On the discrete series representations. Let F be one of the three quadratic exten-
sions F of Qp, and let üF be the corresponding quadratic character on Qð

p . Thus, üF is
trivial on N(Fð), where N denotes the norm map.

Let OF be the ring of integers of F, PF the maximal ideal of OF, Oð
F the group of units

in OF, and Ui
F the group Oð

F Û(1 + P i
F). The function that gives the order of an element in

O (respectively, OF) will be denoted ord (respectively, ordF). We shall use k Ð k = k Ð kF

to denote the absolute value for which the product formula holds. Finally, the nontrivial
automorphism of F over Qp will be denoted by x 7! x̄. With this notation, N(x) = xx̄, for
x 2 Fð.

Starting with a choice of F, the corresponding discrete series can be constructed using
a character ô = ôF of Fð for which ôjQð

p
= üF and for which ô(Oð

F ) is not contained in
R. Irreducible representations appear as subrepresentations of the space

Dô = f† 2 L2(Qð
p ð Fð; C) j 8t 2 Qð

p Ò †(tÒ x) is a finite function of x

and 8ç 2 FðÒ †(çç̄tÒ x) = ô�1(ç)kçk1Û2†(tÒ çx)gÒ
where the term finite function in this case means that there are integers n, m with n � m
such that †(tÒ x) = 0 if x is not in P n

F , and †(tÒ x + ò) = †(tÒ x) whenever ò 2 P m
F . For

future reference the second condition of the definition will be called the transformation
law:

8ç 2 FðÒ †(çç̄tÒ x) = ô�1(ç)kçk1Û2†(tÒ çx)Ò(11)

The action of G on Dô is a complicated business in general. (See [9] for details.) But
for diagonal matrices it is straightforward: for [a] = ∆(aÒ 1), a 2 Oð, [a]†(tÒ x) = †(atÒ x).

For the computations, it is notationally helpful to distinguish between the ramified
and unramified cases.

3.5. The unramified discrete series representations. Let F now be the unramified ex-
tension of Qp. Fixing some nonsquare unit ê in O, say a topological generator, then
F = Qp(

pê). Let ú be a uniformizer. Let N denote the kernel of the norm map. Let ô
have conductor P m

F . Since ô is not real-valued, m ½ 1.
The representation space Dô

i can be decomposed as Dô
i = Dô

iÒevenýDô
iÒodd, ([9] p. 72),

where

Dô
iÒeven = f† 2 Dô j †(tÒ x) = 0 if ord(t) is odd;

supp†(1Ò Ð) � OF;†(1Ò x + ò) = †(1Ò x)Ò 8ò 2 P i
Fg(12)

Dô
iÒodd = f† 2 Dô j †(tÒ x) = 0 if ord(t) is even;

supp†(úÒ Ð) � OF;†(úÒ x + ò) = †(úÒ x)Ò 8ò 2 P i�1
F g(13)

The map †(tÒ x) 7! †(ú�1tÒ x) embeds Dô
i�1 into Dô

i as a unitary G-representation.
Let Dô

i be the orthogonal complement of Dô
i�1 in Dô

i .

THEOREM 5 ([9], P. 79). The representation uô = Dô
m is irreducible of dimension

pm � pm�1. (In this case Dô
mÒodd = f0g.) For i Ù m, Dô

i is irreducible of dimension
pi � pi�2, giving the representations uôÒi.
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We now construct a convenient basis for Dô
i , i ½ m. Note that under the multiplicative

action of N on OF the P i
F are invariant subgroups. Thus, N acts on all the quotients

OFÛP i
F.

PROPOSITION 2. Let Seven be a set of representatives for the N -orbits in

fò 2 OFÛP i
F j ordF(ò) � i� mg

and Sodd be the same for

fò 2 OFÛP i�1
F j ordF(ò) � i � 1 � mg

For each x 2 Seven set

†x(1Ò y) =
(

1 y = x,
0 y 2 Seven n fxg Ò

and for each x 2 Sodd set

†x(úÒ y) =
(

1 y = x,
0 y 2 Sodd n fxg.

Then, for each x 2 Seven (resp., x 2 Sodd), †x extends uniquely to a function in Dô
iÒeven

(resp., Dô
iÒodd). Moreover,

f†x j x 2 Seven [ Soddg
is a basis for Dô

i .

PROOF. First we show that any † 2 Dô
iÒeven (resp., † 2 Dô

iÒodd) is determined by
its values on Seven (resp., Sodd). Once this has been established, the result follows by
showing that

#(Seven [ Sodd) = pi + pi�1 � 2pm�1 = dim Dô
i 

Let † 2 Dô
i . According to the transformation law (Equation 11)

†(ú2ntÒ x) = ô�1(ún)kúnk1Û2†(tÒ únx)Ò
so once †(tÒ x) is known for ord(t) = 0Ò 1, it is known for all t. Moreover, let t 2 Oð and
pick some å 2 Fð such that N(å) = t. Then for † 2 Dô

iÒeven,

†(tÒ x) = ô�1(å)kåk1Û2†(1Ò åx)Ò
so knowing † is the same as knowing †(1Ò x) for all x. Moreover, by the definition of
Dô

iÒeven (Equation 12), one only needs to know the value of †(1Ò x) for x 2 OF, and this
only up to addition by elements of P i

F. As for † 2 Dô
iÒodd, a similar result holds: † is

determined by its values †(úÒ x) for x modulo P i�1
F (Equation 13).

Thus, for † 2 Dô
iÒeven, †(1Ò Ð) can be considered as a function on OFÛP i

F. From the
transformation law with ç 2 N , we have

†(çç̄Ò x) = †(1Ò x) = ô�1(ç)kçk1Û2†(1Ò çx)Ò
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or,
8ç 2 N Ò †(1Ò çx) = ô(ç)†(1Ò x)(14)

In order for †(1Ò x) to be nonzero, ô(ç) must be trivial whenever çx = x + ò for some
ò 2 P i

F, and some ç 2 N . Since çx = x + ò if and only if ç = 1 + òx�1, this condition
is equivalent to ô being trivial on N \ (1 + P i ordF(x)

F ). Now, the ô we are using is not
arbitrary.

LEMMA 7. The assumptions on ô (ôjQð
p

= üF ; ôjOð
F

not real-valued) imply that ô is

never trivial on N \ (1 + P j
F) for j Ú m.

PROOF. If m = 1, we need to show ô is not trivial on N . If it were, then since ô is
trivial on norms (ôjQð

p
= üF), we would have ô being trivial on N Oð. But we have the

morphism of exact sequences:

1 ! N ! Oð
F

N�! Oð ! 1

k
x?? x??

1 ! N ! N Oð N�! (Oð)2 ! 1

Thus, [Oð
F : N Oð] = [Oð : (Oð)2] = 2. But then this says that the image of ôjOð

F
has

order 2, i.e., that ôjOð
F

is real-valued, contrary to assumption. Therefore the lemma is
true for m = 1.

Now assume m Ù 1. It suffices to prove the result for j = m�1 since the N \ (1 +P j
F)

form a decreasing chain of subgroups. So suppose ô is trivial on N \ (1 + Pm�1
F ). Then

ô is surely trivial on [N \ (1 + Pm�1
F )](1 + P m�1) since 1 + P m�1 consists of norms.

Applying the simple group-theoretic lemma below, we see that ô must then be trivial on
N (1 + P m�1) \ (1 + P m�1

F ). We again have a diagram of exact sequences:

1 ! N ! N (1 + Pm�1
F )

N�! 1 + P m�1 ! 1

k
x?? x??

1 ! N ! N (1 + Pm�1)
N�! (1 + P m�1)2 ! 1

But since m ½ 2, 1 + P m�1 = (1 + P m�1)2. So we conclude that the middle vertical arrow
is an isomorphism. Hence, ô us trivial on N (1 +Pm�1

F )\ (1 +P m�1
F ) = 1 +P m�1

F contrary
to the assumption that ô has conductor P m

F . This proves the lemma.

The following easy lemma was used in the above proof:

LEMMA 8. If A, B, C are all subgroups of some larger group, and if C ² B, then

[A \ B]C = AC \ B

Thus, for ô to be trivial on N \ (1 + P i�ordF(x)
F ), we must have i � ordF(x) ½ m, or

equivalently, ordF(x) � i �m. Hence, †(1Ò Ð), as a function on OFÛP i
F is determined by

its values for ordF(x) � i�m. From Equation 14 it is then clear that one can specify the
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function by giving its value on a representative of each N -orbit of such x-classes. This
shows that any † 2 Dô

iÒeven is completely determined by its values on Seven.
The Dô

iÒodd case is entirely analogous. Repeating the argument for †(úÒ x) as a function
on OFÛP i�1

F shows that any † 2 Dô
iÒodd is determined by its values on Sodd.

It remains to count the size of the sets Seven and Sodd.
The group of units Oð

F acts transitively on the set of elements of order j in OFÛP i
F. The

stabilizer of any element is 1 + P i�j
F . Thus, the number of such elements is #Ui�j

F . The
number of elements in each N -orbit is likewise #N i�j, where N k = N Û[N \ (1 +P k

F)].
Dividing, we find that the number of N -orbits is #Ui�j

F Û#N i�j. But using the norm map
it is easy to see that this is #Ui�j, where Ui�j = OðÛ(1 + P i�j). Since #Ui�j = û(pi�j)
(Euler’s û function), the total number of orbits is

i�mX
j=0

û(pi�j) =
iX

k=m
û(pk) = pi � pm�1

Thus,
#Seven = pi � pm�1

The similar calculation for Sodd gives

#Sodd = pi�1 � pm�1
Adding the two cardinalities gives pi + pi�1 � 2pm�1, which is precisely the dimension
of Dô

i .

Again, the root number computations only need be performed on the representations
Uô

i , since for i Ù m,
det uôÒi = (det Uô

i )(det Uô
i�1)�1

To see whether det Uô
i is the trivial character or not, we evaluate it on [ê] = ∆(êÒ 1),

where ê is a topological generator in Oð. For any å 2 Oð
F with N(å) = ê, the action of

[ê] on † 2 Dô
i is given by

[ê]†(tÒ x) = †(êtÒ x) = ô�1(å)†(tÒ åx)
If we let Oð

F act on Dô
i by

†(tÒ x)
å7! †(tÒ åx)Ò 8å 2 Oð

F Ò
the results of the last section make this representation easily identifiable. Take the case
of Dô

iÒeven. We can define Oð
F -invariant subspaces Vj, where

Vj = Spanf†x j x 2 SevenÒ ordF(x) = jg
Now, N acts on each of these through the character ô, and clearly the Oð

F -translates of
any one †x 2 Vj span that Vj. But Oð

F acts on Vj through the quotient Ui�j
F , which has as

exactly dim Vj elements. We can therefore conclude that

Vj ≤ Ind
Uij

F

N i�j (ô)
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Hence, using an analogous argument for Dô
iÒodd, we find that as Oð

F -representations,

Dô
iÒeven ≤

i�mM
j=0

Ind
Ui�j

F

N i�j (ô)

≤
iM

k=m
Ind

Uk
F

N k (ô)(15)

(16)

Dô
iÒodd ≤

i�1M
k=m

Ind
Uk

F

N k (ô)(17)

Call the representation of Oð
F obtained in this way on Dô

iÒeven, (respectively, on Dô
iÒodd)

õôiÒeven, (respectively, õôiÒodd). To get the action of [ê], first choose å with N(å) = ê, and
then let å act through the representationsô�1
õôiÒeven and ô�1
õôiÒeven. Examining these
representations,

ô�1 
 õôiÒeven ≤ ô�1 

² iM

k=m
IndUk

F

N k (ô)
¦

≤
iM

k=m
ô�1 
 Ind

Uk
F

N k (ô)

≤
iM

k=m
Ind

Uk
F

N k (1)

≤
iM

k=m
rUk Ž NÒ(18)

where rUk denotes the regular representation of the group Uk = OðÛ1 + P k. Similarly,

ô�1 
 õôiÒodd ≤
i�1M
k=m

rUk Ž N(19)

The determination of the character det Uô
i is now straightforward. Since ê is primitive

modulo P i, its image in each Uk is a generator. So under the regular representation it
acts as a cycle of length #Uk = (p � 1)pk�1. As this length is even, [ê] acts as an odd
permutation in each rUk . As there are an odd number of rUk ’s, det Uô

i [ê] = �1.
Therefore, det uô is the nontrivial character ü, but all the det uôÒi are the trivial char-

acter. By Lemma 4 this completes the proof of Theorem 2 in the case of the unramified
discrete series.

3.6. The ramified discrete series representations. Let F now be one of the two ramified
extensions of Qp. Choose a uniformizer ú in O such that ú = N(°). Then ordF(°) = 1
and ordF(ú) = 2. The norm map N sends Oð

F onto (Oð)2 and both 1 + P 2i�1
F and 1 + P 2i

F

onto 1 + P i, for i ½ 1. This latter condition can be rewritten as

N(1 + P k
F) = 1 + P [(k+1)Û2] (k ½ 1)Ò
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where [Ð] denotes the greatest integer function. Again, N will denote the elements of
Oð

F of norm 1.
For the character ô of Fð let m be the least positive integer such that ô is trivial on

1 + P 2m�1
F .

LEMMA 9. One always has m ½ 2.

PROOF. If m were 1, ô would be trivial on 1 + PF, and hence on (1 + PF)(Oð)2 since
this latter group consists of norms. But

[Oð
F : (1 + PF)(Oð)2] = [Fð

p : (Fð
p )2] = 2Ò

so then ô(Oð
F ) � R, contrary to assumption.

Starting with the representation space Dô defined in Section 3.4, for each i define the
representation Uô

i on the space ([9] p. 72)

Dô
i = f† 2 Dô j supp†(aÒ Ð) � OF and †(aÒ x + ò) = †(aÒ x)Ò

for all a 2 OðÒ x 2 OFÒ ò 2 P 2i�1
F g(20)

The decomposition into irreducibles follows the same pattern as in the unramified case:
†(tÒ x) 7! †(ú�1tÒ x) embeds Dô

i�1 in Dô
i as unitary G-representations. If Dô

i is the
orthogonal complement of Dô

i�1 in Dô
i , then the following theorem holds.

THEOREM 6 ([9], P. 79). The representation space Dô
m gives an irreducible represen-

tation uô of G of dimension pm � pm�2. For i Ù m, the space Dô
i gives an irreducible

representation uôÒi of dimension pi � pi�2.

REMARK. The dimension of Dô
i is

dim Dô
i = pi + pi�1 � pm�1 � pm�2Ò(21)

as can be seen by adding the dimensions of the spaces Dô
i .

We turn to the construction of a basis for Dô
i . As before, let ê be a topological generator

for Oð.

PROPOSITION 3. Let S be a set of representatives for the N -orbits in

fò 2 OFÛP 2i�1
F j ordF(ò) � 2(i� m) + 1g

Define a set of functions
f†(1Òx)Ò †(êÒx) j x 2 SgÒ

where

†(1Òx)(1Ò y) =
(

1 if y = x,
0 if y 6= x, y 2 S;

(22)

†(1Òx)(êÒ y) = 0 for all y 2 SÒ(23)

and where the †(êÒx) are defined by switching 1 and ê on the lefthand side of the above
formulas. Then the †(1Òx) and †(êÒx) extend uniquely to functions in Dô

i and this set of
functions forms a basis.
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PROOF. We proceed as in the unramified case. Let † be an arbitrary function in Dô
i .

Recalling the transformation law,

†(tçç̄Ò x) = ô�1(ç)kçk1Û2†(tÒ çx)Ò
if one knows †(aÒ x) for all a 2 Oð, x 2 OF, then one knows †. Indeed, since ú = N(°),

†(aúnÒ x) = †(a°n°̄nÒ x) = ô�1(°n)k°nk1Û2†(aÒ °nx)
Moreover, since all squares in Oð are norms, it is clear from the transformation law that
if one knows †(1Ò x) and †(êÒ x) for all x 2 OF, then one knows † completely.

Further, the two conditions

†(aÒ x + ò) = †(aÒ x) for all ò 2 P 2i�1
F Ò(24)

†(aÒ çx) = ô(ç)†(aÒ x) for all ç 2 N Ò(25)

imply that ô(ç) = 1 whenever çx = x + ò for some ò 2 P 2i�1
F , i.e., we need ô trivial on

N \ (1 + P 2i�1�ordF(x)
F ). The following two lemmas are now useful.

LEMMA 10. The character ô is trivial on 1 + P 2m�2
F .

LEMMA 11. The character ô is not trivial on N \ (1 + P 2m�3
F ).

Proofs will follow the completion of the proof of the proposition. The two lemmas
imply that †(aÒ x) = 0 unless 2i� 1� ordF(x) ½ 2m� 2. Rearranging,†(aÒ x) = 0 unless
ordF(x) � 2(i � m) + 1. Putting the pieces together, to know some †(tÒ x), it suffices to
know its values †(1Ò x), †(êÒ x) for each x 2 S.

How many values are these?
If we let the number be c, by a similar argument as in the unramified case,

c = 2
2(i�m)+1X

j=0

#U2i�1�j
F

#N 2i�1�j


Via the norm map, for k ½ 1,

Uk
FÛN k ≤ (Oð)2Û(1 + P [(k+1)Û2])(26)

Substituting and rearranging gives

c = 2
2i�1X

k=2m�2
#(Oð)2Û(1 + P [(k+1)Û2])

Considering that #OðÛ(1 + P j) = (p � 1)pj�1,

c = 2[(1Û2)(p � 1)(pm�2 + 2pm�1 + 2pm + Ð Ð Ð + 2pi�2 + pi�1)]

= pi + pi�1 � pm�1 � pm�2

= dim Dô
i Ò

where we have used Equation 21 for the second last line. This proves the proposition.
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PROOF OF LEMMA 10. First, two little results:
1. N \ (1 + P 2m�1

F ) = N \ (1 + P 2m�2
F )

2. N (1 + P m�1) = N (1 + P 2m�2
F )

The first follows from the diagram

1 ! N \ (1 + P2m�2
F ) ! 1 + P 2m�2

F
N�! 1 + P m�1 ! 1x?? x?? x??

1 ! N \ (1 + P2m�1
F ) ! 1 + P 2m�1

F
N�! 1 + P m ! 1

noting that the last two vertical arrows are injections of subgroups of index p.
The second follows from the diagram

1 ! N ! N (1 + P2m�2
F )

N�! 1 + P m�1 ! 1

k
x?? x??

1 ! N ! N (1 + Pm�1)
N�! (1 + P m�1)2 ! 1

and the fact that (1 + P i)2 = 1 + P i for i ½ 1.
Now to prove the lemma. Since ô is trivial on N \ (1 + P 2m�1

F ), result 1 implies that
ô is trivial on N \ (1 + P 2m�2

F ). Then ô is trivial on

[N \ (1 + P 2m�2
F )](1 + P m�1)Ò

since this latter group consists of norms. Using

[A \ B]C = AC \ B if C � BÒ
this group is N (1 + P m1) \ (1 + P 2m�2

F ). Now result 2 finishes the proof.

PROOF OF LEMMA 11. Suppose ô were trivial on N \ (1 + P 2m�3
F ). Consider the

diagram

1 ! N \ (1 + P2m�3
F ) ! 1 + P 2m�3

F
N�! 1 + P m�1 ! 1x?? x?? k

1 ! N \ (1 + P2m�2
F ) ! 1 + P 2m�2

F
N�! 1 + P m�1 ! 1

One must have

[1 + P 2m�3
F : 1 + P 2m�2

F ] = [N \ (1 + P 2m�3
F ) : N \ (1 + P 2m�2

F )]Ò
which says that the map

N \ (1 + P 2m�3
F ) �! (1 + P 2m�3

F )Û(1 + P 2m�2
F )Ò

which has kernel N \ (1 + P 2m�2
F ), must be surjective. Thus, we have

1 + P 2m�3
F = [N \ (1 + P 2m�3

F )](1 + P 2m�2
F )

By Lemma 10, ô is trivial on the second group on the right side. Therefore our hypothesis
implies that ô is also trivial on 1 + P 2m�3

F , contrary to our choice of m. This proves the
lemma.
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3.7. Computations for the ramified discrete series. As before, it suffices to compute
det Uô

i [ê] for i ½ m. To begin, we calculate the action of [ê] under Uô
i .

[ê]†(1Ò x) = †(êÒ x)(27)

[ê]†(êÒ x) = †(ê2Ò x) = ô�1(ê)†(1Ò êx)(28)

To determine the action of [ê] with respect to our basis, it is helpful to define two
subspaces:

V1 = C-linear span of the †(1Òx)

Vê = C-linear span of the †(êÒx)

On each of these subspaces it is helpful to define an Oð
F -representation as in the unramified

case:

†(tÒ x)
å7! †(tÒ åx)Ò 8å 2 Oð

F 
Reasoning similarly to the unramified case shows both V1 and Vê are isomorphic to

2(i�m)+1M
j=0

Ind
U2i�1�j

F

N 2i�1�j(ô) =
2i�1M

k=2m�2
IndUk

F

N k (ô)(29)

Let x, y 2 S. Applying Equations 27 and 28,

[ê]†(1Òx)(1Ò y) = †(1Òx)(êÒ y) = 0(30)

[ê]†(1Òx)(êÒ y) = ô�1(ê)†(1Òx) (1Ò êy) = õê†(1Òx)(1Ò y)(31)

[ê]†(êÒx) (1Ò y) = †(êÒx)(êÒ y) = éxy(32)

[ê]†(êÒx) (êÒ y) = ô�1(ê)†(êÒx) (1Ò êy) = 0Ò(33)

where õê acts on V1 according to the formula

õê†(1Ò ò) = ô�1(ê)†(1Ò êò)Ò 8ò 2 OFÒ(34)

and where éxy is the Kronecker delta. If õê has the matrix Σê with respect to the †(1Òx),
then the matrix of [ê] is a block matrix of the form

0
BBB@

0 I

Σê 0

1
CCCA Ò

where the blocks are square of size dim V1. The determinant of this matrix is clearly
(�1)dim V1 det Σê . Since

dim Dô
i = pi + pi�1pm�1 � pm�2 = (pm�1 + pm�2)(pi�m+1 � 1)Ò

and since dim V1 is half this number, dim V1 must be even. Hence, (�1)dimV1 = +1. Thus,
we are reduced to calculating the determinant of Σê . To isolate Σê , it is helpful to alter
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the action of [ê] slightly. If after performing [ê], one permutes the basis by interchanging
†(1Òx) and †(êÒx) for all x 2 S, then the above calculation shows that the determinant of
the new action is the same as that of the old. But now the matrix of the action is0

BBB@
Σê 0

0 I

1
CCCA Ò

where again the blocks are square of size dim V1. So V1 is now an invariant subspace
and restricting to this subspace gives [ê] the matrix Σê .

It is easy to identify the representation involved. By Equations 29 and 34, we see that
[ê] acts on V1 through the representation

ô�1 

2i�1M

k=2m�2
Ind

Uk
F

N k (ô) =
2i�1M

k=2m�2
Ind

Uk
F

N k (1)

Now, Ind
Uk

F

N k (1) is the regular representation of the group

Uk
FÛN k ≤ (Oð)2Û(1 + P [(k+1)Û2])Ò

where the isomorphism is given by the norm map (cf. Equation 26). Note that ê on the
left corresponds to ê2 on the right.

Since the group (Oð)2Û(1 + P [(k+1)Û2]) has order (p � 1)p[(k�1)Û2]Û2 for the k we are

considering, ê2 acts as cycle of this length. So the determinant of [ê] on Ind
Uk

F

N k (1) is

(�1)1+(p�1)p[(k�1)Û2]Û2. Hence, we obtain the result that

det Σê =
2i�1Y

k=2m�2
(�1)1+(p�1)p[(k�1)Û2]Û2 = (�1)eÒ

where

e =
2i�1X

k=2m�2

�
1 + (p � 1)p[(k�1)Û2]Û2

�
= 2i � 2m + dim V1

As dim V1 is even, so is e, which shows that det Uô
i , and hence det uô and det uôÒi, are all

the trivial character. By Lemma 4, this completes the proof of Theorem 2.
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