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Quantum Families of Invertible Maps and
Related Problems

Adam Skalski and Piotr Sołtan

Abstract. _e notion of families of quantum invertible maps (C∗-algebra homomorphisms satisfy-
ing Podleś’ condition) is employed to strengthen and reinterpret several results concerning univer-
sal quantum groups acting on ûnite quantum spaces. In particular, Wang’s quantum automorphism
groups are shown to be universal with respect to quantum families of invertible maps. Further, the
construction of the Hopf image of Banica and Bichon is phrased in purely analytic language and
employed to deûne the quantum subgroup generated by a family of quantum subgroups or, more
generally, a family of quantum invertible maps.

1 Introduction

A theorem of Gelfand and Naimark, identifying the category of compact spaces (with
continuous maps) and unital commutative C∗-algebras (with unital ∗-homomorph-
isms), has become an entry point for a very rich host of noncommutative general-
izations and interpretations. _e idea that general C∗-algebras should be viewed as
“quantum” topological spaces was also behind the theory of compact, and later locally
compact, quantum groups. As in the classical world, quantum groups are best seen
“in action”, i.e., as families of symmetries of a given space. _e concept of “quantum
families of maps” appeared in late 1970s ([Wo1]); compact quantum groups were born
in the second half of the 1980s, and the study of their actions on C∗-algebras started
soon a�er that ([Po1]). Finally in 1998 Shuzhou Wang [Wan] proved the existence of
the universal compact quantum group acting on a ûnite-dimensional C∗-algebra A
with a ûxed faithful state ω. _e objects introduced byWang have proved to be fasci-
nating and useful for several reasons: in the purely algebraic sense, as a source of new
examples of Hopf ∗-algebras, analytically, yielding C∗-algebras of highly non-trivial
structure ([Voi,Bra]), and as an arena for classical and noncommutative geometry and
probability, with several, o�en unexpected, connections to other areas ofmathematics
(see for example [Ba2]).

We begin this article by revisiting the original idea of Wang, connecting it to the
notion of quantum families of invertible maps. _e latter are deûned via the non-
degeneracy type condition introduced by Podleś in [Po1] (see also [So1,So2]). We give
an alternative proof of the main result of [Wan], showing at the same time that the
algebras constructed there are in fact universal with respect to all quantum families of
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invertible maps acting on a given (A,ω) (and not only for compact quantum group
actions). _enwe pass to the study ofHopf images. _e notion of aHopf image AΛ for
an algebra homomorphismΛ from aHopf algebraA into another algebra, understood
as the largest Hopf algebra through which Λ factorises as an algebra homomorphism,
was introduced by Banica and Bichon in [BaB] and later studied from the compact
quantumgroup point of view, for example, in [BFS]. Here (in_eorem4.1) we provide
a purely analytic approach to this concept in the compact quantumgroup setting. _is
allows us to further formalise the concept of the quantum group generated by a family
of quantum subgroups (recently introduced also in [BCV]), and by a given quantum
family of invertible maps. _is brings us back to the ûrst part of the paper, at the same
time oòering an alternative point of view on inner linearity of a compact quantum
group G: this important notion originally introduced in [BaB], dual to the linearity
for discrete groups, is equivalent to the fact that G is generated by a ûnite quantum
family of invertible maps.

_e plan of the article is as follows. In Section 2 we introduce the terminology of
quantum spaces and maps and recall some known results. Section 3 presents quan-
tum families of invertible maps and revisits the construction of the universal compact
quantum group acting on a ûnite-dimensional C∗-algebra A with a ûxed state, due to
Wang. In particular, we show that Wang’s algebra is universal with respect to quan-
tum families of invertible maps on A ûxing the relevant state. Section 4 passes to the
study of Hopf images, phrasing the concept in the purely analytic language. Section 5
explains how to use the notion of the Hopf image to deûne the quantum group gen-
erated by a family of quantum subgroups, and Section 6 contains the construction of
the quantum group generated by a quantum family of invertible maps, leading to a
new interpretation of inner linearity. Finally, in Section 7 we brie�y discuss a gener-
ation question concerning the quantum increasing sequences of Curran, and in the
Appendix we present an alternative, simpler proof of _eorem 2.3, originally shown
in [So1] by other methods.

2 Quantum Spaces and Quantum Families of Maps

Consider the category of C∗-algebras, i.e., the category whose objects are all C∗-alge-
bras and for any two C∗-algebras A and B the set of Mor(A,B) of morphisms from
A to B is deûned to be the set of all ∗-homomorphisms Φ from A to the multiplier
algebra M(B) such that Φ(A)B is dense in B ([Wo1,Wo4]). _e particular choice of
morphisms ensures that the full subcategory formed by commutative C∗-algebras is
dual to the category of locally compact (Hausdorò) spaces with continuous maps as
morphisms. _e duality is realized by the functor mapping a locally compact space X
to the C∗-algebra C0(X) of all continuous functions on X vanishing at inûnity.

Deûnition 2.1 A quantum space is an object of the category dual to the category of
C∗-algebras.

Strictly speaking, any theorem about quantum spaces is nothing else but a theorem
about C∗-algebras. Nevertheless, the study of C∗-algebras “as if they were algebras
of functions” has lead to many exciting developments. In particular, the theory of
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compact and locally compact quantum groups originated through this approach to
the theory of C∗-algebras.

_e standard notation used in studying quantum spaces is the following: for a
quantum spaceX we write C0(X) for the corresponding C∗-algebra. Amap of quan-
tum spaces from a quantum space X to another quantum space Y is then an element
of the set Mor(C0(Y), C0(X)). In this paper almost all quantum spaces will be com-
pact; i.e., their correspondingC∗-algebraswill be unital. It is only natural towrite then
C(X), C(Y) etc. to denote the corresponding C∗-algebras. Also morphisms from X
to Y are then simply unital ∗-homomorphism from C(Y) to C(X). _e symbol ⊗
will denote the minimal/spatial tensor product of C∗-algebras, and the algebraic ten-
sor product will be denoted by ⊗alg.

Motivated by the classical characterization of continuous families ofmaps between
topological spaces the following deûnition was introduced in [Wo1] (cf. also [So1, Sec-
tion 3]).

Deûnition 2.2 LetX,Y, andU be quantum spaces. A quantum family of maps from
X to Y indexed by U is an element of Mor(C0(Y), C0(X) ⊗C0(U)).

Deûnition 2.2 is very broad, and hence not much can be said about all quantum
families of maps. However, with appropriate notion of quantum families of invertible
maps (Deûnition 3.1) we will show in Section 6 that they generate (in an appropriate
sense) actions of quantum groups.

Once the deûnition of a quantum family ofmaps has been formulated, the question
of existence of quantum families of maps with speciûc properties of universal nature
becomes particularly important. An important theorem announced in [Wo1] states
that certain universal quantum families always exist.

_eorem 2.3 Let X and Y be quantum spaces such that C(X) is ûnite dimensional
and C(Y) is ûnitely generated and unital. _en there exists a compact quantum space
E and a quantum family of maps X→ Y indexed by E:

Φ∶C(Y) Ð→ C(X) ⊗C(E)
such that for any quantum space U and any quantum family of maps

Ψ ∈ Mor(C(Y), C(X) ⊗C0(U))
there exists a unique Λ ∈ Mor(C(E), C0(U)) such that Ψ = (id ⊗ Λ)○Φ, or, in other
words, the diagram

C(Y) Φ // C(Y) ⊗C(E)

id⊗Λ
��

C(Y) Ψ // C(Y) ⊗C(U)
is commutative.

Moreover, the unital C∗-algebra C(E) is ûnitely generated.

_e universal property of the quantum family of maps introduced in _eorem 2.3
justiûes calling Φ the quantum family of all maps X → Y and the quantum space
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E the quantum space of all maps X → Y. In [So1] this existence result was proved
and used to construct many other universal quantum families of maps that all carried
additional algebraic structure.

Remark 2.4
(i) _e universal property deûnes the pair (C(E), Φ) uniquely (up to isomorphism

of such pairs).
(ii) _e C∗-algebra C(E) is generated by the set

{(ω ⊗ id)Φ(c) ∣ c ∈ C(Y), ω ∈ C(X)∗}

(cf. [So1] or the proof of _eorem 2.3 in the Appendix).

In the proof of _eorem 2.3 given in [So1], the C∗-algebra C(E) was deûned in
terms of generators and relations. However, arbitrary families of relations needed to
be allowed, which made the proof rather complicated. In the Appendix we will give a
diòerent proof of_eorem 2.3 that avoids these complications. For clarity, let us stress
that by a ûnitely generated unital C∗-algebra, we mean a C∗-algebra isomorphic to a
quotient of the full group C∗-algebra C∗(Fn) of the free group on n generators (for
some n ∈ N).

In the paper [So1] an operation on quantum families ofmapswas introducedwhich
corresponds (in the classical— commutative— case) to the operation of constructing
the family of all possible compositions of maps from two families.

Deûnition 2.5 Let X1 ,X2 ,X3 ,D1, and D2 be quantum spaces. Consider quantum
families of maps

Ψ1 ∈ Mor(C0(X2), C0(X1) ⊗C0(D1)) and Ψ2 ∈ Mor(C0(X3), C0(X2) ⊗C0(D2)) .

_e composition of Ψ1 and Ψ2 is the quantum family of maps

Ψ1△Ψ2 ∈ Mor(C0(X3), C0(X1) ⊗C0(D1) ⊗C0(D2))

deûned by Ψ1△Ψ2 = (Ψ1 ⊗ id)○Ψ2 .

_us, the composition of Ψ1 and Ψ2 is a quantum family of mapsX1 → X3 indexed
byD1×D2. Let us remark that composition of quantum families ofmaps is associative.

Once quantum families of maps are deûned, one is then led to considering fami-
lies with speciûed properties. One such property is preservation of a state deûned as
follows.

Deûnition 2.6 Let X and Y be quantum spaces and let ϕ be a state on C(X). Let
Φ ∈ Mor(C0(X), C0(X) ⊗ C0(Y)) be a quantum family of maps X → X indexed by
Y. We say that Φ preserves ϕ or that ϕ is invariant for Φ if for any x ∈ C0(X), we have

(ϕ ⊗ id)Φ(x) = ϕ(x)1C(Y) .

Introduction of the notion of a quantum family of maps preserving a state led to
major developments. In particular, invariance of states for actions of compact quan-
tum groups (which are quantum families of maps; see Section 3) turned out to be very

https://doi.org/10.4153/CJM-2015-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-037-9


702 A. Skalski and P. Sołtan

important in e.g., [Wan] (cf. also [So1, Section 5]). A crucial (although also very sim-
ple) fact is that if two quantum families of maps preserve a given state, then so does
their composition ([So1, Proposition 14]).

In [Wan] it was shown that for a ûnite quantum spaceX and a state ϕ onC(X) there
exists a universal compact quantum group acting on X preserving the state ϕ. Addi-
tionally, it was shown that in general (more precisely for a noncommutative C(X))
there is no universal quantum group for all actions of compact quantum groups. _is
fact o�en forces us to consider ûnite quantum spaces (ûnite dimensional C∗-algebras)
together with a distinguished state. _is will also be clearly visible throughout this pa-
per.

3 Quantum Families of Invertible Maps

In this section we will give an alternative description of Wang’s quantum automor-
phism groups of ûnite dimensional C∗-algebras with a distinguished state. We will
only consider the case of a faithful state that is justiûed by [So2, Proposition 2.3]. In
the original description of these quantum automorphism groups in [Wan], little ex-
planation is given as to the origin of the proposed relations imposed on generators of
corresponding C∗-algebras. In particular, the case of non-tracial states is not treated
(this case is treated thoroughly in [VDW], but with no reference to actions of result-
ing quantum groups on ûnite dimensional C∗-algebras). Our description is similar to
the one proposed in [Ba1, Lemma 1.2 & _eorem 1.1], but we choose to focus on the
stronger universality property (cf. Remark 3.5(3)).

We begin by introducing the notion of a quantum family of invertible maps on a
ûnite quantum space (i.e., onewhose correspondingC∗-algebra is ûnite dimensional).
For the sake of keeping our notation lighter we will drop the custom of referring to
any C∗-algebra as C(X) for some quantum spaceX and use more usual symbols such
as A, B, etc.

Deûnition 3.1 LetM andB be C∗-algebras withB unital andM ûnite dimensional.
We say that β∶MÐ→M⊗B is a quantum family of invertible maps if β(M)(1⊗B) is
dense inM⊗B. We will also refer to this by saying that β satisûes the Podleś condition.

_e Podleś condition appeared in the thesis of Podleś ([Po1]) and was later put
to use in many publications (cf. [Po2, Boc]). It is formally very close to the density
conditions (cancellation laws) central to the deûnition of a compact quantum group
([Wo3]).

Its original meaning is closely related to the notion of an action of a quantum
group on a quantum space. For simplicity let us restrict attention to compact quan-
tum groups and compact quantum spaces. If G is a compact quantum group and X
a compact quantum space, then an action of G on X is a unital ∗-homomorphism
α∶C(X) → C(X)⊗C(G) such that (α⊗ id)○α = (id⊗∆G)○α and the Podleś condi-
tion is satisûed; i.e., α(C(X))(1⊗C(G)) is dense in C(X)⊗C(G). In particular, an
action of G on X is an example of a quantum family of invertible maps. _e Podleś
condition serves as a substitute of the requirement imposed on actions of classical
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groups on sets, namely that the unit element act as the identity map or, equivalently,
that the action be by invertible transformations ([So3, Proposition 2.3]).

Proposition 3.2 Let β∶M→M⊗B and γ∶M→M⊗C be quantum families of maps.
If β and γ satisfy the Podleś condition, then so does their composition β△γ.

Proof We will write [X] for the closed linear span of a subset X of a normed vector
space. We also write [ ⋅ ⋅ ⋅] instead of [{ ⋅ ⋅ ⋅}] whenever necessary.

Let µB be the multiplication map B⊗alg B → B and let σ denote the �ip C⊗ B →
B⊗ C. Assuming that β and γ satisfy the Podleś condition, we compute

[(β△γ)(a)(1⊗ X) ∣ a ∈M, X ∈ B⊗ C]
= [(β△γ)(a)(1⊗ b ⊗ c) ∣ a ∈M, b ∈ B, c ∈ C]
= [((β ⊗ id)γ(a))(1⊗ b ⊗ c) ∣ a ∈M, b ∈ B, c ∈ C]
= [(id⊗ µB ⊗ id)(β ⊗ σ)((γ(a)(1⊗ c)) ⊗ b) ∣ a ∈M, b ∈ B, c ∈ C]
= [(id⊗ µB ⊗ id)(β ⊗ σ)((a′ ⊗ c′) ⊗ b) ∣ a′ ∈M, b ∈ B, c′ ∈ C]
= [(id⊗ µB ⊗ id)(β ⊗ id)((a′ ⊗ b) ⊗ c′) ∣ a′ ∈M, b ∈ B, c′ ∈ C]
= [(β(a′)(1⊗ b)) ⊗ c′ ∣ a′ ∈M, b ∈ B, c′ ∈ C] =M⊗B⊗ C.

(note that we used the fact that, as M is ûnite dimensional, the ranges of β and γ
contain only ûnite sums of simple tensors).

From now on let us ûx a faithful state ϕ on the C∗-algebra M. Let {e1 , . . . , en}
be a basis of M which is orthonormal for the scalar product ( ⋅ ∣ ⋅ )ϕ deûned by
(x ∣ y)ϕ = ϕ(x∗y) for x , y ∈ M. Let {mp

k , l}k , l ,p=1,. . . ,n be structure constants of M,
i.e., complex numbers such that

ek e l =
n

∑
p=1

mp
k , l ep , p = 1, . . . , n,

and let {λ i}i=1,. . . ,n be the coeõcients of 1 in the basis {e1 , . . . , en}:
n

∑
i=1

λ i e i = 1.

Finally, let T be the (invertible) scalar matrix with matrix elements {τk , l}k , l=1,. . . ,n
such that

e∗l =
n

∑
k=1

τk , l ek , l = 1, . . . , n.

LetB be a unital C∗-algebra and let β∶M→M⊗B be a linear map. Deûne amatrix

b =
⎡⎢⎢⎢⎢⎢⎣

b1,1 . . . b1,n
⋮ ⋱ ⋮
bn ,1 . . . bn ,n

⎤⎥⎥⎥⎥⎥⎦
of elements of B by

β(e j) =
n

∑
i=1
e i ⊗ b i , j , i = 1, . . . , n.
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We will use the following notation:

b =
⎡⎢⎢⎢⎢⎢⎣

b∗1,1 . . . b∗1,n
⋮ ⋱ ⋮
b∗n ,1 . . . b∗n ,n

⎤⎥⎥⎥⎥⎥⎦
.

Proposition 3.3 Let M, ϕ, {mp
k , l}k , l ,p=1,. . . ,n , {λ i}i=1,. . . ,n T, and b be as above.

(i) We have (ϕ ⊗ id)β(x) = ϕ(x)1 for all x ∈M if and only if

(3.1)
n

∑
i=1

ϕ(e i)b i , j = ϕ(e j)1, j = 1, . . . , n.

(ii) β is multiplicative if and only if

(3.2)
n

∑
k , l=1

mp
k , lbk , ib l , j =

n

∑
q=1

mq
i , jbp,q , p, i , j = 1, . . . , n.

(iii) β(1M) = 1M ⊗ 1B if and only if

(3.3)
n

∑
j=1

λ jb i , j = λ i1, i = 1, . . . , n.

(iv) β is a ∗-map if and only if

(3.4) (T ⊗ 1)b = b(T ⊗ 1).

(v) If (i)–(iv) are satisûed, then β(M)(1 ⊗ B) is dense in M ⊗ B if and only if b is
unitary.

Proof Points (i), (ii), and (iii) are easy computations, while (iv) and (v) are explained
in [So2, Proof of _eorem 1.2].

We are now ready to formulate the main result of this section.

_eorem 3.4 Fix a ûnite dimensionalC∗-algebraMwith a faithful state ϕ. Choose an
orthonormal (with respect to the scalar product induced by ϕ) basis e1 , . . . , en inM and
let {mp

k , l}k , l ,p=1,. . . ,n , {λ i}i=1,. . . ,n and T be as above. Let A be the universal C∗-algebra
generated by abstract elements {b i , j}i , j=1,. . . ,n such that the matrix

b =
⎡⎢⎢⎢⎢⎢⎣

b1,1 . . . b1,n
⋮ ⋱ ⋮
bn ,1 . . . bn ,n

⎤⎥⎥⎥⎥⎥⎦
is unitary and relations (3.1)–(3.4) hold. _en the formula

α(e j) =
n

∑
i=1
e i ⊗ b i , j , j = 1, . . . , n

deûnes a unital ∗-homomorphism from M to M⊗A and for any x ∈M we have

(3.5) (ϕ ⊗ id)α(x) = ϕ(x)1A .
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(i) For any unital C∗-algebra C and any invertible quantum family of maps γ∶M→
M ⊗ C preserving the state ϕ there exists a unique unital ∗-homomorphism Λ∶A → C
such that the diagram

M
α // M⊗A

id⊗Λ
��

M
γ // M⊗ C

is commutative.
(ii) _ere exists a unique unital ∗-homomorphism ∆∶A→ A⊗A such that (α⊗ id)○

α = (id⊗∆)○α. _e map ∆ is coassociative and the pair (A, ∆) gives rise to a compact
quantum G, while α becomes an action ofG on M.

(iii) If S is a compact quantum semigroup and ρ∶M → M⊗ C(S) is an action of S
on M preserving ϕ and satisfying Podleś condition, then the unique Λ∶A → C(S) such
that ρ = (id⊗ Λ)○α satisûes ∆S○Λ = (Λ ⊗ Λ)○∆.

(iv) G is isomorphic to Wang’s quantum automorphism group of (M, ϕ).

Proof _e deûnition of A is such that the linear mapping

e j z→
n

∑
i=1
e i ⊗ b i , j , j = 1, . . . , n

extends to a unital ∗-homomorphism M → M ⊗ A such that for any x ∈ A we have
(3.5).
Ad (i): If γ∶M→M⊗C is a quantum family of invertible maps preserving ϕ, then

deûning {c i , j}i , j=1,. . . ,n by

γ(e j) =
n

∑
i=1
e i ⊗ c i , j , j = 1, . . . , n,

we obtain elements satisfying relations we used to deûne the C∗-algebra A. _erefore
there exists a unique unital ∗-homomorphism Λ∶A→ C such that

Λ(b i , j) = c i , j , i , j = 1, . . . , n,
and it is immediate that (id⊗Λ)○α = γ. _is last property deûnes Λ uniquely, because
A is generated by {b i , j}i , j=1,. . . ,n .
Ad (ii): We will proceed as in proofs of [So1, _eorems 6, 16 & 21]. By its very

deûnition α∶M → M ⊗ A is a quantum family of invertible maps preserving ϕ. Now
Proposition 3.2 asserts that so is α△α. _us, statement (i) gives a unique ∆∶A→ A⊗A
such that α△α = (id⊗∆)○α. Coassociativity of ∆ follows from the associativity of the
operation of composition of quantum families of maps exactly as in e.g., [So1, Proof of
_eorem 6(2)] (here we need the obvious fact thatA is generated by {(ω⊗ id)α(m) ∣
m ∈M; ω ∈M∗}). It is also easy to check that

∆(b i , j) =
n

∑
k=1
b i ,k ⊗ bk , j , i , j = 1, . . . , n

(which might as well be used to prove coassociativity of ∆).
As the matrix b is unitary and its transpose b⊺ = (b)∗ is invertible (due to relation

(3.4)), the results of [Wo2] guarantee that ∆ deûnes on A the structure of the algebra

https://doi.org/10.4153/CJM-2015-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-037-9


706 A. Skalski and P. Sołtan

of continuous functions on a compact quantum group. _e remaining statements of
(ii) are clear.
Ad (iii): Let α̃∶M→M⊗ Ã be the quantum family of all maps onM preserving ϕ.

_en there exists a unique unital ∗-homomorphism Λ̃∶ Ã→ A such that

α = (id⊗ Λ̃)○α̃.
Moreover, since A is generated by {(ω⊗ id)α(m) ∣ m ∈M; ω ∈M∗}, one easily sees
that Λ̃ is surjective, as for each m ∈M and ω ∈M∗ we have

(ω ⊗ id)α(m) = Λ̃((ω ⊗ id)α̃(m)) .

By [So1, _eorem 16] there is a comultiplication ∆̃ on Ã, and we have

∆○Λ̃ = (Λ̃ ⊗ Λ̃)○∆̃.

Now, if ρ∶M→M⊗C(S) is an action of a compact quantum semigroup S preserv-
ing ϕ, then there exists a unique Θ∶ Ã → C(S) such that ρ = (id ⊗ Θ)○ α̃. Moreover,
we have ∆S○Θ = (Θ⊗Θ)○∆̃.
Finally, by (i), there exists a unique Λ∶A → C(S) such that ρ = (id ⊗ Λ)○α. By

uniqueness of Θ, we obviously have Θ = Λ○Λ̃.
All this information is summarized in the following commutative diagram:

(3.6) Ã
∆̃ //

Λ̃
��

Θ

��

Ã⊗ Ã

Λ̃⊗Λ̃
��

Θ⊗Θ

��

A
∆ //

Λ
��

A⊗A

C(S) ∆S // C(S) ⊗C(S).
It remains to prove that we can complete (3.6) with the map Λ ⊗ Λ∶A ⊗ A →

C(S) ⊗ C(S). But this is not diõcult: for a ∈ A we let ã ∈ Ã be its li� through Λ̃.
Clearly,

∆S(Λ(a)) = ∆S((Λ○Λ̃)(ã)) = ∆S(Θ(ã)) = (Θ⊗Θ)( ∆̃(ã))
= ([Λ○Λ̃] ⊗ [Λ○Λ̃])( ∆̃(ã)) = ((Λ ⊗ Λ)○(Λ̃ ⊗ Λ̃))( ∆̃(ã))
= (Λ ⊗ Λ)((Λ̃ ⊗ Λ̃)( ∆̃(ã))) = (Λ ⊗ Λ)(∆( Λ̃(ã)))
= (Λ ⊗ Λ)(∆(a)) .

Ad (iv): ClearlyG deûned by C(G) = A and ∆G = ∆ is a compact quantum group
possessing the universal property required of the quantum automorphism group of
(M, ϕ). _is is simply (i) applied only to quantum families of the form γ∶M → M ⊗
C(H), whereH is a compact quantumgroup and γ is its action onM preserving ϕ.

Remark 3.5
(1) _e theorem implies that in fact G depends only on the choice of M and ϕ,

and not on the choice of the basis (e1 , . . . , em). In fact, G is characterised up to an
isomorphism as the compact quantum semigroup enjoying the universal property in
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(iii); similarly one can say that (A, α) is characterised up to an isomorphism as the
quantum family of maps on M enjoying the universal property in (ii).

(2) It is important to note that the C∗-algebra C(G) is generated by

{(ω ⊗ id)α(m) ∣ m ∈M, ω ∈M∗}

(in other words the action α is faithful). We will use this fact repeatedly in what fol-
lows.

(3) As mentioned in the beginning of this section, _eorem 3.4 provides an alter-
native description of Wang’s quantum automorphism group of (M, ϕ) which we will
from now on denote by the symbol Aut(M, ϕ). _e crucial point is that these objects
possess a more general universal property than in their original deûnition. In [Wan]
the only requirement was thatG together with its action onM be universal for actions
of compact quantum groups preserving ϕ, but it turns out that it is universal for all
quantum families of invertible maps preserving ϕ.

(4) _eorem 6.1 provides also a more conceptual interpretation of the results of
[So2]. _e actions of quantum semigroups studied in that paper are nothing other
than certain quantum families of invertible maps.

(5) One can easily see that Aut(M, ϕ) has a formally even stronger universal prop-
erty; namely, for any C∗-algebra B (not necessarily unital) and any quantum family
β ∈ Mor(M,M ⊗ B) preserving ϕ and satisfying Podleś condition (so, in particu-
lar, elements of the form β(m)(1 ⊗ x) must belong to M ⊗ B) there exists a unique
Λ ∈ Mor(C(Aut(M, ϕ)),B) such that β = (id⊗Λ)○α. _is follows from the fact that
a morphism from a unital C∗-algebra to B is a unital ∗-homomorphism into M(B).

4 Hopf Images in the Compact Quantum Group Context

In this section we discuss a purely analytic approach to Hopf images of Banica and
Bichon ([BaB]) in the compact quantum group context. Recall that if H, G are com-
pact quantum groups, then we say thatH is a (closed) quantum subgroup ofG if there
exists a surjective morphism π ∈ Mor(C(G), C(H)) intertwining the respective co-
products. For an exhaustive discussion of the notion of a closed quantum subgroup,
we refer to the article [DKSS].

_eorem 4.1 Let G be a compact quantum group, let B be a unital C∗-algebra, and
let Λ∶C(G) → B be a unital ∗-homomorphism. Deûne

Λn = (Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)○∆(n−1)∶C(G) Ð→ B⊗n

and let J = ⋂∞n=1 ker Λn . Let S = C(G)/J and let π∶C(G) → S be the quotient map.

(i) _ere exists a unique
○

∆∶S→ S⊗ S such that
○

∆○π = (π ⊗ π)○∆G.
(ii) _e pair (S,

○

∆) gives rise to a compact quantum group KΛ ; more precisely, S =
C(KΛ) and

○

∆ is the corresponding coproduct.
(iii) _e map Λ factorizes uniquely as

(4.1) Λ = θ○π

https://doi.org/10.4153/CJM-2015-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-037-9


708 A. Skalski and P. Sołtan

for a certain unital ∗- homomorphism θ∶S→ B.
(iv) IfH is a compact quantum subgroup ofG with corresponding surjective quantum

group morphism τ∶C(G) → C(H) such that Λ factorizes as Λ = χ○τ for some
χ∶C(H) → B, then there exists a unique surjective map ρ∶C(H) → S such that
π = ρ○τ. _is ρ is a compact quantum group morphism.

Proof First note that for any n,m ∈ N, we have

(Λn ⊗ Λm)○∆ = ((Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

) ⊗ (Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

)) ○(∆(n−1) ⊗ ∆(m−1))○∆

= (Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+m

)○∆(n+m−1) = Λn+m .

Now let us take x ∈ J. We will show that

(4.2) (π ⊗ π)∆G(x) = 0.

To that end, let v = (π⊗ id)∆G(x) ∈ S⊗C(G). In order to have (4.2), it is enough to
show that (id⊗ π)(v) = 0.
Assume to the contrary that (id⊗π)(v) ≠ 0. _en there exists a functional ω ∈ S∗

such that
(ω ⊗ id)((id⊗ π)(v)) ≠ 0.

Or, in other words,

(4.3) π((ω ⊗ id)(v)) ≠ 0

(cf. [Was, Section 1.5.4(b)]).
Since x ∈ J, for any n,m ∈ N,

(4.4) (Λn ⊗ Λm)∆(x) = Λn+m(x) = 0.

Fix m and ν ∈ (B⊗⋯⊗B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

)∗ and let

zm = ( id⊗ [ν○Λm])∆(x).

For any n ∈ N we have by (4.4)

Λn(zm) = (id⊗ ν)(Λn ⊗ Λm)∆(x) = 0,

which means that zm ∈ J, i.e., π(zm) = 0. _us,

0 = ω(π(zm)) = (ω ⊗ [ν○Λm])∆(x) = (ω ⊗ ν)(id⊗ Λm)∆(x)
= ν(Λm((ω ⊗ id)∆(x))) .

Since this is true for all ν, we get

Λm((ω ⊗ id)∆(x)) = 0, m ∈ N.

But this means that π((ω ⊗ id)∆(x)) = 0, which contradicts (4.3). _is proves (4.2).
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It is now easy to see that there exists a unique comultiplication
○

∆∶S → S⊗ S such

that
○

∆○π = (π⊗ π)○∆G . Clearly,
○

∆ is coassociative (simply apply (π⊗ π⊗ π) to both
sides of (∆G ⊗ id)○∆G = (id⊗ ∆G)○∆G). Moreover, since π is surjective and

(π ⊗ π)(∆(a)(1⊗ b)) =
○

∆(π(a))(1⊗ π(b)) ,
(π ⊗ π)((a ⊗ 1)∆(b)) = (1⊗ π(a))

○

∆(π(b)) ,
a, b ∈ A,

the density conditions of [Wo3, Deûnition 2.1] are satisûed and
○

∆ deûnes on S the
structure of an algebra of functions on a compact quantum group.

Observe now that since ker Λ = ker Λ1 ⊂ J, there exists a unique θ∶S → B such
that (4.1) holds.

Now let H be a compact quantum subgroup of G with corresponding surjection
τ∶C(G) → C(H) such that Λ = χ○τ for some χ∶C(H) → B.

Take y ∈ ker τ. _en for any n ∈ N, we have

Λn(y) = (Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)∆(n−1)
G (y) = (χ ⊗⋯⊗ χ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)(τ ⊗⋯⊗ τ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)∆(n−1)
G (y)

= (χ ⊗⋯⊗ χ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)∆(n−1)
H ( τ(y)) = 0,

because τ is a compact quantum group morphism. It follows that for each n ∈ N we
have ker τ ⊂ ker Λn , so ker τ ⊂ J. _erefore, there is a unique surjective ρ∶C(H) → S
such that π = ρ○τ. _e map ρ is a compact quantum group morphism, as for any
z ∈ C(H) we can ûnd a z′ ∈ C(G) such that z = τ(z′), and thus

(ρ ⊗ ρ)∆H(z) = (ρ ⊗ ρ)∆H( τ(z′)) = (ρ ⊗ ρ)(τ ⊗ τ)∆G(z′) = (π ⊗ π)∆G(z′)

=
○

∆(π(z′)) =
○

∆( ρ(τ(z′))) =
○

∆( ρ(z))

so that (ρ ⊗ ρ)○∆H =
○

∆○ρ.

We remark that apart from the fact that we limit ourselves to the level of C∗-al-
gebras, there is one other notable diòerence with the general Hopf algebra setup, ob-
served in [BFS]. When constructing Jwe only need to take care of the iterated ‘convo-
lutions’ of the map Λ, so that, as opposed to the situation in [BaB], the antipode does
not play any role. In the next corollary we note that the same construction works if
we start from a morphism taking values in a not-necessarily unital C∗-algebra.

Corollary 4.2 Let G be a compact quantum group, let B be a (not necessarily uni-
tal) C∗-algebra and let Λ ∈ Mor(C(G),B) . _en there exists a unique C∗-algebra S
equipped with a surjective unital ∗-homomorphism π∶C(G) → S such that

(i) there exists a
○

∆∶S→ S⊗ S such that
○

∆○π = (π ⊗ π)○∆G;
(ii) the pair (S,

○

∆) gives rise to a compact quantum group KΛ ;
(iii) the map Λ factorizes uniquely as Λ = θ○π for a certain θ ∈ Mor(S,B);
(iv) ifH is a compact quantum subgroup ofG with corresponding surjective quantum

group morphism τ∶C(G) → C(H) such that Λ factorizes as Λ = χ○τ for some
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χ ∈ Mor(C(H),B), then there exists a unique surjective map ρ∶C(H) → S such
that π = ρ○τ. _is ρ is a compact quantum group morphism.

Proof Replace B by M(B) and use _eorem 4.1.

Deûnition 4.3 Let G be a compact quantum group, let B be a C∗-algebra, and let
Λ ∈ Mor(C(G),B). _e compact quantum group KΛ constructed from this data in
Corollary 4.2 is called the Hopf image of Λ.

Remark 4.4 Let G, B, and Λ be as in Corollary 4.2.
(i) If B is commutative then KΛ is a classical compact group. Indeed, commuta-

tivity of B implies that the commutator ideal of C(G) is contained in

ker(Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)○∆(n−1)
G

for all n ∈ N. It follows that C(KΛ) is commutative.
(ii) IfB is equipped with a comultiplication ∆B such that (B, ∆B) is the algebra of

continuous functions on a compact quantum group H and Λ is a surjective compact
quantum group morphism, thenKΛ is isomorphic toH. _is easily follows from the
fact that in this situation we have ker Λn = ker Λ for all n ∈ N.

_eorem 4.1 was recently applied in [Wa] to show the following result. Suppose
G is a compact quantum group, A is a unital ∗-algebra with a faithful state ϕ, and
let Λ∶Pol(G) → A be a unital ∗-algebra homomorphism. Deûne ω = ϕ ○ Λ and put
ω̃ = limn→∞

1
n ∑

n
k=1 ω⋆k . _en π is inner faithful (i.e., the Hopf image of Λ is G) if

and only if ω̃ = hG.

5 Quantum Subgroup Generated by a Family of Quantum Subgroups

We use the results of the previous section to provide a construction of the quantum
subgroup generated by a family of quantum subgroups. Note that very recently an
alternative (but equivalent) approach to this concept was introduced, and very suc-
cessfully applied, by Brannan, Collins, and Vergnioux in [BCV].

Let {Hi}i∈I be a family of closed quantum subgroups of a compact quantum group
G with corresponding surjections

π i ∶C(G) Ð→ C(Hi), i ∈ I.

Denote by B the direct sum⊕i∈I C(Hi) and let Λ∶C(G) →M(B) by

Λ(x) = ⊕
i∈I

π i(x)

(clearly Λ ∈ Mor(C(G),B)). As declared in Deûnition 4.3 we denote by KΛ the
compact quantum group obtained through the Hopf image construction from Λ. We
have the surjective compact quantum group morphism π∶C(G) → C(KΛ) and θ ∈
Mor(C(KΛ),B) such that Λ = θ ○π. For each i let pi be the canonical projection
B→ C(Hi) and let θ i = pi○θ∶C(KΛ) → C(Hi). _en θ i identiûes Hi as a subgroup
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ofKΛ : for any z ∈ C(KΛ) there is a z′ ∈ C(G) such that z = π(z′). _erefore,

(θ i ⊗ θ i)∆KΛ(z) = (θ i ⊗ θ i)(π ⊗ π)∆G(z′) = (pi ⊗ pi)Λ ⊗ Λ)∆G(z′)
= (π i ⊗ π i)∆G(z′) = ∆Hi (z).

It is also easy to see that each θ i is surjective (although θ is not) and π i factorizes as
π i = θ i ○π.

Moreover, KΛ can be described as the smallest (closed) subgroup of G that con-
tains the subgroups {Hi}i∈I in the sense that if H is a quantum subgroup of G with
corresponding morphism τ∶C(G) → C(H) such that for each i the map π i factorizes
as π i = χ i ○τ for some χ i ∶C(H) → C(Hi), then KΛ is a subgroup of H. _is follows
from the fact that putting χ∶C(H) ∋ x z→ ⊕

i∈I
χ i(x) ∈ M(B) we deûne a morphism

fromC(H) toB that obviously satisûes Λ = χ○τ. _us, we can use the universal prop-
erty of the Hopf image. Note that this description guarantees that if G is a classical
compact group with subgroups H i , thenKΛ constructed above is indeed (isomorphic
to) the smallest closed subgroup generated by H i .

Deûnition 5.1 _e closed quantum subgroup KΛ obtained above from the family
of quantum subgroups {Hi}i∈I of G is called the quantum subgroup of G generated
by the subgroups {Hi}i∈I .

Remark 5.2
(1) If the family {Hi}i∈I is trivial in the sense that allHi are equal (this also means

that all π i are the same map), then the quantum subgroup generated by {Hi}i∈I co-
incides with Hi0 for any i0 ∈ I. _is is a clear consequence of its universal property.

Similarly, one can show that if there are repetitions in the collection {Hi}i∈I (and
{π i}i∈I) then they can be appropriately removed from the list.

(2) Let {Hi}i∈I and {H j} j∈J be two families of closed subgroups ofG and let

Λ ∈ Mor(C(G),BI) , Γ ∈ Mor(C(G),BJ) ,

where
BI = ⊕

i∈I
C(Hi) and BJ = ⊕

j∈J
C(H j),

be corresponding morphisms (as above). Denote by KI and KJ the quantum sub-
groups of G generated by {Hi}i∈I and {H j} j∈J , respectively. _en the quantum sub-
group ofG generated by {Hi}i∈I ∪{H j} j∈J is canonically isomorphic to the quantum
subgroup ofG generated by {KI ,KJ}. _is is, again, an easy consequence of the uni-
versal property of the quantum subgroup generated by a given family.

Moreover, one can easily generalize this fact to not necessarily ûnite collections of
families of subgroups ofG.

(3) Let Γ be a discrete group and suppose that G = Γ̂, so that C(G) = C∗(Γ). It is
then well known (see for example [DKSS]) that subgroups ofG correspond to normal
subgroups of Γ, in the following sense: ifH is a quantum subgroup ofG, then there ex-
ists S◁Γ so thatH = Γ̂/S, and the associatedmorphism π ∈ Mor(C∗(Γ), C∗(Γ/S)) is
induced by the quotient map Γ ↦ Γ/S. Further, given a family of quantum subgroups
{Hi}i∈I of Γ̂ (with corresponding normal subgroups S i ◁ Γ) we can easily check,

https://doi.org/10.4153/CJM-2015-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-037-9


712 A. Skalski and P. Sołtan

for example using the universal properties, that the quantum subgroup generated by
{Hi}i∈I is Γ̂/S, where S = ⋂i∈I S i .

(4) If G is a compact quantum group, and {Hi}i∈I is a collection of its classical
subgroups (i.e., each Hi is a quantum subgroup of G and C(Hi) is commutative),
then the quantum subgroup generated by {Hi}i∈I is also classical. _is follows from
Remark 5.2(1). _e quantum subgroup generated by duals of classical groups need
not be a dual of a classical group (as already classically the subgroup generated by two
abelian groups need not be abelian).

We ûnish this section by sketching an alternative, dual description of the quan-
tum subgroup generated by {Hi}i∈I . Recall that if H is a quantum subgroup of G,
and π∶C(G) → C(H) is the corresponding surjective morphism, then there exists
a unique dual morphism π̂∶ ℓ∞(Ĥ) → ℓ∞(Ĝ), where ℓ∞(Ĥ) and ℓ∞(Ĝ) denote
respectively the von Neumann algebras of bounded functions on the dual, discrete
quantum groups (see [DKSS] for the details).

_eorem 5.3 Let G be a compact quantum group with the family of quantum sub-
groups {Hi}i∈I . Consider the dual morphisms π̂ i ∶ ℓ∞(Ĥi) → ℓ∞(Ĝ). _e smallest
von Neumann algebra invariant under the coproduct generated by π̂ i(ℓ∞(Ĥi)) inside
ℓ∞(Ĝ) is isomorphic to π̂(ℓ∞(K̂)), where K is the quantum subgroup generated by
{Hi}i∈I and π∶C(G) → C(K) is the morphism identifying K as a quantum subgroup
ofG.

Proof Denote the von Neumann algebra introduced in the formulation of the the-
orem by M. It follows from [NeY, _eorem 3.1] that M = π̂( ℓ∞(K̂)) , where K is
a quantum subgroup of G and π∶C(G) → C(K) is the respective quantum group
morphism. It now suõces to observe that the construction of the dual morphism
is functorial, by which we mean that if, for example, H1 ⊂ H2 ⊂ H3 are inclusions
of compact quantum groups, then we have π̂1,3 = π̂2,3 ○ π̂1,2 and use the universal
properties.

6 Quantum Groups Generated by Quantum Families of Invertible
Maps

_roughout this section we let (M, ϕ) be a ûnite dimensional C∗-algebra with a faith-
ful state. Wang’s quantumautomorphismgroupAut(M, ϕ) of this pairwill be denoted
byG, and its action onM by α. We show how we can use the idea of a Hopf image to
deûne the quantum group generated by a given family of invertible maps.

_eorem 6.1 Let B be a C∗-algebra and let β ∈ Mor(M,M ⊗ B) be a quantum
family of invertible maps preserving ϕ. _en there exists a compact quantum group
Kβ equipped with a ϕ-preserving action on M, β∶M → M ⊗ C(Kβ) and a map θ ∈
Mor(C(Kβ),B) such that

(6.1) β = (id⊗ θ)○β
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determined uniquely by the property that ifH is a compact quantum group with a faith-
ful ϕ-preserving action γ∶M → M ⊗ C(H) and a map χ ∈ Mor(C(H),B) such that
β = (id⊗ χ)○γ, then there exists a unique surjective map ρ∶C(H) → C(Kβ) such that
χ = θ○ρ.

Proof Since β preserves ϕ and satisûes Podleś condition, there exists a unique Λ ∈
Mor(C(G),B) such that β = (id⊗Λ)○α. LetKβ be theHopf image associated with Λ.
In particular, we have a surjective map π∶C(G) → C(Kβ) intertwining the respective
coproducts and θ ∈ Mor(C(Kβ),B) such that Λ = θ○π. Clearly, β = (id⊗ π)○α is an
action ofKβ on M, ϕ is invariant for β and (6.1) holds.

Let us check the universal property of Kβ : let H and γ be as in the formulation of
the theorem. Since ϕ is invariant for γ, there exists a unique τ∶C(G) → C(H) such
that γ = (id⊗ τ)○α and τ is surjective due to faithfulness of γ. Now assume, as in the
formulation, that we also have a χ ∈ Mor(C(H),B) such that β = (id ⊗ χ)○γ. _en
obviously χ○τ = Λ due to the universal property ofG (the map Λ is unique such that
(id⊗Λ)○α = β). _erefore, the universal property ofKβ shows that there is a unique
surjective ρ∶C(H) → C(Kβ) such that χ = θ○ρ.

Deûnition 6.2 Let β ∈ Mor(M,M ⊗ B) be a quantum family of invertible maps
preserving ϕ. _e compact quantum group Kβ constructed in _eorem 6.1 will be
called the compact quantum group generated by the family β.

Remark 6.3 Let β ∈ Mor(M,M⊗ B) be a quantum family of invertible maps pre-
serving ϕ.

(i) _e compact quantum group generated by β can be interpreted as obtained
by taking all possible compositions of members of the family β. Indeed, the maps
{Λn}n∈N used in the proof of _eorem 4.1 to construct the Hopf image (i.e., Kβ in
this case) are the unique elements of Mor(C(G),B⊗n) such that

β△⋯△β
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

= (id⊗ Λn)○α.

Indeed,

β△n = ((id⊗ Λ)○α)△n = (id⊗ Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)○α△n

= (id⊗ Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)○(id⊗ ∆(n−1))○α = ( id⊗ [(Λ ⊗⋯⊗ Λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)○∆(n−1)]) ○α.

(ii) If the C∗-algebra B is commutative, then Kβ is a classical group. _is follows
from Remark 4.4(i).

(iii) If H is a compact quantum group and B = C(H) while β is an action of H,
then Kβ = H and β = β (cf. Remark 4.4(ii)).

(iv) Assume that β has the property that the set

{(ω ⊗ id)β(m) ∣ m ∈M, ω ∈M∗}
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generates a strictly dense subalgebra of M(B). _en θ has strictly dense range, be-
cause

(ω ⊗ id)β(m) = (ω ⊗ id)(id⊗ θ)β(m) = θ((ω ⊗ id)β(m))
for allm ∈M andω ∈M∗. _ismeans that if the family β contains each of itsmembers
only once, then β is a “subfamily” of the family β (cf. [DKSS, _eorem 1.1(5)]).

(v) If the family β is trivial, i.e.,

β(m) = m ⊗ 1B ∈ M(M⊗B), m ∈M,
then it is easy to see that Kβ is the trivial group: C(Kβ) = C and the map θ is of
course, the opposite of surjective; its image is C1 ⊂ M(B). Moreover, if π is the
canonical map C(G) → C(Kβ) such that β = (id ⊗ π)○α, then for all x ∈ C(G) we
have π(x) = є(x), where є is the counit ofG.

(vi) _e construction above yields another view-point on the notion of inner lin-
earity introduced in [BaB]. Recall that a Hopf algebra A is inner-linear if it admits
an algebra morphism π into a matrix algebra such that A = Aπ . _us, if G is a com-
pact quantum group, then the algebra Pol(G) is inner linear if G is generated by a
ûnite quantum family of invertible maps of some ûnite quantum space described by
a pair (M, ϕ).

7 Quantum Increasing Sequences of Curran and Related Problems

In the last short section we explain the connection between quantum increasing se-
quences of Curran and problems studied in this article.

_enotion of quantum increasing sequenceswas introduced by S. Curran in [Cur].
_ey can be viewed as a quantum family of (invertible) maps from the set {1, . . . , k}
to {1, . . . , n}, where k, n ∈ N, k ≤ n. We now recall the main deûnitions in [Cur],
changing the notation slightly so that it is compatible with the rest of our article.

Deûnition 7.1 ([Cur, Deûnition 2.1]) Let k, n ∈ N, k ≤ n. _e algebra of continuous
functions on the space of quantum increasing sequences of length k with values in
{1, . . . , n}, C(Ik ,n), is the universal unital C∗-algebra generated by the elements {v i j ∶
i = 1, . . . , n, j = 1, . . . , k} such that
(i) v i j is an orthogonal projection for each i ∈ {1, . . . , n}, j ∈ {1, . . . , k};
(ii) ∑n

i=1 v i j = 1 for each j ∈ {1, . . . , k};
(iii) v i jv i′ j′ = 0 if i , i′ ∈ {1, . . . , n}, j, j′ ∈ {1, . . . , k}, j < j′, i ≥ i′.

_e algebra C(Ik ,n) in [Cur] is denoted A i(k, n). It is easy to check that if
(e1 , . . . , en) and ( f1 , . . . , fk) denote respectively the canonical bases in Cn and Ck ,
the formula

α(e i) =
k

∑
j=1
f j ⊗ v i j , i = 1, . . . , n,

deûnes a quantum family of invertible maps {1, . . . , k} to {1, . . . , n} indexed by Ik ,n .
Similarly, one can verify that the commutative version of the algebra C(Ik ,n) is the
algebra of functions on the space increasing sequences of length k with values in
{1, . . . , n} and that this identiûcation is compatible with the map α deûned above.
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For us, it is going to be important that one can “complete” a quantum increasing se-
quence of of length k with values in {1, . . . , n} to a quantum permutation in S+n . By
that statement we understand the fact that there exists an injective morphism be-
tween quantum spaces Ik ,n and S+n , which manifests itself as a surjective C∗-algebra
morphism C(S+n) → C(Ik ,n).

Proposition 7.2 ([Cur, Proposition 2.5]) Let k, n ∈ N, k ≤ n, and let
(p i j ∶ i = 1, . . . , n, j = 1, . . . , n), (v i j ∶ i = 1, . . . , n, j = 1, . . . , k)

denote the canonical generators of C(S+n) and C(Ik ,n), respectively. In addition, put
v00 = 1, v i0 = v0i = v i ,k+1 = 0 for i = 1, . . . , n. _en the map

p i j ↦ v i j , i ∈ {1, . . . , n}, j ∈ {1, . . . , k},
p i ,k+m ↦ 0, m ∈ {1, . . . , n − k}, i ∈ {1, . . . ,m − 1} ∪ {m + k + 1, . . . , n},

pp+m ,k+m ↦
m+p−1

∑
i=0

(v i p − v i+1,p+1), m ∈ {1, . . . , n − k}, p ∈ {0, . . . , k},

extends uniquely to a surjective unital ∗-homomorphism γ ∶ C(S+n) → C(Ik ,n).

Note here that the proof of the above also uses [Cur, Lemma 2.4 (ii)], where it is
shown that v i j = 0 unless j ≤ i ≤ n − k + j.

_e above proposition naturally leads to considering the quantum family of invert-
ible maps on Cn deûned by the map κ∶Cn → Cn ⊗ C(Ik ,n), where κ = (id ⊗ γ) ○ β
and β is the canonical action of S+n onCn . Further, _eorem 6.1 allows us to consider
the quantum group Kk ,n (a quantum subgroup of S+n ) generated by the family β. We
will call it the quantum permutation group of n elements generated by quantum in-
creasing sequences of length k.

Question 7.3 Forwhat values of k and n do quantum increasing sequences of length
k generate all quantum permutations in S+n ? In other words, when does Kk ,n = S+n ?

_e answer to this question is sometimes negative for elementary reasons. For
example when k ∈ {n − 1, n} then C(Ik ,n) is in fact commutative, and thus if n > 3
we cannot have Kk ,n = S+n . Further, C(I1,n) is also commutative for any n ∈ N, so in
factK1,n = Sn ⊂ S+n . Indeed, by Remark 6.3,K1,n is a classical subgroup of S+n , so also
of Sn – and it is easy to see that the “completion” procedure formalised in Proposition
7.2 in this case realizes elements of I1,n as all cycles (1, . . . , l) with l = 1, . . . , n. _e
latter generate Sn as a group, which can be seen by simple induction.

On the other hand when k = 2, n = 4, the question seems to be interesting and
non-trivial. Note that the classical version of this question has a positive answer (in
fact for an arbitrary n ∈ N, as long as k = 2). By that we mean the fact the “completed”
permutations arising from increasing sequences of length 2 with values in {1, 2, 3, 4};
i.e., id, the transposition τ2,3, the cycle (2, 4, 3), the cycle (1, 2, 3), the composition
τ2,3τ1,3τ2,4, and the composition τ1,3τ2,4 – generate S4 as a group.
Consider then k = 2, n = 4.

Proposition 7.4 _e C∗-algebra C(I2,4) is isomorphic to (C2 ⋆C2) ⊕C2.
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Proof _e algebra C(I2,4) is generated by two pairs of projections orthogonal to
each other in each pair separately, say p1 , p2 and q1 , q2, such thatwe also have p1q1 = 0,
p2q2 = 0 and q1p2 = 0 (see the identiûcation below); note that q1 and p2 commute
with everything. Once q1 and p2 are set to 0, the remaining two projections, q2 and
p1, are free, and it is well known that the algebra generated by two free projections is
isomorphic to C2 ⋆C2 (or alternatively to C∗(D∞)).

Let us continue withmore speciûc descriptions, writing v21 = p1, v31 = p2, v22 = q1,
v32 = q2. _en the map γ ∶ C(S+4 ) → C(I2,4) from Proposition 7.2 is induced by the
following magic unitary:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − p1 − p2 0 p1 + p2 0
p1 q1 1 − p1 − p2 − q1 p2
p2 q2 q1 1 − p2 − q1 − q2
0 1 − q1 − q2 0 q1 + q2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

_is suggests that K2,4 is a “minor augmentation of ” D̂∞ ⊂ S+4 .
We believe that themost natural path to answer Question 7.3 would start with [Wa,

Corollary 3.7], quoted already at the end of Section 4, together with the Weingarten
type formulas in [BBC] and in [Cur, Proposition 4.4].

Appendix A Existence of Universal Quantum Families

In this appendix we will give a proof of _eorem 2.3 that does not involve consid-
ering arbitrary families of relations. We begin with a version of _eorem 2.3 for
C(X) = C∗(Fn): the full group C∗-algebra of the free group on n generators. To
lighten notation we will writeM for the ûnite dimensional C∗-algebra C(Y).

Proposition A.1 Let n ∈ N and let M be a ûnite dimensional C∗-algebra. _en there
exists a unital C∗-algebra An and a quantum family of maps

Φn ∶C∗(Fn) Ð→M⊗An

such that for anyC∗-algebraD and anyΨ ∈ Mor(C∗(Fn),M⊗D) there exists a unique
Λn ∈ Mor(An ,D) such that Ψ = (id⊗ Λn)○Φn .

Proof _e ûnite dimensional C∗-algebraM is of the form

(A.1) M ≅
N
⊕
i=1

Mm i (C).

Let An be the C∗-algebra generated by elements

{u i ,p
k , l ∣ 1 ≤ i ≤ N , 1 ≤ k, l ≤ m i , 1 ≤ p ≤ n}

subject to the following relations: for each p ∈ {1, . . . , n}, i ∈ {1, . . . ,N} and any
k, l ∈ {1, . . . ,m i}, we have

m i

∑
r=1

(u i ,p
r ,k)

∗u i ,p
r , l = δk , l1 =

m i

∑
r=1

u i ,p
k ,r(u

i ,p
l ,r )

∗ .
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In other words we are asking that for each p and each i the m i ×m i matrix

u i ,p =
⎡⎢⎢⎢⎢⎢⎣

u i ,p
1,1 ⋯ u i ,p

1,m i

⋮ ⋱ ⋮
u i ,p

m i ,1 ⋯ u i ,p
m i ,m i

⎤⎥⎥⎥⎥⎥⎦
be unitary. _en we can deûne a unital ∗-homomorphism Φn ∶C∗(Fn) →M⊗An by

Φn(vp) = (u1,p , . . . , uN ,p) ∈
N
⊕
i=1

Mm i (An) ≅M⊗An ,

where v1 , . . . , vn are the generators of Fn (Φn exists by the universal property of
C∗(Fn)).

Note now that if D̃ is a unital C∗-algebra containing elements

{w i ,p
k , l ∣ 1 ≤ i ≤ N , 1 ≤ k, l ≤ m i , 1 ≤ p ≤ n}

such that the matrices

w i ,p =
⎡⎢⎢⎢⎢⎢⎣

w i ,p
1,1 ⋯ w i ,p

1,m i

⋮ ⋱ ⋮
w i ,p

m i ,1 ⋯ w i ,p
m i ,m i

⎤⎥⎥⎥⎥⎥⎦
are unitary for each p and i, then there exists a unique unital ∗-homomorphism
An → D̃ mapping u i ,p

k , l to w i ,p
k , l for all i , p, k, l .

Assume now that Ψ ∈ Mor(C∗(Fn),M ⊗ D) for some C∗-algebra D. _en the
images of v1 , . . . , vn in M(M ⊗ D) ≅ M ⊗ M(D) under Ψ are precisely collections
(w1,p , . . . ,wN ,p) of unitary m i × m i matrices with entries in M(D). It follows that
there exists a unique unital ∗-homomorphism Λn ∶An → M(D) with the property
that Ψ(x) = (id⊗ Λn)Φn(x) for all x ∈ C∗(Fn). Clearly, Λn is nondegenerate (it is,
a�er all, a unital map).

Proof of_eorem 2.3 Let us lighten notation by writing M for the ûnite dimen-
sional C∗-algebra C(X) and C for the ûnitely generated unital C∗-algebra C(Y). _is
means that we have a surjective ∗-homomorphims π∶C∗(Fn) → C. In what follows
we will use the notation of Proposition A.1. In particular, the decomposition of M
into simple summands will be given by (A.1).

Let K denote the kernel of π and deûne J as the ideal in An generated by the set

{(ω ⊗ id)Φn(x) ∣ x ∈ K,ω ∈M∗}

and let A be the quotient C∗-algebra An/J. Also let λ be the quotient map An → A.
In particular, we see that A is a unital ûnitely generated C∗-algebra. In the notation
from the statement of _eorem 2.3, A will be C(E).

Nowwe shall show that there exists a unital ∗-homomorphismΦ∶C→M⊗A such
that the diagram

(A.2) C∗(Fn)
Φn //

π
��

M⊗An

id⊗λ
��

C
Φ // M⊗A
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is commutative. To see this, let us ûrst note that if x ∈ C∗(Fn) is such that π(x) = 0,
then writing Φn(x) as

Φn(x) =
m

∑
j=1
e j ⊗ x j

with (e j) j=1,. . . ,m a basis of M (so m = ∑N
i=1 m2

i ) we obtain x1 , . . . , xm ∈ J, because if
(ω j) j=1,. . . ,m is the dual basis to (e j) j=1,. . . ,M then x j = (ω j⊗ id)Φn(x) and x ∈ ker π =
K. It follows that λ(x j) = 0 for all j and consequently (id⊗ λ)Φn(x) = 0. _is means
that for any c ∈ C the element (id⊗ λ)Φn(x), where x is any li� of c is independent
of the choice of the li�. We denote this element ofM ⊗ A by Φ(c). It is very easy to
check that so deûned a map Φ∶C→M⊗A is a unital ∗-homomorphism making the
diagram (A.2) commutative.

We will now establish the universal property of (A, Φ); i.e., we will show that for
any C∗-algebra D and any Ψ ∈ Mor(C,M⊗D) there exists a unique Λ ∈ Mor(A,D)
such that Ψ = (id⊗ Λ)○Φ.

Indeed, let Ψ ∈ Mor(C,M⊗D) for some C∗-algebra D. By the universal property
of (An , Φn) proved in Proposition A.1 there exists a unique Λn ∈ Mor(An ,D) such
that the diagram

C∗(Fn)
Φn //

π
��

M⊗A

id⊗Λn

��
C

Ψ // M⊗D

commutes (note that this is obtained by applying the universal property of (An , Φn)
to the map Ψ○π ∈ Mor(C∗(Fn),M⊗D)).

Take x ∈ K. Since (id⊗ Λn)Φn(x) = Ψ(π(x)) = 0, we have

Λn((ω ⊗ id)Φn(x)) = (ω ⊗ id)((id⊗ Λn)Φn(x)) = 0

for any ω ∈ M∗. It follows from the deûnition of J = ker λ, that Λn vanishes on
J = ker λ. _erefore, there exists a unique unital ∗-homomorphism Λ∶A → M(D)
such that

(A.3) Λn = Λ○λ.

Clearly, the map Λ is a morphism from A to D.
From (A.3) we obtain the commutative diagram

M⊗An
id⊗Λn //

id⊗λ %%

M⊗D

M⊗A

id⊗Λ

::

.
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Now, combining this information with (A.2), we see that the diagram

(A.4) C∗(Fn)
Φn //

π

��

M⊗An

id⊗λ

zz
id⊗Λn

��

M⊗A

id⊗Λ %%
C

Ψ
//

Φ
99

M⊗D

commutes. _e diagram

(A.5) C
Φ // M⊗A

id⊗Λ
��

C
Ψ // M⊗D

is simply a part of (A.4).
Note that the C∗-algebra A is generated by the set

{(ω ⊗ id)Φ(c) ∣ c ∈ C,ω ∈M∗} .

_is implies that Λ is the unique morphism from A to Dmaking (A.5) commutative.
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