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Operator Algebras with Unique Preduals

Kenneth R. Davidson and Alex Wright

Abstract. We show that every free semigroup algebra has a (strongly) unique Banach space predual.

We also provide a new simpler proof that a weak-∗ closed unital operator algebra containing a weak-∗

dense subalgebra of compact operators has a unique Banach space predual.

1 Introduction

A famous theorem of Sakai [21] showed that C*-algebras that are dual spaces are

von Neumann algebras, and the techniques showed in addition that the predual of

a von Neumann algebra is unique (up to isometric isomorphism). This generalized

a result of Grothendieck [14] that L∞(µ) has a unique predual. Ando [1] showed

that the algebra H∞ of bounded analytic functions on the unit disk also has a unique

predual. More recently, Ruan [20] showed that an operator algebra with a weak-∗
dense subalgebra of compact operators has a unique operator space predual. He

points out that some general Banach space methods of Godefroy [10,11] in fact imply

that such algebras have a unique Banach space predual. Also, Effros, Ozawa, and

Ruan [8] have shown that W*TROs (corners of von Neumann algebras) have unique

preduals as well.

In this note, we show that every free semigroup operator algebra has a unique

predual. A free semigroup algebra is the WOT-closed unital algebra generated by n

isometries with pairwise orthogonal ranges. The prototypes are the non-commuta-

tive analytic Toeplitz algebras, Ln, given by the left regular representation of the free

semigroup F
+
n of words in an alphabet of n letters [5, 18, 19]. The case n = 1 is

just H∞, which follows from Ando’s Theorem. Our proof deals with n ≥ 2. Once

the result is established for Ln, the general case follows from the Structure Theorem

for free semigroup algebras [4] and the result of Effros, Ozawa and Ruan mentioned

above.

It is an open problem whether H∞(Ω) has a unique predual when Ω is a domain

in C
n, even for the bidisk D

2 or the unit ball B2 of C
2. In a number of ways, the

algebras Ln have proven to be more tractable than their commutative counterparts

when it comes to finding analogues of classical results for H∞ in dimension one. This

predual result is another case in point.

A weak-∗ closed operator algebra A is called local if the ideal of compact operators

in A is weak-∗ dense in A. We also provide a new simpler proof that a local operator

algebra has a unique predual, which is inspired by Ando’s proof for H∞. For B(H),
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the manipulations involving approximate identities can be omitted. So this provides

an alternative to invoking Sakai’s Theorem in this case. However, we also provide

another very simple proof for B(H) that relies neither on positivity (like Sakai) nor

on the density of the compacts.

In Banach space theory, there is an extensive literature on the topic of unique

preduals. We refer the reader to a nice survey paper of Godefroy [10]. For example,

if X is a dual space that does not contain an isomorphic copy of ℓ1, then the predual

is unique. Also smoothness conditions on the predual X∗ such as a locally uniformly

convex norm or the Radon–Nikodym property imply that it is the unique predual of

X. These properties do not often apply to algebras of operators.

Another observation due to Godefroy and Talagrand [13] is that Banach spaces

with property (X) have unique preduals. This technical condition will be defined in

the next section. In the proofs of Sakai and Ando mentioned above, a property very

close to this is exploited to establish uniqueness. It implies, for example, that if X

is an M-ideal in X∗∗, then X∗ is the unique predual of X∗∗ [15, p.148]. This is the

case for operator algebras with a weak-∗ dense ideal of compact operators. Recently,

Pfitzner [17] has generalized this by showing that if X∗ is a separable L-summand in

X∗, then X∗ has property (X) and so is the unique predual of X. Another basic class

with unique predual are the spaces of operators B(X,Y ), where X and Y are Banach

spaces with the Radon–Nikodym property due to Godefroy and Saphar [12]. This

includes spaces that are separable dual spaces, and all reflexive Banach spaces.

Nevertheless, in operator algebras, the literature on unique preduals is rather lim-

ited, and the main results have all been mentioned above.

A Banach space X has a strongly unique predual if there is a unique subspace E of

X∗ for which X = E∗. All known examples of Banach spaces with unique predual

actually have a strongly unique predual [10]. This is the case in our examples as well.

2 Background

If X is a dual Banach space, then any predual E sits in a canonical manner as a sub-

space of the dual X∗. Let σ(X, E) denote the weak-∗ topology on X induced from E.

E has two evident properties that are characteristic:

(i) E norms X: sup{|ϕ(x)| : ϕ ∈ E, ‖ϕ‖ ≤ 1} = ‖x‖.

(ii) The closed unit ball of X is compact in the σ(X, E) topology.

The latter property is a consequence of the Banach–Aloaglu Theorem.

Conversely, if E is a subspace of X∗ with these properties, then X sits isometrically

as a subspace of E∗ by (i). By (ii), the closed ball b1(X) := b1(0) of X is weak-∗
compact in E∗. Therefore, by the Krein–Smulyan Theorem, X is weak-∗ closed in E∗.

However, as E is a subspace of X∗, the annihilator of X in E in {0}. Hence X = E∗.

Thus we see that these two properties characterize the preduals of X.

In any weak-∗ topology on X, closed balls br(x) are compact for x ∈ X and r ≥ 0.

Also, addition is always weak-∗ continuous. So finite sums of closed balls are also

universally weak-∗ compact. This can sometimes be used to show that certain func-

tionals are universally weak-∗ continuous, meaning that they belong to every predual

of X.
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Example 2.1 It is very easy to see that ℓ∞ has a unique predual, namely ℓ1. Let en

denote the sequence with a 1 in the n-th coordinate, and 0 elsewhere. And let δn be

the element of ℓ1 that evaluates the n-th coordinate. Observe that

b1(en) ∩ b1(−en) = b1(ker δn).

Hence b1(ker δn)) is universally weak-∗ compact. By the Krein–Smulyan Theorem,

ker δn is universally weak-∗ closed. So δn lies in every predual of ℓ∞. But these func-

tionals span ℓ1, and hence it is the unique predual.

Example 2.2 A similar but somewhat more involved argument shows that B(H)

has a unique predual. Let H be an infinite dimensional Hilbert space, and consider

unit vectors x, y ∈ H. Write xy∗ for the rank one operator xy∗(z) = 〈z, y〉 x. Ob-

serve that

C
y
x := b1(xy∗) ∩ b1(−xy∗)

= {T ∈ B(H) : Ty = T∗x = 0 and ‖T‖ ≤ 1}.

Indeed, Ty ∈ b1(x) ∩ b1(−x) = {0}, and similarly, T∗x = 0, so the result follows.

Pick a unit vector z orthogonal to both x, y. Then a simple calculation shows that

(Cy
x + C

y
z + C

z
x) ∩ b1(B(H)) = {T ∈ B(H) : 〈Ty, x〉 = 0 and ‖T‖ ≤ 1}.

Arguing as before, the functional (yx∗)(T) = 〈Ty, x〉 is universally weak-∗ continu-

ous. But these functionals span the trace class operators S1, the standard predual of

B(H). Therefore, S1 is the unique predual of B(H).

Example 2.3 There are WOT-closed operator algebras that do not have unique

preduals. The basic point is that being an operator algebra is not restrictive. If we put

any WOT-closed subspace of B(H) in the 1, 2 entry of 2 × 2 matrices over B(H),

then we have an operator algebra. Adding in the scalar operators (on the diagonal)

will not essentially change the Banach space characteristics, but will yield a unital

algebra. In particular, let’s put ℓ∞ into B(H) as the diagonal operators and place

it in the 1, 2 entry. Every dual space X∗ with separable predual can be isometrically

imbedded into ℓ∞ as a weak-∗ closed subspace. The weak-∗ and WOT-topologies

coincide on ℓ∞. So this procedure yields a WOT-closed algebra. If we do this for

X∗
= ℓ1, we obtain the desired example.

A series (xn) in a Banach space X is universally weakly Cauchy if

∑

n≥1

|ϕ(xn)| < ∞ for every ϕ ∈ X∗.

If X = E∗, define C(E) to be the set of all functionals ϕ ∈ X∗
= E∗∗ with the property

that for every universally weakly Cauchy series (xn) in X,

ϕ

(

w∗ − lim

n
∑

i=1

xi

)

=

∞
∑

i=1

ϕ(xn).
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Evidently this contains E. But Godefroy and Talagrand [13] show that C(E) contains

every predual of X, and this space does not depend on the choice of the predual E.

They say that X has property (X) if C(E) = E. Evidently this immediately implies

that X has a unique predual.

A similar property was established by Sakai for a von Neumann algebra M. He

shows that a state ϕ on M belongs to M∗ if and only if it satisfies: whenever (Pn) are

pairwise orthogonal projections in M such that SOT–
∑

Pn = I, then
∑

ϕ(Pn) = 1.

In Section 4, we use a similar property to establish unique preduals for algebras with

sufficiently many compact operators.

3 Free Semigroup Algebras

A free semigroup algebra is a WOT-closed unital operator algebra generated by n

isometries S1, . . . , Sn with pairwise orthogonal range. We allow n = ∞. The proto-

type is obtained from the left regular representation of the free semigroup F
+
n of all

words in an alphabet of n letters. The operators Lv, for v ∈ F
+
n , act on the Fock space

ℓ2(F
+
n ), with orthonormal basis {ξw : w ∈ F

+
n}, by Lvξw = ξvw. The algebra Ln gener-

ated by L1, . . . , Ln is called the noncommutative analytic Toeplitz algebra because the

case n = 1 yields the analytic Toeplitz algebra isometrically isomorphic to H∞ and

because these algebras share many similar properties (see [5,6,18,19]). The standard

predual of Ln is the space Ln∗ of all weak-∗ continuous linear functionals on Ln. See

[3] for an overview of these algebras.

Let |w| denote the length of the word w. Note that the operators {Lw : |w| = k} are

isometries with pairwise orthogonal ranges. Thus span{Lw : |w| = k} is isometric to

a Hilbert space.

An element A ∈ Ln is determined by Aξ∅ =
∑

awLw. We call the series
∑

awLw

the Fourier series of A. As in classical harmonic analysis, this series need not con-

verge. However, the Cesàro means do converge in the strong operator topology to A

[5]. The functional ϕw(A) = 〈Aξ∅, ξw〉 reads off the w-th Fourier coefficient, and it

is evidently weak-∗ continuous. The ideal L0
n = ker ϕ∅ consists of all elements with

0 constant term, and is the WOT-closed ideal generated by L1, . . . , Ln. The powers

(L0
n)k are the ideals of elements for which aw = 0 for all |w| < k.

We first deal with the noncommutative analytic Toeplitz algebras, Ln, for n ≥ 2.

This first lemma is motivated by the fact that for a vector v in a Hilbert space H,

⋂

λ∈C

b√
1+|λ|2 (λv) = Cv⊥ ∩ b1.

Lemma 3.1 For n ≥ 2 and k ≥ 0, the ideal (L0
n)k is universally weak-∗ closed in Ln.

Proof Fix a word w ∈ F
+
n . Define Cw =

⋂

λ∈C
b√

1+|λ|2 (λLw). By the remarks in the

previous section, this is universally weak-∗ compact. We will first establish that

Cw = {A ∈ Ln : ‖A‖ ≤ 1 and L∗
wA = 0}.

That is, a contraction A belongs to Cw if and only if A and Lw have orthogonal ranges.

Observe that a contraction A lies in Cw if and only if for all λ ∈ C and all ξ ∈ ℓ2(F
+
n )
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with ‖ξ‖ = 1,

1 + |λ|2 ≥ ‖λLwξ − Aξ‖2

= ‖λLwξ‖2 − 2 Re〈Aξ, λLwξ〉 + ‖Aξ‖2

= |λ|2 − 2 Re〈λL∗
wAξ, ξ〉 + ‖Aξ‖2.

If L∗
wA = 0, this inequality is clearly satisfied, so A belongs to Cw.

Conversely, if A ∈ Cw, by picking the sign of λ appropriately, we obtain that

1 + |λ|2 ≥ |λ|2 + 2|λ||〈L∗
wAξ, ξ〉| + ‖Aξ‖2.

Letting |λ| tend to ∞, we see that 〈L∗
wAξ, ξ〉 = 0 for all ξ. By the polarization identity,

L∗
wA = 0.

It follows that Dk,i :=
⋂

|w|=k−1 Cwi is universally weak-∗ compact for any i. If

A ∈ Ln has a Fourier series A ∼ ∑

avLv and lies in Dk,i , then we claim that av = 0 if

|v| < k or if v has the form wiv ′ for |w| = k − 1. Indeed, if |v| < k, choose any word

v ′, possibly empty, so that |vv ′i| = k. Then since the range of A is orthogonal to the

range of Lvv ′i ,

0 = 〈Aξv ′i , Lvv ′iξ∅〉 =

〈

∑

avξvv ′i , ξvv ′i

〉

= av.

Similarly if v = wiv ′ for |w| = k − 1, then since the range of A is orthogonal to the

range of Lwi ,

0 = 〈Aξ∅, Lwiξv ′〉 =

〈

∑

avξv, ξv

〉

= av.

Conversely, it is evident that any such A has range orthogonal to all ranges Lwi for

|w| = k − 1. So if it is a contraction, it will lie in Dk,i .

Since addition is always weak-∗ continuous, we obtain that

Dk = b1(Ln) ∩ (Dk,1 + Dk,2)

is also universally weak-∗ compact. We claim that Dk = b1((L0
n)k). For A to lie in

either Dk,i , the Fourier coefficients av = 0 for |v| < k. So this persists in the sum, and

hence Dk is contained in b1((L0
n)k).

Conversely, if A ∈ b1((L0
n)k), by [4, Lemma 2.6] there is a factorization A =

∑

|w|=k LwAw, where Aw ∈ Ln. Moreover, this factors as LC where L is the row oper-

ator with coefficients Lw for |w| = k and C is the column operator with coefficients

Aw. Since L is an isometry, we have ‖C‖ = ‖A‖ ≤ 1. Define

B1 =

∑

i≥2

∑

|w|=k−1

LwiAwi and B2 =

∑

|w|=k−1

Lw1Aw1.

Then it follows that both Bi are contractions in (L0
n)k. Moreover, B1 ∈ Dk,1 and

B2 ∈ Dk,2. Therefore, A = B1 + B2 belongs to Dk as claimed.

We have shown that b1((L0
n)k) is universally weak-∗ compact. Thus by the Krein–

Smulyan Theorem, (L0
n)k is universally weak-∗ closed.
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Corollary 3.2 The functionals ϕw, for w ∈ F
+
n , are universally weak-∗ continuous for

all n ≥ 2.

Proof If Ln = E∗, let Ek = ((L0
n)k)⊥ be the annihilator of (L0

n)k in E. Since (L0
n)k

is σ(Ln, E) closed, (L0
n)k

= E⊥
k and (L0

n)k ≃ (E/Ek)∗. Therefore, (L0
n)k/(L0

n)k+1 ≃
(Ek/Ek+1)∗.

Now (L0
n)k/(L0

n)k+1 is isometrically isomorphic to the subspace span{Lw : |w| =

k}. Indeed, the elements of this quotient have the form
∑

|w|=k awLw + (L0
n)k+1. So

the norm is bounded above by

∥

∥

∥

∑

|w|=k

awLw

∥

∥

∥
= ‖(aw)|w|=k‖2.

On the other hand, it is bounded below by

inf
A∈(L0

n)k+1

∥

∥

∥

(

∑

|w|=k

awLw + A
)

ξ∅

∥

∥

∥
=

∥

∥

∥

∑

|w|=k

awξw

∥

∥

∥
= ‖(aw)|w|=k‖2.

Hence this quotient is a Hilbert space.

Since a Hilbert space is reflexive, its dual is Ek/Ek+1. Therefore, Ln/(L0
n)k+1 is

reflexive with dual E/Ek+1. Since the functionals ϕw for |w| ≤ k are continuous on

this quotient, they are all σ(Ln, E) continuous.

Theorem 3.3 Ln has a unique predual for n ≥ 2.

Proof Recall that the standard predual Ln∗ of Ln consists of the weak-∗ continuous

linear functionals of the form [xy∗]. Clearly taking x and y to be in the algebraic span

of {ξw : w ∈ F
+
n} is norm dense in the predual. However, [ξvξ

∗
w] = [ξ∅(L∗

v ξw)∗]. So

the span of the functionals [ξ∅ξ∗w] is norm dense in the predual. Since [ξ∅ξ∗w] = ϕw

is universally weak-∗ continuous by Corollary 3.2, it follows that the standard predual

is universally weak-∗ continuous.

No two preduals are comparable; so it follows that Ln∗ is the strongly unique

predual of Ln.

To deal with the case of a general free semigroup algebra, we require a simple

lemma. The dual space of an operator algebra A is a bimodule over A with the natural

action (AϕB)(T) = ϕ(BTA).

Lemma 3.4 Let P be an orthogonal projection in an operator algebra A. Then for

ϕ ∈ A∗,

‖ϕ‖2 ≥ ‖Pϕ‖2 + ‖P⊥ϕ‖2.

Proof Find A = AP and B = BP⊥ in A of norm 1 so that ϕ(A) and ϕ(B) are real,

and we have the approximations

ϕ(A) = (Pϕ)(A) ≈ ‖Pϕ‖ and ϕ(B) = P⊥ϕ(B) ≈ ‖P⊥‖.

Consider T = cos θA + sin θB. Note that

‖T‖2
= ‖TT∗‖ = ‖ cos2 AA∗ + sin2 BB∗‖ ≤ 1.
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Compute

ϕ(T) = cos θϕ(A) + sin θϕ(B) = (cos θ, sin θ) · (ϕ(A), ϕ(B)).

Choosing θ so (cos θ, sin θ) is parallel to (ϕ(A), ϕ(B)), we obtain

‖ϕ‖2 ≥ |ϕ(T)|2 = ϕ(A)2 + ϕ(B)2 ≈ ‖Pϕ‖2 + ‖P⊥ϕ‖2.

Now the general free semigroup algebra case follows from the structure theory of

these algebras.

Theorem 3.5 Every free semigroup algebra S has a strongly unique predual.

Proof We invoke the Structure Theorem for free semigroup algebras [4]. If S is a

von Neumann algebra, then the result follows from Sakai’s Theorem [21]. Otherwise,

the WOT-closed ideal S0 generated by {S1, . . . , Sn} is proper. Let J =
⋂

k≥1 Sk
0.

This is a WOT-closed ideal of S, and is a left ideal in the von Neumann algebra W

generated by {S1, . . . , Sn}. There is a projection P ∈ S so that J = WP, P⊥H

is invariant for S, and S|P⊥H is completely isometrically isomorphic and weak-∗
homeomorphic to Ln.

Now, define

CP⊥ =
⋂

λ∈C

B√
1+|λ|2 (λP⊥).

We claim CP⊥ = b1(J). By the calculation of C∅ in Ln in Lemma 3.1, P⊥CP⊥P⊥
=

C∅ = {0}. So CP⊥ ⊂ J ∩ B1(Ln) = b1(J). Conversely,

∥

∥

∥

∥

[

A 0

B λI

]∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

A 0

B λI

] [

A∗ B∗

0 λI

]∥

∥

∥

∥

≤
∥

∥

∥

∥

[

A 0

B 0

] [

A∗ B∗

0 0

]
∥

∥

∥

∥

+

∥

∥

∥

∥

[

0 0

0 |λ|2I

]
∥

∥

∥

∥

=

∥

∥

∥

∥

[

A 0

B 0

]
∥

∥

∥

∥

2

+ |λ|2.

Thus, we see that CP⊥ contains b1(J). Whence CP⊥ = b1(J).

Now CP⊥ is universally weak-∗ compact. By the Krein–Smulyan Theorem, J =

span CP⊥ is universally weak-closed. Note, J is a W*TRO, and therefore has a strongly

unique predual [8].

Let E be a predual of S. Then the predual of S/J is

E0 = {ϕ ∈ E : ϕ|J = 0}.

Since S/J is isomorphic to Ln, Theorem 3.3 implies that E0 coincides with the

weak-∗ continuous functionals on Ln. Because the isomorphism of S|P⊥H to Ln

is a weak-∗ homeomorphism, E0 coincide with the weak-∗ continuous functionals

on S|P⊥H.
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The predual of J is E/E0. If ϕ ∈ E, then ‖ϕ+ E0‖ = ‖ϕ|J‖ = ‖Pϕ‖. Clearly every

functional ψ ∈ E0 has ψ = P⊥ψ. Therefore by Lemma 3.4, we see that

‖Pϕ‖2
= ‖ϕ + E0‖2 ≥ ‖Pϕ‖2 + dist(P⊥ϕ, E0)2.

Hence P⊥ϕ ∈ E0 and so Pϕ ∈ E. It follows that E0 = P⊥E and E/E0 ≃ PE. Hence

SP⊥
= (PE)⊥ is also σ(Sn, E) closed.

As PE is the unique predual of SP and P⊥E is the unique predual of SP⊥, both

consisting of the weak-∗ continuous functionals, we deduce that E necessarily coin-

cides with the weak-∗ continuous functionals on S. So there is a strongly unique

predual.

4 Operator Algebras with many Compact Operators

Suppose that A is a local weak-∗ closed unital sub-algebra of B(H), meaning that

A∩K is weak-∗ dense in A. We will provide a new proof that A has a unique predual

using an argument modelled on Ando’s argument [1] that H∞ has a unique predual.

Observe that the weak-∗ density means that (A ∩ K)⊥ = A⊥ in the space S1 of

trace class operators. Thus (A ∩ K)∗ ≃ S1/A⊥ ≃ A∗; and hence (A ∩ K)∗∗ = A.

Thus there is a canonical contractive projection P of the triple dual, A∗, onto the

dual space A∗ given by restriction to A ∩ K, and considered as a subspace of A∗. For

ϕ ∈ A∗, we will write Pϕ =: ϕa and (id−P)ϕ =: ϕs.

In fact by [7], A ∩ K is an M-ideal in A. Therefore, P is an L-projection, meaning

that ‖ϕ‖ = ‖ϕa‖ + ‖ϕs‖. We will not require this fact in our proof.

By Goldstine’s Theorem, the unit ball of A ∩ K is weak* dense in the unit ball

of A. Since the closed convex sets in WOT and SOT ∗ topologies coincide, the ball of

compact operators is also SOT ∗ dense in the ball of A. In particular, there is a net (a

sequence when H is separable) Kn ∈ A ∩ K with ‖Kn‖ ≤ 1 and SOT*–lim Kn = I.

Evidently, this is a contractive approximate identity for A ∩ K.

We require a somewhat better approximate identity. It is shown in [7] that the

existence of a bounded one-sided approximate identity implies the existence of a

contractive two-sided approximate identity Cn with the additional property that

lim sup ‖I −Cn‖ ≤ 1. What we require here is similar, and the argument follows

from tricks using the Riesz functional calculus.

For various interesting examples such as B(H) and atomic CSL algebras (see the

end of this section for definitions), the compact operators in the algebra have a

bounded approximate identity consisting of finite rank projections {Pn}. In this case,

one may take Sn = Cn = Pn in Lemma 4.1, and avoid all of the tricky calculations.

Lemma 4.1 Let A be an operator algebra with a contractive approximate identity

{Kn}. Then A has a contractive approximate identity {Sn} and a bounded approximate

identity {I −Cn} so that

lim
n→∞

∥

∥

[

Sn Cn

] ∥

∥ = 1 = lim
n→∞

∥

∥

∥

∥

[

Sn

Cn

]
∥

∥

∥

∥

.
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Proof It is easy to see that for any fixed i, {K i
n} is a contractive approximate iden-

tity. So if p is a polynomial p with p(0) = 0 and p(1) = 1, then {p(Kn)} is

an approximate identity. By von Neumann’s inequality, it is bounded by ‖p‖∞ =

sup|z|≤1 |p(z)|. Now if f ∈ A(D) satisfies f (0) = 0 and f (1) = 1, then it can be

uniformly approximated by such polynomials. So again von Neumann’s inequality

shows that { f (Kn}) is an approximate identity bounded by ‖ f ‖∞.

Now sin(πz/2) is analytic, and takes (−1, 1) into itself. It is easy to check that

there is a convex open set U containing (−1, 1) on which | sin(πz/2)| < 1. Let

Uε = U ∩{x + i y : |y| < ε}; and let fε be the conformal map of D onto Uε such that

fε(0) = 0 and fε(1) = 1. We define

gε(z) = sin
(

π
2

fε(z)
)

and hε(z) = cos
(

π
2

fε(z)
)

.

Define Sn = gε(Kn) and Cn = hε(Kn). Then {Sn} is a contractive approximate

identity, and {I−Cn} is a bounded approximate identity for A. By the matrix version

of von Neumann’s inequality,

∥

∥

[

Sn Cn

]
∥

∥ ≤
∥

∥

[

gε hε

]
∥

∥ =
∥

∥

√

|gε|2 + |hε|2
∥

∥ ≤
(

1 + 2 sinh2
( πε

2

)) 1/2

.

Similarly,
∥

∥

∥

∥

[

Sn

Cn

]
∥

∥

∥

∥

≤
(

1 + 2 sinh2
( πε

2

)) 1/2

.

Now use a diagonal argument to let ε go to 0 slowly relative to n so as to still be an

approximate identity and obtain the desired norm limit.

We can now prove the uniqueness of preduals.

Theorem 4.2 Let A be a weak-∗ closed unital subalgebra of B(H) with a weak-∗
dense subalgebra of compact operators. Then A has a strongly unique predual.

Proof By the remarks at the beginning of this section, A ∩ K has a contractive ap-

proximate identity. So by Lemma 4.1, we obtain approximate identities {Sn} and

{I − Cn} for A ∩ K as described. In particular, Sn converges SOT ∗ to I and Cn

converges SOT ∗ to 0.

Let E be a subspace of A∗ that norms A, and so that the closed unit ball of A is

σ(A, E) compact. Fix A ∈ A with ‖A‖ = 1. Then the sequence CnACn is bounded,

and converges SOT ∗ to 0. Since this is a bounded net, it has a subnet CαACα that

converges in the σ(A, E) topology to some element B in the ball of A. That is,

lim ϕ
(

CαACα

)

= ϕ(B) for all ϕ ∈ E.

We will show that B = 0. Fix n ≥ 1. Then for ϕ ∈ E with ‖ϕ‖ = 1,
∣

∣ϕ(Sn ± B)
∣

∣ = lim
α

∣

∣ϕ(Sn ±CαACα)
∣

∣

≤ lim
α

∥

∥

∥

∥

[

Sα Cα

]

[

Sn 0

0 ±A

] [

Sα

Cα

]∥

∥

∥

∥

+ ‖Sn − SαSnSα‖

≤ 1 + lim
α

‖Sn − SαSnSα‖ = 1.
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Since E norms A, we conclude that ‖Sn ± B‖ ≤ 1. Letting n go to infinity, this

converges WOT to I ± B. Hence ‖I ± B‖ ≤ 1. Therefore B = 0.

Fix ϕ ∈ E. We have the decomposition ϕ = ϕa + ϕs. Note that A − CαACα =

(1−Cα)A+CαA(1−Cα) is compact because 1−Cα is compact, and this net converges

WOT to A. Hence

ϕ(A) = ϕ(A − B) = lim ϕ
(

A −CαACα

)

= lim ϕa

(

A −CαACα

)

= ϕa(A).

It follows that ϕ = ϕa. This shows that E is contained in A∗. Since it separates points,

E = A∗.

A nest algebra is the set of all operators that are upper triangular with respect to a

fixed chain of invariant subspaces. All nest algebras have a dense subalgebra of com-

pact operators [9]. More generally, a CSL algebra is a reflexive algebra of operators

containing a masa. The lattice of invariant subspaces is a sublattice of the projection

lattice of the masa, hence the name commutative subspace lattice (CSL). The com-

pact operators are weak-∗ dense precisely when the lattice is completely distributive

[16]. When the masa is atomic, one can find an approximate identity for K consist-

ing of finite rank projections in the masa. So in particular, the compact operators in

atomic CSL algebras are weak-∗ dense. See [2] for more details. So we obtain the

following.

Corollary 4.3 Every completely distributative CSL algebra has a unique predual.

The algebra L∞(0, 1) is not completely distributive. But it still has a unique pre-

dual by Grothendieck’s Theorem. We do not know whether every CSL algebra has a

unique predual.

Acknowledgment We thank Gilles Godefroy for some helpful comments on this pa-
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d’analyse fonctionelle de l’École Polytechnique (1980–81).
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