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ARITHMETIC MEAN OF VALUES AND VALUE AT MEAN
OF ARGUMENTS FOR CONVEX FUNCTIONS
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Abstract

We give here some extensions of inequalities of Popoviciu and Rado. The idea is to use
an inequality [C. P. Niculescu and L. E. Persson, Convex functions. Basic theory and
applications (Universitaria Press, Craiova, 2003), Page 4] which gives an approximation
of the arithmetic mean of n values of a given convex function in terms of the value at the
arithmetic mean of the arguments. We also give more general forms of this inequality by
replacing the arithmetic mean with others. Finally we use these inequalities to establish
similar inequalities of Popoviciu and Rado type.
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1. Introduction

For x1, . . . , xk > 0, k ≥ 1 we put

Ak =
x1 + · · · + xk

k
, Gk(x1 . . . xk)

1/k .

Inequalities involving the arithmetic mean and the geometric mean are of great interest.
We discuss here the inequality of Popoviciu(

An

Gn

)n

≥

(
An−1

Gn−1

)n−1

≥ · · · ≥

(
A1

G1

)1

= 1 (1.1)

and the inequality of Rado

n(An − Gn)≥ (n − 1)(An−1 − Gn−1)≥ · · · ≥ 1 · (A1 − G1)= 0. (1.2)

1Department of Mathematics, Valahia University of Targoviste, Bd. Unirii 18, Targoviste, Romania;
e-mail: cmortici@valahia.ro.
c© Australian Mathematical Society 2008, Serial-fee code 1446-1811/08 $16.00

137

https://doi.org/10.1017/S1446181108000199 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000199


138 Cristinel Mortici [2]

For proofs and other consequences, see [1]. We prove that the inequality (1.1) remains
true if we replace Ak with

Ap
k =

(
x p

1 + · · · + x p
k

k

)1/p

, p ≥ 1.

Moreover, we prove that (1.2) holds also if we replace the geometric means Gk with
other means.

One way to attack these inequalities is to use a nice inequality related to convex
functions (for example [2, Page 4]) denoted here by (1.3).

Let I ⊆R be an interval. We say that a function f : I →R is convex if for all
x, y ∈ I and for each α ∈ [0, 1],

f (αx + (1− α)y)≤ α f (x)+ (1− α) f (y).

The function f is called concave if the above inequality holds with reverse sense.
If f is convex, then for

α =
n − 1

n
, x =

x1 + · · · + xn−1

n − 1
, y = xn

we deduce that

f

(
x1 + · · · + xn

n

)
≤

1
n

f (xn)+
n − 1

n
f

(
x1 + · · · + xn−1

n − 1

)
.

Therefore

n

[
f (x1)+ · · · + f (xn)

n
− f

(
x1 + · · · + xn

n

)]
≥ (n − 1)

[
f (x1)+ · · · + f (xn−1)

n − 1
− f

(
x1 + · · · + xn−1

n − 1

)]
. (1.3)

In other words, the sequence

an = n

[
f (x1)+ · · · + f (xn)

n
− f

(
x1 + · · · + xn

n

)]
, n ≥ 1 (1.4)

is monotonically increasing, where (xn)n≥1 ⊂ I is arbitrarily given.
The inequalities (1.1)–(1.2) follow now by applying (1.3) to f (x)=− ln x and

f (x)= ex respectively.

2. The results

We give some general results concerning the sequence (1.4), then we study some
particular cases to obtain results of the form (1.1) and (1.2). We use the following
well-known result.
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LEMMA 2.1. Let I, J ⊆R be intervals. Assume that φ : I → J is convex and
g : J →R is convex and monotonically increasing. Then g ◦ φ : I →R is convex.

Then we have the following result.

THEOREM 2.2. Let g : I ⊆ (0,∞)→R be convex and increasing and let (xn)n≥1
⊆ (0,∞). Then for every p ∈ (−∞, 1]r {0}, the sequence

an = n

[
g(x1)+ · · · + g(xn)

n
− g

((
x p

1 + · · · + x p
n

n

)1/p)]
, n ≥ 1

is increasing.

PROOF. According to Lemma 2.1, the function f (x)= g(x1/p), x > 0 is convex,
because φ(x)= x1/p is convex for p ∈ (−∞, 1]r {0}. Thus (1.4) becomes

an = n

[
g(x1/p

1 )+ · · · + g(x1/p
n )

n
− g

((
x1 + · · · + xn

n

)1/p)]
and the conclusion follows by replacing xk with x p

k . 2

An interesting case is g(x)= x and p =−1 in Theorem 2.2. The respective
sequence becomes

an = n

[
x1 + · · · + xn

n
−

(
x−1

1 + · · · + x−1
n

n

)−1]
.

Now, using the monotony of this sequence, we obtain the inequality

n(An − Hn)≥ (n − 1)(An−1 − Hn−1)≥ · · · ≥ 1 · (A1 − H1)= 0,

where Ak and Hk are the arithmetic and harmonic means respectively:

Ak =
x1 + · · · + xk

k
, Hk =

k

1/x1 + · · · + 1/xk
, 1≤ k ≤ n.

For p ∈ (−∞, 1]r {0} and y1, . . . , yk > 1, consider the mean,

Wk = exp
[(

lnp y1 + · · · + lnp yk

k

)1/p]
,

to obtain the following result.

COROLLARY 2.3. For any sequence (yn)n≥1 ⊂ (0,∞),

n(An −Wn)≥ (n − 1)(An−1 −Wn−1)≥ · · · ≥ 1 · (A1 −W1)= 0. (2.1)

PROOF. We apply Theorem 2.2 to g(x)= ex . Thus the sequence

an = n

[
ex1 + · · · + exn

n
− exp

(
x p

1 + · · · + x p
n

n

)1/p]
, n ≥ 1

is increasing. The result follows by writing exk = yk , 1≤ k ≤ n. 2
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For y1, . . . , yk > 1 write

Vk = exp[(ln y1 · · · · · ln yk)
1/k
]

to give the following result.

COROLLARY 2.4. For any sequence (yn)n≥1 ⊂ (1,∞),

n(An − Vn)≥ (n − 1)(An−1 − Vn−1)≥ · · · ≥ 1 · (A1 − V1)= 0.

PROOF. The result follows from (2.1) by taking the limit as p→ 0. Indeed, it is known
that

lim
p→0

(
α

p
1 + · · · + α

p
n

n

)1/p

= (α1 · · · αn)
1/n

so limp→0 Wk = Vk , for all 1≤ k ≤ n. 2

Further we use the following well-known result.

LEMMA 2.5. Let I, J ⊆R be intervals. Assume that φ : I → J is concave and
g : J →R is convex and monotonically decreasing. Then g ◦ φ : I →R is convex.

Now by applying (1.4) for the function g ◦ φ, we obtain the following result.

THEOREM 2.6. Let I, J ⊆R be intervals and assume that φ : I → J is concave and
g : J →R is convex and monotonically decreasing. Then the sequence

an = n

[
g(φ(x1))+ · · · + g(φ(xn))

n
− g

(
φ

(
x1 + · · · + xn

n

))]
, n ≥ 1 (2.2)

is increasing.

First let us put g(x)=− ln x in (2.2), assuming that φ > 0. Hence

an = n

[
ln φ

(
x1 + · · · + xn

n

)
−

ln φ(x1)+ · · · + ln φ(xn)

n

]
= n ln

φ(x1 + · · · + xn)/n
n
√
φ(x1) · · · · · φ(xn)

.

Thus we proved the following result.

COROLLARY 2.7. Let I ⊆R be an interval and assume that φ : I → (0,∞) is
concave. Then the sequence

an =

[
φ(x1 + · · · + xn)/n
n
√
φ(x1) · · · · · φ(xn)

]n

, n ≥ 1 (2.3)

is increasing.
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For p ∈R r {0} and x1, . . . , xk > 0 we put

Ap
k =

(
x p

1 + · · · + x p
k

k

)1/p

.

COROLLARY 2.8. Let p ≥ 1 and x1, . . . , xn > 0. Then(
Ap

n

Gn

)n

≥

(
Ap

n−1

Gn−1

)n−1

≥ · · · ≥

(
Ap

1

G1

)1

= 1. (2.4)

PROOF. Let us take in (2.3) φ(x)= x1/p, with p ≥ 1. Obviously, φ is concave and
(2.3) becomes

an =

 ((x1 + · · · + xn)/n)1/p

n
√

x1/p
1 · · · x1/p

n

n

.

By replacing xk with x p
k , we obtain that the sequence

an =

[
((x p

1 + · · · + x p
n )/n)1/p

n
√

x1 · · · · · xn

]n

=

(
Ap

n

Gn

)n

, n ≥ 1

is increasing. Hence (2.4) is true. 2

Finally, note that T. Popoviciu’s inequality is the particular case with p = 1 of (2.4).
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