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Abstract

The aim of this paper is is to establish Hadamard's type three-circles theorems for fully nonlinear
elliptic and parabolic inequalities.
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1. Introduction

The famous Hadamard three-circles theorem of function theory has been
generalized to solutions of elliptic and parabolic equations and these gener-
alizations have various applications; see [4] and [2], where further references
can be found. The following sharpened version of the boundary point lemma
was established in [6] as a consequence of the Hadamard three-circles theo-
rem for subharmonic functions.

If M is a continuous subharmonic function which attains its maximum in
a ball B = {x; \x\ < a} at y with \y\ = a and if M{r) — sup{«(x); |JC| = r}
then M'_(a) > 0 and

(1)

where x approaches y along the normal at y.
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As soon as Hadamard's three-circles theorem is established for a class of
functions, then a maximum principle like (1) follows.

In this paper we prove Hadamard type theorems for the difference of two
solutions to parabolic equations of the form

(2) ut = f(t,x,u,Du,D2u),

and for the corresponding elliptic equation, where Du and D2u denote the
gradient and the Hessian matrix of u, respectively. The boundary point
lemma (1) can then be used in the usual way [4] to prove uniqueness of the
second and third boundary value problem under very mild assumptions.

2. The theorems

The function / in (2) is said to be uniformly elliptic with respect to u
with the constant K (or just uniformly elliptic) if there exists a positive K
such that

(1) f(t,x, u, Du, (2,) - f(t,x, u,Du,Q2)> /cTr(e, - Q2)

whenever Qx -Q2 > 0 (that is, whenever Q1-Q2 is positive semidefinitive).
This definition of ellipticity has the advantage that it does not require any

smoothness of / .
A function M is said to be a strictly convex function of z on [a, b] if

for all rx<r <r2, [ r , , r2] c [a, b],

In what follows | | denotes the Euclidean norm of a vector or a matrix and

A = {x; 0<Rl < \x\ <R2}.

THEOREM 1 (elliptic case). Given L, K, n there exists a function z: [Rx,
R2] —> R such that if

(i) u and v belong to C2(A) n C(A),
(ii) M > v in A,

(iii) f{x, u{x), Du(x), D2u{x)) > f(x, v(x), Dv(x), D2v{x)) for x €
A,

(iv) f(x,-,p,Q) is decreasing for xeA, peR" , QeR" ,
(v) M(r) = Ma\{u(x) - v(x); \x\ = r}, M is strictly increasing in
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(vi) \f(x,y,P,Q)-f(x,y,p, Q)\ < L(\p -p\ + \Q - Q\) for xeA,

y € R", p € E", Q € R"2, p € R", Q € R"*,
(vii) / is uniformly elliptic with respect to u with the constant K ,

then M is a strictly convex function of z.

REMARK 1. If inequality (iii) is satisfied in B rather than in A and if
the strong maximum applies then M is strictly increasing. Strong maximum
principles for nonlinear elliptic and parabolic equations and inequalities were
established in [1], [3], [5] and [7]. Generally, (v) is an extra assumption;
however this assumption is also needed in the linear case. A similar theorem
holds if M is strictly decreasing. If (v) does not hold, one must consider
intervals where M decreases or increases separately.

REMARK 2. If / is independent of u then (ii) is superfluous.
REMARK 3. If one considers a linear differential operator

n
Lu= J2 auDiJu+biDiu+cu'

instead of / , the assumption (iv) corresponds to c < 0.
REMARK 4. If / does not contain the mixed second order derivatives of

u then the assumption u e C2(A) can be weakened to the mere existence of
the pure second order derivatives.

For the proof we shall use the following.

LEMMA. Let M and z be strictly increasing on [a, b]. Then M is a
strictly convex function of z if and only if the following condition is satisfied:

for every y > 0 and every interval [a, /?] c [a, b] the func-
tion r —> M(r) - yz(r) attains its maximum either at a or
at p.

We omit the fairly straightforward proof of the lemma.
PROOF OF THEOREM 1. We choose z such that

In

and z'(t) positive for positive t. Let us now assume, contrary to what we
want to prove, that M -yz attains its maximum over [a, fi]c[R{, R2] in
(a, /?) for some positive y. Then the function w: x —> u{x)-v(x)-yz(\x\)
attains its maximum over {x; a < \x\ < 0} at an interior point x . At I
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we have Dw = 0, that is, Du - Dv — yDz, and D2w < 0 . Further

0 < f(x, u(x), Du{x), D2u{x)) - f(x, v(x), Dv(x), D2v(x))

<f(x, u(x), Du(x), D2w(x) + yz'\\x\) ^
V M

+ D2v(x) + yz'{\x\) I -± - -±-± 1 I
\\x\ \x\ J J

- f(x, v(x), Dv(x), D2v(x))

<f(x, u(x), Du(x), D2w(x) + yz"(\x\) ^

( S x ~x \ \

-fix, u(x), Du(x), D2v(x) + yz'(\x\) -^ - -i-1

+ f(x, u(x),Du(x),D2v(x) + yz\x) ( ̂  - ^ A
\ Vx> \x\ J

-f(x,v(x),Dv(x),D2v(x))

- Dv(x)\ + yz'(\x\) ( | | + ̂  J

Lz'(\x\) + ^pz'(l*1)} = 0.

This contradiction completes the proof.
A similar theorem holds for parabolic inequalities; however the function

M must be modified. For u, v defined on 5 with S — A x (0, T] let

Mx = Max{w(jc, 0) - v(x, 0), x e ~A),

(4) M2(r) = Ma.x{u{x,t)-v(x,t);\x\ = r,0<t<T}, and

M(r) = Max(Af,, M2(r)).

THEOREM 2 (parabolic case). Given L, K , n there exists a function z
such that if

(i) u and v have continuous second order partial derivatives with respect
to the variables xt, continuous derivative with respect to t in S and
are continuous in S,
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(ii) u > v in S,

(iii) f(t,x, u(t, x), Du(t, x), D2u(t, x)) - u,

>f(t,x,v(t,x),Dv(t,x), D2v(t, x)) - vt

for(t,x)eS,

(iv) f(t,x,-,p,Q) is decreasing for (t,x)eS, p € R" , Q € Rn ,
(v) M defined in (4) is strictly increasing,

(vi) \f(t,x,y,p,Q)-f(t,x,y,p,Q)\ < L(\p - p\ + \Q - Q) for

(t,x)€S, yeR, peR", <2eR"\ pern.", g e l " 2 ,
(vii) / is uniformly elliptic with respect to u with the constant K ,

then M is a strictly convex function of z.

We sketch the proof insofar as it differs from the proof of Theorem 1.
We proceed again indirectly and assume that M - yz attains its maximum
over [a, /?] at some interior point (7, x~) and that this maximum is larger
than the values at the end-points. First we rule out the possibility 7 = 0
indirectly. Clearly u(i, x~) - v(i, x) = u(0, JC) - v(0, x) < Mx and also
«(0, x) - v(0, x) = M(r) > Mx, and consequently M(0 , x) - v(0, x) = M{ .

Now we have

M(f) - yz{r) = u(0,r)-v(0,r)~ yz(r)

= Mi- yz(r) <Ml- yz(a) < M{a) - yz(a),

a contradiction. Hence 7 > 0. We now follow the pattern of the proof of
Theorem 1.

(5) 0 < f(l, x, u(i, x),Du(i, x),D2u(l, x)) - u,(i, x)

- /(7, x, v(l, x), Dv(l, x), D2v{~t, x)) + vt(t, x).

The term ^(7 , JC) - ut(t, x) < 0 (because u - v - yz has a maximum at
(7, jc)) and consequently vt - u, can be omitted in (5) and the rest is similar
to the proof of Theorem 1.
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