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THE AVERAGE EDGE ORDER 
OF 3-MANIFOLD COLOURED TRIANGULATIONS 

MARIA RITA CASALI 

ABSTRACT. If AT is a triangulation of a closed 3-manifold M with EQ(K) edges and 
FQ(K) triangles, then the average edge order of K is defined to be 

3F0(K) 

In [8], the relations between this quantity and the topology of M are investigated, espe­
cially in the case of no(K) being small (where the study relies on Oda's classification of 
triangulations of S2 up to eight vertices—see [9]). In the present paper, the attention is 
fixed upon the average edge order of coloured triangulations; surprisingly enough, the 
obtained results are perfectly analogous to Luo-Stong' ones, and may be proved with 
little effort by means of edge-coloured graphs representing manifolds. 

1. Introduction and preliminaries. If K is a triangulation of a closed 3-manifold 
M with EQ(K) edges and Fo(K) triangles, then the average edge order of K is defined to 
be 

3F0(K) 

In [8], the relations between this quantity and the topology of M are investigated, 
especially in the case of i^o(K) being small (where the study relies on Oda's classification 
of triangulations of the 2-sphere up to eight vertices). 

The main results are collected in the following proclaim (where Sn and S2 xS1 respec­
tively denote the n-dimensional sphere and the twisted 2-sphere bundle over S1): 

THEOREM I [8]. Let K be any triangulation of a closed connected 3-manifold M. 
Then: 

(a) 3 < fio(K) < 6, equality holds if and only if K is the triangulation of the boundary 
of a 4-simplex. 

(b) For any e > 0, there are triangulations K\ andKi of M such that nç)(K\) < 4.5+e 
and JIQ{K2) > 6 — e. 

(c) If JIQ{K) < 4.5, then K is a triangulation of S3. 
(d) Ifno(K) = 4.5, then K is a triangulation of §3, §2 x S1, or S2xS1. Furthermore, 

in the last two cases, the triangulations can be described. 
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The present paper works within the polyhedral category (P.L.)—for which we refer 
to [11],—and fixes the attention upon coloured triangulations of 3-manifolds, where— 
from now on—we write "«-manifold" instead of "closed connected «-dimensional PL-
manifold". 

Roughly speaking, a coloured triangulation of an «-manifold M is a pseudocomplex 
K {i.e. two simplices may have more than one common face) such that \K\ = M, and 
with the vertices labelled by colours {0,1,2, . . . , n} so that every «-simplex has a vertex 
of each colour. If K contains exactly n + 1 vertices, then it is said to be contracted. Note 
that every «-manifold M admits coloured triangulations: it is sufficient to consider the 
first barycentric subdivision K' of any triangulation K of M, and to label every vertex v 
of K' with the dimension of the simplex a of K whose barycenter is v. 

Surprisingly enough, the results related to the average edge order of coloured trian­
gulations of 3-manifolds are analogous to Luo-Stong' ones: 

THEOREM II. Let K be any coloured triangulation of a closed connected 3-manifold 
M. Then: 

(a) 2 < no{K) < 6, equality holds if and only ifK is the coloured triangulation of 
S3 consisting of two 3-simplices with identified boundaries. 

(b) For any e > 0, there are coloured triangulations K\ and K2 of M such that 
Ho(K\) < 4 + e and fio(K2) > 6 - e. 

(c) Iffio(K) < 4, then K is a coloured triangulation of S3. 
(d) If^o(K) = 4, then K is a coloured triangulation of S3, S2 x S1, S ^ S 1 , or W3 

(where W3 denotes the 3-dimensional real projective space). 
Furthermore, in the last three cases, the induced contracted triangulations are well 

determined. 

The above theorem may be proved with little effort by means of the representation 
theory of PL-manifolds via edge-coloured graphs (see, for details, [3], [1], [7], [12] and 
their bibliography). 

If K is a given coloured triangulation of an «-manifold M, then the 1-skeleton of the 
dual of K is a multigraph (i.e. without loops, but possibly with multiple edges) regular of 
degree «+1, whose edges may be properly coloured by the following rule: if e is the edge 
dual to an (« — l)-face An~l ofK, then e inherits the colour of each vertex v of K such that 
vAn~l is an «-simplex of K. The resulting edge-coloured graph T — T(K) is said to be an 
(« + l)-coloured graph representing M (or an n-gem of M), since the above construction 
can be easily reversed to reobtain the coloured triangulation K = K(T) of the «-manifold 
M. Moreover, T is a bipartite graph if and only if the represented manifold is orientable. 

If (r, 7) is an (« + 1 )-coloured graph, and $ C An is a subset of the colour set with 
cardinality # $ = m < «, then T# will denote the m-coloured graph (V(T), 7 _ 1 (#)) ; each 
connected component of r # will be called a (B-residue, or an m-residue. An h-dipole 
(1 < « < «) of (r,7) is a subgraph 0 of T consisting of two vertices JC, v joined by h 
edges with colours c\, C2,..., ch GÀ„, such that*, y belong to distinct (An—{c\,..., ch})-
residues. The elimination of an «-dipole 0 consists of deleting the subgraph 0 from T 

https://doi.org/10.4153/CMB-1994-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-022-x


156 MARIA RITA CASALI 

and welding the "hanging" edges of the same colour. The inverse process is said to be 
the addition of an /i-dipole 0 . In [2], /i-dipole eliminations and additions (1 < h < ri) 
are proved to be the elementary moves connecting n-gems of the same «-manifold. 

2. Proof of Theorem II. 

PROOF OF (a). Let T = T(K) be the 3-gem associated to the given coloured trian­
gulation of M, and let/? = #V(F) (resp. gy, ij £ A3 = {0,1,2,3}) denote the order of 
r (resp. the number of {ij}-residues of T). By construction, it is easy to check that the 
number of edges of K equals the total number of 2-residues of T, while the number of 
triangles of K equals 2p (i.e. the number of edges of T). 

Thus im(K) - 3 / r Q ^ - 3(2P> 

In [4], the following relation is proved to characterize 3-gems among 4-coloured 
graphs: 

£&>• = £«+/> 
ij i 

where gj (i G A3) denotes the number of (A3 — {/})-residues of T. 
This yields: 

6/7 
(#) Mo(*) -

Eift + p 

Hence, 2 = ^ < n0(K) < & - 6 directly follows from 0 < E/ g- < 2p. 

In particular, fio(K) = 2 means E/g- = 2/?, i.e. every 3-residue of T has order two. 
It is easy to check that this happens if and only if T is the order two 4-coloured graph 
depicted in Figure 1, which is obviously associated to the coloured triangulation of S3 

consisting of two 3-simplices with identified boundaries. 

\ / 

1 

2 

3 

FIGURE 1 

PROOF OF (b). Let K be a coloured triangulation of M, and let e be an edge of K, 
with end-points v/, v7, labelled by colours ij G A3 respectively. The coloured trisection 
of the edge e is the process consisting of a stellar subdivision on e—which has exactly 
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one new /-labelled vertex w;,—followed by a new one on the edge e1 with end-points 
Vi, W(—which has exactly one new 7-labelled vertex Wj. 

The construction of the associated «-gem f = T(K) allows to verify that the edge e 
is represented in f by an (A3 — {/J})-residue#, whose length equals the order of e in K 
(i.e. the number of triangles of K containing it). Figure 2(a) (resp. 2(b)) shows the local 
effect of the described trisection on a single 3-simplex of K containing the edge e (resp. 
on a single vertex of the residue R of f ), while Figure 2(c) shows the global effect of the 
same trisection on the whole residue R of f, assuming the length of R to be six: see [5] 
for more details. 

It is now easy to check that, if a > 2 is the order of the edge e in K, then the coloured 
triangulation K71 of M obtained from K by performing n coloured trisections on e, has 

3(F0(K)+4an) 
P E0(K) + (2a + 2)n 

since each operation increases g< and gj by one and/? by 2a. 

In case a = 2, we have l i n v ^ /io(£") = 4; this ensures the existence of £1 with 
/xo(^i) < 4 + e, since any 3-manifold M admits a coloured triangulation with an order 
two edge (it is sufficient to add a 2-dipole to any 3-gem of M). 

On the other hand, the existence of K2 with /xo(^2) > 6 — e follows from 

lim ( lim ^0(K
n)) = 6 

and from the fact that every 3-manifold M admits a coloured triangulation with an edge 
of arbitrarily high order (it is sufficient to add a suitable sequence of 3-dipoles to any 
3-gem of M). 

PROOF OF (C) AND (d). Let £ be a coloured triangulation of M, and let KSn) be the 
coloured triangulation of M obtained from K by performing n 1-dipole eliminations; 
since the elimination of an /-coloured 1-dipole decreases g< by one and p by two, then: 

W ( i P ) - E0(K)-3n • 

If no(K) < 4 (resp. /i0(£) = 4) is assumed, Mo(£(n)) < 4 (resp. /i0(£
(w)) = 4) 

immediately follows, for every integer n satisfying the trivial condition 0 < 3n < Eo(K). 
Thus, for every / G À3, the number g* may be reduced by means of 1-dipole elimi­

nations, till a 3-gem T of M is obtained, with 
Ho(K(T)) < 4 (resp. Mo(#(f)) - 4) and 

g-= 1, Vi 6 A3. If/? denotes the order of f, then formula (#) gives 
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and p < 8 (resp. p = 8) follows. Hence, in order to establish the thesis, we have to 
study all the possible 3-gems f with g* — 1, V/ G À3 (i.e. all the possible 3-manifold 
crystallizations: see [10]) up to order eight. 

FIGURE 2(a) 

FIGURE 2(b) 
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/ / > < \ 

FIGURE 2(C) 

The case p — 2 (i.e. ^o^K(t)) = 2), has already been considered, and directly pro­
duces M 9* S3. 

As far as p > 4 is concerned, it is necessary to remember that each 3-manifold crys­
tallization satisfies the following properties, for every permutation e = (eo, ei, e2,€3) of 
A3 (see [4]): 

(**) &oei +8e0e2+ge0e3 = 2+p/2. 

If p = 4 (resp. /? = 6) is assumed, then property (**) implies the existence of two 
colours ij G A3 such that gtj = 2 (resp. gij > 2); this obviously implies that any (resp. 
at least one) {/j}-residue of f, R say, has length two. On the other hand, property (*) 
gives gA3-{ij} = gij = 2 (resp. ^ - { y } = gij > 2X and hence each (A3 - {/j})-residue 
of f has length < 4. This ensures that the two multiple edges of R constitute a dipole: 
in fact, if the vertices of R would belong to the same length four (A3 — {/J})-residue, 
then the (unique) (A3 — {/})-residue f ? of f could not be a bipartite graph (against the 
hypothesis that f is a 3-manifold crystallization, which implies ^ ( f *) = S2: see [3] for 
details). Then, since the elimination of the 2-dipole R decreases the order of f, M = S3 

follows by iteration; this completes the proof of (c). 
Let us now assume p — 8. If there exist two colours ij G A3 such that gij > 3, 

then f results to contain two multiple edges (of colours ij) constituting a 2-dipole (by 
properties (*) and (**), via considerations perfectly analogous to the previous ones); this 
yields M = S3. On the other hand, if there exist two colours ij G A3 such that g y = 1, 
then property (**) implies the existence of k G A3 — {ij} such that gik > 3; so, M = S3 

follows, too. The last case to be analyzed, i.e. g y = 2, V/j G A3, admits the following 
subcases: 

1) f contains 2-dipoles (and this again implies M = S3); 
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2) every 2-residue of f has length four (and this occurs only in the crystallization 
of RP3 depicted in Figure 3); 

3) f lacks 2-dipoles, but it contains at least a pair of multiple edges. 
It is now easy to check that the third situation implies the existence of a permutation 

e — (eo,ei,e2,e3) of A3 such that, for every i E A3, one {e/,e/+i}-residue has length 
two and the other one has length six, while every {e,-, e;+2}-residue has length four; thus, 
the only possible crystallizations are depicted in Figure 4 and Figure 5, and respectively 
represent S2 x S1 and S2xS J . 

FIGURE 3 

• v ~r 
\j 

FIGURE 4 

"V -7V 

FIGURE 5 

Hence, apart from the case M = S3, the starting coloured triangulation^ of M = W3 

(resp. M = S2 x S1) (resp. M = S2xS1) induces the coloured triangulation K = K(f) 
associated to the graph of Figure 3 (resp. 4) (resp. 5), which is contracted (since it contains 
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exactly four vertices, as every triangulation associated to a crystallization: see [10]) and 
is well-determined by the graph itself. 

The theorem is now completely proved. • 
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