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Introduction

Dickson's construction [1] of radical and semi-simple classes for certain
abelian categories is a rather straightforward procedure in comparison with the
methods traditionally used in more general situations. In §2 of the present paper
we use a well-known characterization of the lower radical class to obtain, via con-
sideration of maps with accessible images, a similar "homomorphic orthogonality"
characterization of radical and semi-simple classes of associative rings. By sub-
stituting certain other subring properties for accessibility, we are then able to
obtain simple constructions of various types of radical classes, including those
which are strict in the sense first used by Kurosh [3] for groups.

1. Preliminaries

All rings considered are associative unless the contrary is clearly stated. In con-
nection with a non-empty class 9C of rings we use the following notation: L(9E),
U{&) are respectively the lower and upper radical classes defined by 3C\ S(2£) is
the smallest semi-simple class containing 3C. For radical-theoretic terms we refer
the reader to Divinsky's book [2]. If / is an ideal of a ring R we denote this by
writing / o R. A subring A of a ring R is accessible if there is a finite chain

A = A0<i Ai'ii •••<] An<s R.

Let I be a property of subrings, possession of which we indicate by the
symbol < , such that

Ml. if A < B and B < C then A < C;
M2. if A<i B then A < B;
M3. if A < B then f(A) < f(B) for any homomorphism / from B;
M4. if A £ B<i C and A < C, then A < B.

For example we have properties satisfying M1-M4 when A < B means
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(i) A is a subring of B,
(ii) A is transfinitely accessible in B,
(iii) there is a chain

A = Ao £ Xj £ ••• £ /4B = B

where each i4, is a one-sided ideal of y41+,.
Let [A, B] be the set of homomorphisms/:/! -• B with Im(/) < B and for a

non-void class X of rings let

,vl] = { 0 } V I e f }

LEMMA 1.1. For non-void classes X,<W of rings, we have

X £ <& => ^"0 2 ^

COROLLARY 1.2. For an,y non-void class 3£ of rings we have
and ((3C+)°)+ = &+.

2. The standard constructions

In the special case of the situation described in § 1 where 2 means accessibility,
we write X*, 3C* for &°, &+ respectively.

THEOREM 2.1. For any non-void class X of rings, L{3£) = ($**)*.

PROOF. Let SC denote the homomorphic closure of X. Then IA%) = L(2t)
= {R | every non-zero homomorphic image of R has a non-zero accessible subring
e&} [5]. Now X* is the class of rings with no non-zero accessible subrings in
3t, so

= {R| R has no non-zero homomorphic image in

Hence, clearly, (J"*)# £ L($"). Since if* is hereditary, the reverse inclusion holds
also.

PROPOSITION 2.2. Let 3ft, be a radical class, Sf the corresponding semi-simple
class. Then (i) ^ = &*; (ii) 3t = £f*.

PROOF, (i) Sf — 3t* since tf is hereditary and M is homomorphically closed,
(ii) » =

COROLLARY 2.3. 0t = (^*)# and 5^ =

PROPOSITION 2.4. For any non-void class X of rings, (i) X* is a radical class
and (ii) X* is a semi-simple class.
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PROOF, (i) 3C# = {(%#)*)* = L(3£*).
(ii) SC* = {{%*)*)* =

THEOREM 2.5. Let X be a non-void class of rings. Then
(i) S(3T) = (£•#)•
(ii) U(T) = SC*.

PROOF, (i) Let ^ b e a semi-simple class with: 3£ s Sf. Then (&*)* £ ( y #)*
= Sf.

(ii) L/(J")* = s{«) = {%*)*, so i/(ar) = {u{sr>*)# = ((«•*)•)* = sc*.

3. The general constructions

We now revert to consideration of an arbitrary property S satisfying M1-M4.
A radical class 52 is H-strict if for each ring, R,0t(K) contains all subrings A such
that A < R and A eM. A class # is Y.-hereditary if Ae^ whenever A <

PROPOSITION 3.1. Let 01 be a radical class, S? the corresponding semi-simple
class. Then Si is 2,-strict if and only if Sf is JL-hereditary.

We now obtain constructions for Z-strict radical classes analogous to those
of §2. We find it convenient to begin with semi-simple classes.

LEMMA 3.2. Let R be a ring, 0 ¥= J < R, and let I be the ideal of R gener-
ated by J. Then [J, I/K] /- {0} for all K o /, K # /.

PROOF. If J $ K, then 0 # (J + K)/K < I/K, so the natural map / -»ljK
induces a non-trivial element of [J, I/K']. If J ^ K, then 7 is the ideal of R gener-
ated by K, so by Andrunakievich's Lemma ([2], page 107), / 3 E K. If I2 £ K
and I = (J + R^R1 $ K, where 7?1 is the Dorroh extension of R, define
/ : J -> I/K by

/(x) = axb + K if 3 a e #, ft e R1 with aJb $ K

f(x) = xb + K where fcefl1 is such that Jb $ K, if KJR1 s K.

Then for any x,yeJ, we have f(xy) — 0 = f{x)f(y) and / is a non-zero ring
homomorphism. If 72 = (J + KJ)7 $ 7C define/: J -> I/K by

/(x) = ax/? + Kif 3aeT?,fte7 with aJft $ K

/(x) = xft + K where ft e 7 is such that Jft $ 7C, if KJ7 S K.

As before, / is a non-zero ring homomorphism. (This argument is due to Stewart
[8]; see also [9]). But in both cases Im(/)<i I/K: in the first case, I/K is a zeroring
and in the second Im(/) is contained in the annihilator of I/K. Thus/e [J, I IK].

PROPOSITION 3.3. For any non-empty class 2C of rings, 3C® is a 1,-hereditary
semi-simple class.
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PROOF. It is clear that SCa is E-hereditary (and hence hereditary), so we need
only check condition F of [2]. Let R be a ring every non-zero ideal of which has a
non-zero homomorphic image in 2C°, X a member of X and fe [X, R]. Let / be
the ideal of R generated by Im(/). Then if / # 0, I IK belongs to #"° for some
K # / . By Lemma 3.2, [Im(/), IjK] has a non-zero element g. But Im(gf) = Im(#)
< IjK, where/: X -> lm(/) is the map induced by/, so g/e [X, 7/K] = {0}. Hence
g = 0 and we conclude that 7 = 0 and

PROPOSITION 3.4. Let ^ be a 1,-strict radical class, Sf the corresponding semi-
simple class. Then (i) £f = <t° and (ii) 0t = ^ + .

PROOF, (i) If R e 0ta, it has no non-zero S-subrings from 3% and in particular
no non-zero ideals from 0t, so R G ^ . If R $ 0t°, we have A < R for some non-zero
^ e f , since $? is homomorphically closed. But ff1 is Z-hereditary, so R £ if.

(ii) 01 = ^ # = ^ + .

COROLLARY 3.5. / / ^ is a Z-strict radical class, then 31 = (^°) + , and if if
is a t-hereditary semi-simple class, then £?• = (,9>+)°.

PROPOSITION 3.6. For any non-void class X of rings, SC is a L-strict radical
class.

PROOF. 3C+ = ((#"+)°)+ is the radical class whose semi-simple class is {3C+f.

THEOREM 3.7. Let & be a non-void class of rings. Then
(i) (^"°)+ is the smallest "L-strict radical class containing X.
(ii) (^"+)° is the smallest ^.-hereditary semi-simple class containing 3E.
(iii) S"+ is the largest Y-strict radical class with respect to which all members

of 3C are semi-simple.

The proof follows that of Theorem 2.5.

4. Generalizations and limitations

The results of §2 can be transcribed for any category where radical theory is
viable and semi-simple classes are hereditary, e.g. the categories of alternative rings
and groups. The relevant characterization of the lower radical for these two
situations was given in [4] and [7] respectively. The results of §3 can be obtained
for groups by the rearrangement of some results of Kurosh [3]. Kurosh's
proofs not lend themselves to direct translation into ring-theoretic terms.

In any category suitable for radical theory, 3C* is a radical class for any non-
void 2C, but 9C* need not be semi-simple. Some constructions due to Ryabukhin
[6] provide examples of non-associative rings A1,A2,A3 such that the only proper
ideal of Ai+i is At © A,, i = l,2 and A1,A2I(A1® At), A3/(A2 ® A2) are pairwise
non-isomorphic simple rings. Let SC = {A^}. Then (A2 © A2)I(A1 © At © A2),
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^3/(^2 © A2)e3C*, i.e. every non-zero ideal of A3 has a non-zero homomorphic
image in SC*. But from the chain

Ax<\ Av @ Ax*a A2~a A2 © A2<i Az

we see that A3$&*.
In general X* is the upper radical class defined by the hereditary closure of 3C.

References

[1] S. E. Dickson, 'A torsion theory for abelian categories', Trans. Amer. Math. Soc. 121 (1966),
223-235.

[2] N. J. Divinsky, Kings and Radicals (Allen and Unwin, 1965).
[3] A. G. Kurosh, 'Radikaly v teorii grupp', Sibirsk. Mat. Zhurnal 3 (1962), 912-931.
[4] W. G. Leavitt and Y.-L. Lee, 'A radical coinciding with the lower radical in associative and

alternative rings', Pacific J. Math. 30 (1969), 459-462.
[5] Y.-L. Lee, 'On the construction of lower radical properties', Pacific J. Math. 28 (1969),

393-395.
[6] Yu. M. Ryabukhin, 'O nizhnikh radikalakh kolets', Mat. Zametki 2 (1967), 239-244. [Trans-

lated as 'Lower radical rings', Math. Notes 2 (1968), 631-633.]
[7] K. K. Shchukin, 'K teorii radikalov v gruppakh', Sibirsk. Mat. Zhurnal 3 (1962), 932-942.
[8] P. N. Stewart, 'Strict radical classes of associative rings', (to appear).
[9] A. Sulinski, R. Anderson and N. Divinsky, 'Lower radical properties for associative and

alternative rings', / . London Math. Soc. 41 (1966), 417-424.

Department of Mathematics
Institute of Advanced Studies
Australian National University
Canberra, ACT.

https://doi.org/10.1017/S1446788700029116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029116

