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Abstract

The aim of this paper is is to establish Hadamard’s type three-circles theorems for fully nonlinear
elliptic and parabolic inequalities.
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1. Introduction

The famous Hadamard three-circles theorem of function theory has been
generalized to solutions of elliptic and parabolic equations and these gener-
alizations have various applications; see [4] and [2], where further references
can be found. The following sharpened version of the boundary point lemma
was established in [6] as a consequence of the Hadamard three-circles theo-
rem for subharmonic functions.

If u is a continuous subharmonic function which attains its maximum in
aball B={x;|x| <a} at y with |y| =a and if M(r) =sup{u(x); |x|=r}
then M’ (a) >0 and

. u(x) — uy)
(1) llmsup—lT_—yl—s—Ml_(a)<0,

where x approaches y along the normal at y.
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As soon as Hadamard’s three-circles theorem is established for a class of
functions, then a maximum principle like (1) follows.

In this paper we prove Hadamard type theorems for the difference of two
solutions to parabolic equations of the form

) u, = f(t,x,u, Du, D'u),

and for the corresponding elliptic equation, where Du and D*u denote the
gradient and the Hessian matrix of u, respectively. The boundary point
lemma (1) can then be used in the usual way [4] to prove uniqueness of the
second and third boundary value problem under very mild assumptions.

2. The theorems

The function f in (2) is said to be uniformly elliptic with respect to u
with the constant x (or just uniformly elliptic) if there exists a positive x
such that

(D S(t,x,u,Du, Q))— f(t,x,u,Du, @)) >k Tr(Q, — Q)

whenever Q, —Q, > 0 (that is, whenever Q, —Q, is positive semidefinitive).
This definition of ellipticity has the advantage that it does not require any
smoothness of f .
A function M is said to be a strictly convex function of z on [a, b] if
forall ry <r<r,, [r,,r,]Cla, bl,

2(ry) - 2(r) 2(r) - 2(r,)
2(ry) —z(ry T M2y 20y

In what follows | | denotes the Euclidean norm of a vector or a matrix and

M(r) < M(r))

A={x;0< R, <|x| <R,}.

THEOREM 1 (elliptic case). Given L, k, n there exists a function z: [R,
R,]1— R such that if

(i) u and v belong to C*(4)n C(A),
(1) u>vin A,
(it) f(x, u(x), Du(x), D*u(x)) > f(x, v(x), Dv(x), D*v(x)) for x €
A,
(iv) f(x,-,p, Q) is decreasing for x€ A, peR", Qe]R"z,
(v) M(r) = Max{u(x) — v(x); |x| = r}, M is strictly increasing in
[R,, R,],
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(VI) If(x’ y,DP, Q)_f(x’yzs’ﬁ’a)l S L(lp_1—21+|Q_§|) for XGA,
yeR", peR”, QeR", peR”, QeR",
(vil) f is uniformly elliptic with respect to u with the constant «,

then M is a strictly convex function of z.

REMARK 1. If inequality (iii) is satisfied in B rather than in 4 and if
the strong maximum applies then M is strictly increasing. Strong maximum
principles for nonlinear elliptic and parabolic equations and inequalities were
established in [1], [3], [5] and [7]. Generally, (v) is an extra assumption;
however this assumption is also needed in the linear case. A similar theorem
holds if M is strictly decreasing. If (v) does not hold, one must consider
intervals where M decreases or increases separately.

REMARK 2. If f is independent of u then (ii) is superfluous.

REMARK 3. If one considers a linear differential operator

n
Lu= ) a,D, u+bDu+cu,
i\ =1

instead of f, the assumption (iv) corresponds to ¢ < 0.

REMARK 4. If f does not contain the mixed second order derivatives of
u then the assumption u € C2(A) can be weakened to the mere existence of
the pure second order derivatives.

For the proof we shall use the following.

LEMMA. Let M and z be strictly increasing on [a,b). Then M is a
strictly convex function of z if and only if the following condition is satisfied:

Jor every y > 0 and every interval [a, B] C [a, b] the func-
tion r — M(r) — yz(r) attains its maximum either at a or

at B.

We omit the fairly straightforward proof of the lemma.
PrOOF OF THEOREM 1. We choose z such that

2'() + % (1 + 2—;’-) Z() =0,

and Z'(¢) positive for positive 7. Let us now assume, contrary to what we
want to prove, that M — yz attains its maximum over [a, 8] C [R,, R,] in
(a, B) for some positive y. Then the function w: x — u(x)—-v(x)—yz(|x|)
attains its maximum over {x; a < x| £ B} at an interior point X. At X
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we have Dw =0, thatis, Du — Dv = yDz, and D*w < 0. Further
0< f(%, u(X), Du(X), D*u(X)) - f(X, v(% ) Dv(x>, D*v(%))

< f(f, u(%), Du(X), D'w(®) + y2" (%)) -4 | |

2 ' 5,-. Yif.
+ D v(X) + vz (|X]) Tf—jl - |7_|3j))
- f(x, v(%), Dv(X), D*v(X))
_ _ _ > )_Cf
<f (x, u(@), Du(X), D*w(x) + yz" (|%|) |f_|21

X.X.
+D? v(X) +yz’ |x|)( —|—3’))

(Y u(x), Du(x), Dv(x)+yz (=) ( 3j )
J;

%]
+ | X, u(x), Du(x), D? v(X)+ yz (x) (l—_—‘ %))

lxl =

=l =

%l
J

- f(%, v(%), Dv(%), D'v(X))

399 (D Ww(X) + 72" (%)) I"l‘f)

L{pur) - Do)+ 725D (Yt + ) }

<y{xz”<|fn+Lz'(|f|> 2 |>}

This contradiction completes the proof.

A similar theorem holds for parabolic inequalities; however the function
M must be modified. For u, v defined on S with S =4 x (0, T] let

M, = Max{u(x, 0) — v(x, 0), x € A},
(4) M,(r) = Max{u(x, t) —v(x, t); |x|]=r,0<t< T}, and
M(r) = Max(M, , M,(r)).

X

THEOREM 2 (parabolic case). Given L, K, n there exists a function z
such that if

(i) u and v have continuous second order partial derivatives with respect
to the variables x,, continuous derivative with respect to t in S and
are continuous in S,
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(i) u>v in S,
(iil) f(z, x, u(t, x), Du(t, x), D’u(t, x)) — u,
> f(t, x, v(t, x), Du(t, x), D*u(t, x)) -,
Jor(t,x)€eS,

(iv) f(t,x,-,p, Q) isdecreasing for (t,x)eS, peR”, Q¢ R"z,
(v) M defined in (4) is strictly increasing,
(vi) 1f(t,x,y,p,Q) = ft,%,y,7, Q)| < Lllp - P| +1Q - Q) for
(t,x)eS,yeR, peR", QeR” ,5eR", Qek",
(vil) f is uniformly elliptic with respect to u with the constant x,
then M is a strictly convex function of z.

We sketch the proof insofar as it differs from the proof of Theorem 1.
We proceed again indirectly and assume that M — yz attains its maximum
over [a, B] at some interior point (7, X) and that this maximum is larger
than the values at the end-points. First we rule out the possibility 7 = 0
indirectly. Clearly u(f,X) — v(f,X) = u(0,X) — v(0,X) < M, and also
u(0,x)-v(0,X) = M(F) > M|, and consequently u(0,X)—-v(0,X)=M,.

Now we have

M(F) —yz(F) = u(0,7) —v(0, F) ~ yz(7)
=M, -yz(F) < M, — yz(a) < M(a) - yz(a),

a contradiction. Hence 7 > 0. We now follow the pattern of the proof of
Theorem 1.

(5) 0< f(I, %, u(, %), Du(l, X), D'u(f, X)) — u,(I, X)
- f@, %, v(, %), Dv(I, X), D’v(i, X)) +v,(, %).
The term v,(f, X) — u,(f, X) < 0 (because u — v — yz has a maximum at

(f, X)) and consequently v, —u, can be omitted in (5) and the rest is similar
to the proof of Theorem 1.
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