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PROOFS OF SOME HYPERELLIPTIC FUNCTION IDENTITIES

MICHAEL D. HIRSCHHORN

We give simple direct proofs of some hyperelliptic function identities conjectured
by R.J. Baxter which arose in his study of the chiral Potts model.

1. INTRODUCTION

In a recent paper [1], Baxter defines

m,n=—oo

$,-(a,/?)= Yl xm2+mn+n2ampn, j = 0,1,2.
m—n=j (mod 3)

He then defines

V{x) = $(l,l), Vj(x) = *j{l,l), 3=0,1,2.

He states various relations involving the V 's, and shows that they follow from results in
[2]. It seems desirable to present proofs of his relations, as direct and simple as possible,
and that is what we shall attempt to do here.

The relations we shall prove are as follows. Q(x) = Y\ (1 - xn) is Baxter's nota-

tion.

(1) V2(x) = V,(x),

(2) V0(x) = V{x3),

(3) V0(x)-Vl(x) = Q(x3

(4) V0(x)3-Vl(x)3 = Q{x

(6) V1(x) = V2(x

and

(7) $(x,x)

We shall see that (1) is trivial, (2) follows easily from the definitions, (4),(5) and (6)
follow easily from (3) and (7) follows easily from (6); (3) is a little harder.
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We have

V2{x)

This establishes

We have

l= H
m—71=2 (mod

n—T7i=l (mod

77i—n=l (mod

3)

3)

3)

VO(X) :

2. PROOFS

xm2+mn+n2 _

7 7 i — n = -

xm
2+mn+n2 _ ^

771 — 7 1 = 1

2 1
™77l +77171+71

^ xm
2+mn+n2

-1 (mod 3)

!""* xn
2+nm+m2

(mod 3)

_ V^ xm
2+mn+n2

77i=n (mod 3)

Put k = (m - n)/3, / - (-2m - n)/3. Then m = k - I, n - - 2 k - l ,

m2 + mn + n2 = 3fc2 + 3kl + 3l2 and

This is (2).

We now prove (3). We have, with w3 — 1, u ^ 1,

Vb(x) - ^ (x ) = V0(x) + {w + LJ^V^X)

= V0(x) + LJV^X) + w2V2(x)

_ X •" iUm-n:l.m
2+mn+n2

a ;m-na .

m+n+p=O

m-na.(m2
+n2+p2)/2

= CTa lf^ amu>mxm2'2 f ] an
w-"i"2/

\ —OO

= CTA II
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= CTa i J ] (l + a3x3n-§) (l + o-3x3n-i)(l - xn)3 1

= Q(x)3/Q(x3) • CTa I J ] (l + a3x3"-§) (l + a-3x3n~i) (l - x3") 1

= Q(x)3/Q(x3).CTo|f;a
3"x3"2/2|

= Q(x)3/Q(x3).

Next we have

V0(x) - Vtix) = Q(x3)2 FT (1 - x3"-2)3(l - x3"-1)3.

Putting x, wi, w2x for x and multiplying the three results gives (noting that V0(x)
contains only powers of x congruent to 0 modulo 3 and Vj. (x) contains only powers of
x congruent to 1 modulo 3)

V0(x)3 - V^x)3 = Q(x3)6 J ] (1 - x9""6)3(l - x9"-3)3

which is (4).
Again from (3) we have

V0(x)-V1(x) = -

- 3 x

It follows that (see note above)

) x 9 ( " 2 + n ) / 2 | .

J

and
^ 9)3/Q(x3)= 3xQ(x9)3/Q(x3).
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The second of these is (6). The first gives, by virtue of (2),

v (*) = nTT £ <"1)n(6n + i)^(3"2+")/2

Q(x)

= 1 + 6

f- { a J] (1 - a V - 1 ) (1 - a"6*3"-2) (l - x3n)
a = l

_3n-2

- X3"-2 1 - X3"-1 / '

which is (5).

Finally,

m—n=l (mod 3)

Put k = (m - ra - l)/3, i = (m + 2 n - l ) / 3 . Then m =
m2 +mn + n2 = 3k2 + 3kl + 3l2 + 3k + 31 + 1 and

(7) now follows from (6).

l, n=-fe
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