
Statistical Challenges in 21st Century Cosmology
Proceedings IAU Symposium No. 306, 2014
A. F. Heavens, J.-L. Starck & A. Krone-Martins, eds.

c© International Astronomical Union 2015
doi:10.1017/S1743921314010916

Cluster strong lensing: a new strategy for
testing cosmology with simulations

M. Killedar1,2,3, S. Borgani2,3,4, D. Fabjan6,7, K. Dolag1,5,
G. Granato2,3 M. Meneghetti8,9,10, S. Planelles2,3 and

C. Ragone-Figueroa3,11
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Abstract. Comparisons between observed and predicted strong lensing properties of galaxy
clusters have been used to claim either tension or consistency with ΛCDM cosmology. However,
standard approaches to such tests are unable to quantify the preference for one cosmology over
another. We advocate a Bayesian approach whereby the parameters defining the scaling relation
between Einstein radii and cluster mass are treated as the observables. We demonstrate a method
of estimating the likelihood for observing these parameters under the ΛCDM framework, using
the X-ray selected z > 0.5 MACS clusters as a case in point and employing both N-body and
hydrodynamic simulations of clusters. We account for cluster lens triaxiality within the modelling
of the likelihood function. Cluster selection criteria is found to play as important a role as the
uncertainty related to the description of star formation and feedback.
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1. Introduction
Galaxy clusters gravitationally lens and distort the images of background galaxies; their

lensing efficiency is a powerful probe of cosmology with the ability to constrain structure
formation parameters. The earliest comparisons between simulated clusters and the ob-
served frequency of arc-like lensed galaxy images in a cluster sample revealed an order of
magnitude difference between the observations and ΛCDM predictions (Bartelmann et al.
(1998), Li et al. (2005)). This discrepancy was dubbed the ‘arc-statistics problem’, and
now is part of a broader study of cluster concentrations and strong lensing efficiencies.
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In the present work, we take the well-studied z > 0.5 MACS clusters as our case in
point (Horesh et al. (2010), Meneghetti et al. (2011), Zitrin et al. (2011), Waizmann
et al. (2014)). We propose a Bayesian approach to the strong lensing cosmological test,
employing clusters modelled within ΛCDM hydrodynamic simulations which include the
effects of stellar and AGN feedback. Massive clusters have been modelled in four different
flavours of smooth-particle hydrodynamic (SPH) simulations: with only dark matter
(DM); including non-radiative hydrodynamics (NR); including cooling, star formation
and supernova feedback (CSF); and further including AGN feedback (AGN). For more
details on the simulations, see Planelles et al. (2014).

2. ΛCDM strong lensing likelihood
Strong lensing efficiencies, as characterised by the Einstein radii, scale well with the

mass of clusters at large overdensities (Killedar et al. (2012)). If the z > 0.5 MACS
sample are, in fact, stronger lenses than predicted by the ΛCDM model, they will have
larger Einstein radii for a given total mass at low overdensities (or a proxy thereof).

A Bayesian approach to cosmological parameter estimation is advocated, in which one
determines the relative preference of two hypothetical choices of cosmological parameters,
C1 and C2 , in light of the data D, by calculating the likelihood ratios: L(D|C1)/L(D|C2),
and subsequently multiplying by their relative priors. The initial aim is to calculate the
likelihood of observing the Einstein radii of the high-z MACS sample under one chosen
hypothesis: ΛCDM{ΩΛ ,0 = 0.76; ΩM ,0 = 0.24; Ωb,0 = 0.04; h = 0.72; σ8 = 0.8; P (k) ∝ kn

with n = 0.96}, with the aid of mock samples from numerical simulations. The likelihood
function related to the observables (θE and M500) is intractable because there are a finite
number of objects from the simulations. Instead, we assume a power-law relation
between the strong lensing and mass:
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and use the MCMC sampler emcee (Foreman-Mackey et al. (2013)) to infer the joint
posterior, P (α,β) while marginalising out the intrinsic scatter (Hogg et al. 2010). We
average over the posteriors of many mock samples and re-interpret this as a ‘likelihood
function’: the probability that one would observe the scaling relation {α,β} under the
hypothesis that ΛCDM is the true description of cosmology. From the MACS clusters, we
obtain the posterior P (α,β) which is interpreted as a single ‘data point’. We calculate the
likelihood, L, of observing {α,β} by convolving the ‘data-point’ and ‘likelihood function’.

Note that one cannot comment on whether the likelihood is large or small. One cannot
use this value to claim ‘consistency’ or ‘tension’ with ΛCDM. However, if the same process
is repeated for simulations under a different cosmological model then the Bayes factor
can be calculated and, after accounting for priors, it may (or may not) reveal a preference
for one of the cosmologies, in light of this data.

3. Cluster Selection
In the left panel of Fig. 1 we show the relation between the Einstein radii and the

cluster mass M500. Measuring the strong lensing likelihood using z = 0.5 clusters from
the AGN simulations that exceed the X-ray flux threshold, we find: L = 0.27.
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Figure 1. Left: Einstein radii, θE ,eff , plotted as a function of M500 . The range of Einstein radii
for each z = 0.5 cluster from the AGN simulations is shown by a box-plot. The circles represent
the MACS z > 0.5 clusters (Mantz et al. (2010)). The thick line marks the maximum a-posteriori
fit to observational data, while the thin lines mark the fit to 20 randomly chosen mock samples
from simulations. Middle: 1-σ and 2-σ constraints on parameters of the strong lensing - mass
relation given the MACS z > 0.5 cluster data (contours), with a maximum a posteriori fit
marked by a filled circle. Overplotted in dots are the best fits to 80 mock observations of the
simulated cluster sample. A typical 1-σ error is shown as an ellipse. Right: Constraints from the
MACS z > 0.5 cluster data are the same as in the middle panel, but the dark filled circle and
curves mark respectively the maximum and the 1 and 2-σ contours of the likelihood function
found by combining all 80 mocks.

We then consider how the measured likelihood for ΛCDM may depend on other details,
such as cluster selection criteria and the numerical implementation of hydrodynamics.

Selection by dynamical state: Consider now the effect of applying the incorrect selection
criteria when modelling lenses. Excluding the most disturbed clusters, the likelihood
function derived from simulations is more sharply peaked than that which is derived
without this additional selection. If this relaxed simulated sample is used to analyse the
full observational sample, one would incorrectly derive a likelihood of L = 1.23.

Selection by mass: Since the clusters in the MACS survey are selected by flux rather
than luminosity, there is no corresponding mass threshold, yet it is common practise
to select simulated clusters by mass for similar studies. We find that when selecting
simulated clusters by mass (instead of flux), the likelihood increases to L = 0.54.

Hydrodynamics: We determine the sensitivity of our conclusions to the inclusion of
baryonic processes and the resulting gas distribution. Using cluster counterparts from the
CSF simulations leads to L = 1.28, four times that derived from the AGN simulations,
while the DM and NR simulations result in L = 0.16 and 0.11 respectively.
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