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Abstract

A complete classification of the complexity of the local and global satisfiability problems for
graded modal language over traditional classes of frames has already been established. By
“traditional” classes of frames, we mean those characterized by any positive combination of
reflexivity, seriality, symmetry, transitivity, and the Euclidean property. In this paper, we fill
the gaps remaining in an analogous classification of the graded modal language with graded
converse modalities. In particular, we show its NExpTime-completeness over the class of Eu-
clidean frames, demonstrating this way that over this class the considered language is harder
than the language without graded modalities or without converse modalities. We also consider
its variation disallowing graded converse modalities, but still admitting basic converse modali-
ties. Our most important result for this variation is confirming an earlier conjecture that it is
decidable over transitive frames. This contrasts with the undecidability of the language with
graded converse modalities.

KEYWORDS: modal logic, complexity, graded modalities, satisfiability

1 Introduction

For many years, modal logic has been an active topic in many academic disciplines,

including philosophy, mathematics, linguistics, and computer science. Regarding appli-

cations in computer science, for example, in knowledge representation or verification,

some important variations are those involving graded and converse modalities. In this

paper, we investigate their computational complexity.
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Fig. 1. Complexity of one-way modal logics. All bounds are tight. If local and global
satisfiability differ in complexity, then “L:” indicates local and “G:” indicates global

satisfiability.

By a modal logic, we will mean a pair (L,F), represented usually as F(L∗), where L
is a modal language, F is a class of frames, and L∗ is a short symbolic representation

of L (see the next paragraph), characterizing the modalities of L. For example, K4(◇≥)
will denote the graded modal logic of transitive frames.

While we are mostly interested in languages with graded and converse modalities, to

set the scene we need to mention languages without them. Overall, the following five

languages are relevant: the basic one-way modal language (L∗ = ◇) containing only one,

forward, modality ◇; graded one-way modal language (L∗ = ◇≥) extending the previous

one by graded forward modalities,◇≥n, for all n ∈ N; two-way modal language (L∗ = ◇,�)
containing basic forward modality and the converse modality �; graded two-way modal

language (L∗ = ◇≥,�≥) containing the forward modality, the converse modality, and

their graded versions ◇≥n, �≥n, for all n ∈ N ; and, additionally, a restriction of the latter

without graded converse modalities but with basic converse modality (L∗ = ◇≥,�).
The meaning of graded modalities is natural: ◇≥nϕ means “ϕ is true at no fewer

than n successors of the current world,” and �≥ϕ means “ϕ is true at no fewer than n

predecessors of the current world.” We also recall that ◇ϕ means “ϕ is true at some

successor of the current world” and �ϕ – “ϕ is true at some predecessor of the current

world.” Thus, for example, ◇ is equivalent to ◇≥1.
Our aim is to classify the complexity of the local (“in a world”) and global (“in all

worlds”) satisfiability problems for all the logics obtained by combining any of the above

languages with any class of frames from the so-called modal cube, that is, a class of frames

characterized by any positive combination of the axioms of reflexivity (T), seriality (D),

symmetry (B), transitivity (4), and the Euclidean property (5).

See Figure 1 for a visualization of the modal cube. Nodes of the depicted graph cor-

respond to classes of frames and are labelled by letters denoting the above-mentioned

properties, with S used in S4 and S5 for some historical reasons to denote reflexivity, and

K denoting the class of all frames. If there is a path from a class X to a class Y , then it

means that any class from Y also belongs to X (as all the axioms of X are also present

in Y ). Note that the modal cube contains only 15 classes, since some different combi-
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Fig. 2. Complexities of two-way modal logics. All bounds are tight.

nations of the relevant axioms lead to identical classes, for example, reflexivity implies

seriality, symmetry and transitivity imply Euclideanness, and so on.

A lot of work has been already done. The cases of basic one-way language and graded

one-way language are completely understood, see Figure 1. The results for the former

can be established using some standard techniques, see, for example, Blackburn et al .

(2001) and the classical paper (Ladner 1977). The local satisfiability of the latter is sys-

tematically analyzed in Kazakov and Pratt-Hartmann (2009), with complexities turning

out to lie between NP and NExpTime. As for its global satisfiability, some of the results

follow from Kazakov and Pratt-Hartmann (2009), some are given in Zolin (2017), and

the other can be easily obtained using again some standard techniques.

In the case of non-graded two-way modal language, over most relevant classes of frames,

tight complexity bounds for local and global satisfiability are also known. The notable

exceptions are global satisfiability problems of the logics of transitive frames, K4(◇,�),
S4(◇,�), D4(◇,�), which are known to be in ExpTime (due to a result in Demri and

de Nivelle 2005 or due to a translation to description logic (DL) SI, whose satisfiability

is in ExpTime Tobies 2001b). However, according to the survey part of Zolin (2017), the

corresponding lower bounds are missing. In the literature, we were also not able find a

tight lower bound for the logics of Euclidean frames, K5(◇,�), D5(◇,�). We provide

both missing bounds in Section 5, obtaining them by reductions from the acceptance

problem for polynomially space bounded alternating Turing machines.1 See the left part

of Figure 2 for a complete complexity map in this case.

Let us now turn our attention to the most expressive two-way graded modal language

with both graded forward and graded converse modalities (the right part of Figure 2).

Its local and global satisfiability problems over the class of all frames (K) are known to

be, resp., PSpace-complete and ExpTime-complete (see the survey part of Zolin 2017

and references therein). In Section 2.2, we explain how to obtain these bounds, as well

as the same bounds in all cases involving neither transitivity nor Euclideanness. For the

ExpTime-bound, we employ the so-called standard translation. Over K4, D4, and S4,

1 As explained to the first author by Emil Jeřábek, the latter bound can be alternatively proved by a
reduction from TB, whose ExpTime-hardness follows from Chen and Lin (1994).
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the logics turn out to be undecidable (Zolin 2017). We remark that these are the only

undecidable members of the whole family of logics considered in this paper. What remains

are the classes of frames involving the Euclidean property. We solve them in Section 3. We

prove that the logics K5(◇≥,�≥) and D5(◇≥,�≥) are locally and globally NExpTime-

complete. Interestingly, this is a higher complexity than the ExpTime-complexity of the

language without graded modalities (Demri and de Nivelle 2005) and NP-complexity

of the language without converse (Kazakov and Pratt-Hartmann 2009) over the same

classes of frames. We also show that, when, additionally, transitivity is required, that is,

for the logics K45(◇≥,�≥) and D45(◇≥,�≥), the complexity drops down to NP.

Finally, we consider the above-mentioned intermediate language (◇≥,�) in which we

can count the successors, we have the basic converse modality, but we cannot count the

predecessors. Our main result here, presented in Section 4, is demonstrating the (local and

global) finite model property for the logics of transitive frames K4, D4, and S4: whenever

a formula is (locally or, resp., globally) satisfiable, it is (locally, resp. globally) satisfiable

over a finite frame. This implies the decidability of the (local and global) satisfiability

problem (as well as the finite satisfiability problem, in which the attention is restricted

to finite frames) for these logics and thus solve an open problem posed in Zolin (2017).

An analogous problem was formulated also in the richer setting of DLs (Kazakov et al .

2007; Gutiérrez-Basulto et al . 2017), where the corresponding logic is called SIQ−. That
problem only recently was also positively solved (Gogacz et al . 2019). The results from

Gogacz et al . (2019) (which we will discuss in more detail in a moment) allow us to

derive the precise 2-ExpTime-complexity bounds for the logics K4(◇≥,�), D4(◇≥,�)
and S4(◇≥,�). The logics of the remaining classes of frames retain their complexities

from the graded two-way case, so the picture is as in the right part of Figure 2, but the

word “Undecidable” should be replaced by “2-ExpTime.”

Due to a large number of papers in which the complexity bounds from Figures 1 and

2 are scattered, we have not referenced all of them in this introduction. Readers wishing

to find an appropriate reference are recommended to use an online tool prepared by the

first author (bartoszjanbednarczyk.github.io/mlnavigator).

Related formalisms. Graded modalities are examples of counting quantifiers which are

present in various formalisms. First of all, counting quantifiers were introduced for first-

order logic: ∃≥nxϕ means: “at least n elements x satisfy ϕ”. The satisfiability problem for

some fragments of first-order logic with counting quantifiers was shown to be decidable.

In particular, the two-variable fragment is NExpTime-complete (Pratt-Hartmann 2005),

the two-variable guarded fragment is ExpTime-complete (Pratt-Hartmann 2007), and

the one-variable fragment is NP-complete (Pratt-Hartmann 2008). We will employ the

second of those results in our paper.

Counting quantifiers are also present, in the form of the so-called number restrictions,

in some DLs. As some standard DLs embed modal logics (c.f. a result in Baader et al .

2017, Section 2.6.2), results on DLs with number restrictions may be used to infer upper

bounds on the complexity of some graded modal logics.

The DL which is particularly interesting from our point of view is the already men-

tioned logic SIQ−. Syntactically, it can be seen as a multi-modal logic, that is, a logic

whose frames interpret not just one but many accessibility relations, with different modal-

ities associated with these relations. In the case of SIQ−, each of the accessibility relations
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can be independently required to be transitive or not. Recently, the knowledge base sat-

isfiability problem for this logic was shown decidable and 2-ExpTime-complete (Gogacz

et al . 2019). As we said, from this result the decidability and 2-ExpTime complexity

of both local and global satisfiability of K4(◇≥,�), S4(◇≥,�), and D4(◇≥,�) can be

inferred. Nevertheless, our proof of the finite model property for these logics remains valu-

able as in Gogacz et al . (2019) the decidability of the finite model reasoning for SIQ− is

left open (with the exception of the case in which there is only one accessibility relation

and this relation is transitive; in this case, however, our finite model construction is used

and cross-referred there).

In this context, it is worth noting that the logic K(◇≥,�) (with the accessibility re-

lation not necessarily being transitive) and the logic K4(◇1
≥,�

1,◇2
≥,�

2) (the bi-modal

variant of K4(◇≥,�) with two independent transitive accessibility relations) do not have

the global finite model property. Both these logics are contained in SIQ−. An exam-

ple K(◇≥,�) formula which is globally satisfiable (e.g., over an infinite binary tree with

reversed edges) but has no finite models is �p∧�¬p∧◇≤1⊺. This example can be easily

adapted to K4(◇1
≥,�

1,◇2
≥,�

2). On the other hand, K(◇≥,�) does have the local finite

model property, as it is a fragment of the DL ALCIQ, whose local finite model prop-

erty was shown in Tobies (2001a). The status of the local finite model property for the

multi-modal variants of K4(◇≥,�) is open.

Plan of the paper. In Section 2, we formally define the relevant modal languages and

their semantics, recall the so-called standard translation, and use it to derive some initial

results. In Sections 3 and 4, we investigate the classes of Euclidean frames and, respec-

tively, transitive frames. Finally, in Section 5 we provide two lower bounds filling the

gaps in the classification of the complexity of non-graded languages.

This work is an extended version of our conference paper (Bednarczyk et al . 2019).

2 Preliminaries

2.1 Languages, Kripke structures, and satisfiability

Let us fix a countably infinite set Π of propositional variables. The language of graded

two-way modal logic is defined inductively as the smallest set of formulas containing Π,

closed under Boolean connectives and, for any formula ϕ, containing ◇≥nϕ and �≥nϕ,
for all n ∈ N. For a given formula ϕ, we denote its length with ∣ϕ∣, and measure it as the

number of symbols required to write ϕ, with numbers in subscripts ≥n encoded in binary

(i.e., encoding a number n requires logn bits rather than n bits).

The basic modality ◇ can be defined in terms of graded modalities: ◇ϕ ∶= ◇≥1ϕ.
Analogously, for the converse modality: � ∶= �≥1. Keeping this in mind, we may treat

all languages mentioned in the introduction as fragments of the above-defined graded

two-way modal language. We remark that we may also introduce other modalities, for

example

◇≤nϕ ∶= ¬◇≥n+1 ϕ, �≤nϕ ∶= ¬�≥n+1 ϕ, ◻ϕ ∶= ¬◇ ¬ϕ, and ⊟ϕ ∶= ¬� ¬ϕ.

The semantics is defined with respect to Kripke structures, that is, structures over the

relational signature composed of unary predicates Π and with a binary predicate R. Such

structures are represented as triples A = ⟨W,R,V ⟩, whereW is the universe, R is a binary
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accessibility relation onW , and V is a function V ∶ Π→ P(W ) called valuation. Elements

from the set W are often called worlds.

The satisfaction relation ⊧ is defined inductively as follows:

● A,w ⊧ p iff w ∈ V (p), for all p ∈ Π,
● A,w ⊧ ¬ϕ iff A,w /⊧ ϕ and similarly for the other Boolean connectives,

● A,w ⊧ ◇≥nϕ iff there are ≥ n worlds v ∈W such that ⟨w, v⟩ ∈ R and A, v ⊧ ϕ,
● A,w ⊧ �≥nϕ iff there are ≥ n worlds v ∈W such that ⟨v,w⟩ ∈ R and A, v ⊧ ϕ.

For a given Kripke structure A = ⟨W,R,V ⟩, we call the pair ⟨W,R⟩ its frame. For a

class of frames F , we define the local (global) satisfiability problem of a modal language L
over F (or equivalently for a modal logic F(L∗)) as follows: given a formula ϕ from a

language L, verify whether ϕ is satisfied at some world (all worlds) w of some structure A

whose frame belongs to F .
We announced in the introduction that we are interested in classes of frames char-

acterized by any positive combination of the axioms of reflexivity (T), seriality (D),

symmetry (B), transitivity (4), and the Euclidean property (5), recalled below.

(D) seriality ∀x∃y (xRy)
(T) reflexivity ∀x (xRx)
(B) symmetry ∀xy (xRy⇒ yRx)
(4) transitivity ∀xyz (xRy ∧ yRz⇒ xRz)
(5) Euclideanness ∀xyz (xRy ∧ xRz⇒ yRz)

We say that a modal logic F(L∗) has the finite local (global) model property if any

formula of L which is satisfied in some world (all worlds) of some structure from F is

also satisfied in some world (all worlds) of a finite structure from F .

2.2 Standard translations

Modal logic can be seen as a fragment of first-order logic via the so-called standard trans-

lation (see, e.g., Blackburn et al . 2001). Here we present its variation tailored for graded

and converse modalities and discuss how it can be used to establish exact complexity

bounds for some of graded two-way modal logics.

In the forthcoming definition, we define a function stv for v ∈ {x, y}, which takes an

input two-way modal logic formula ϕ and returns an equisatisfiable first-order formula.

Definitions of stx and sty are symmetric; hence, we present the definition of stx only.

stx(p) = p(x) for all p ∈ Π (1)

stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ) similarly for ¬, ∨, etc. (2)

stx(◇≥nϕ) = ∃≥n.y(R(x, y) ∧ sty(ϕ)) (3)

stx(�≥nϕ) = ∃≥n.y(R(y, x) ∧ sty(ϕ)). (4)

Translated formulas lie in the two-variable guarded fragment of first-order logic extended

with counting quantifiers GC2. Observe that a modal formula ϕ ∈ L is (finitely) locally

satisfiable iff a formula ∃x stx(ϕ) ∈ GC2 is (finitely) satisfiable and that ϕ is (finitely)

globally satisfiable iff ∀x stx(ϕ) ∈ GC2 is (finitely) satisfiable. Since definitions of sym-

metry, seriality, and reflexivity, as recalled in the previous section, are GC2 formulas,

the standard translation can be used to provide a generic upper bound for the log-
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ics F(◇≥,�≥) over all classes of frames F involving neither transitivity nor Euclidean-

ness. From the fact that the global satisfiability problem is ExpTime–hard even for the

basic modal language F(◇) (Blackburn and van Benthem 2007) and from ExpTime-

completeness of GC2 (Pratt-Hartmann 2007), we conclude the following theorem.

Theorem 1

The global satisfiability problem for F(◇≥,�≥), where F is any class of frames from the

modal cube involving neither transitivity nor Euclideanness, is ExpTime-complete.

For the local satisfiability problem, its complexity decreases to PSpace. For two-way

graded language over K, D, and T, we can simply adapt an existing tableaux algorithm by

Tobies (Tobies 2001b), which yields a tight PSpace bound. Moreover, if a class of frames

is symmetric, then forward and converse modalities coincide and thus we may simply

apply the result on graded one-way languages from Kazakov and Pratt-Hartmann (2009).

The PSpace lower bounds for the above-mentioned logics are inherited from the basic

modal logic K (Ladner 1977) and hold even in the case of their propositional-variable-free

fragment (Chagrov and Rybakov 2002). Thus, we can conclude the following.

Theorem 2

The local satisfiability problem for F(◇≥,�≥), where F is any class of frames from the

modal cube involving neither transitivity nor Euclideanness, is PSpace-complete.

3 Euclidean frames: counting successors and predecessors

This section is dedicated to modal languages over the classes of frames satisfying Eu-

clideanness. We demonstrate an exponential gap (NExpTime versusNP) in the complex-

ities of modal logics over Euclidean frames (K5 and D5) and modal logics over transitive

Euclidean frames (K45 and D45).

The two remaining Euclidean logics of our interest, namely KB45 and S5, whose

frames are additionally symmetric, may be seen as one-way logics (as �≥ can be al-

ways replaced by ◇≥). Hence, their NP upper bounds follow from previous works on

one-way MLs (Kazakov and Pratt-Hartmann 2009). The lower bound is inherited from

the Boolean satisfiability problem (Cook 1971). Thus,

Theorem 3 (Consequence of Kazakov and Pratt-Hartmann 2009.)

The local satisfiability and the global satisfiability problems for modal log-

ics KB45(◇≥,�≥) and S5(◇≥,�≥) are NP-complete.

3.1 The shape of Euclidean frames

We start by describing the shape of frames under consideration. Let A be a Euclidean

structure, that is, a Kripke structure A = ⟨W,R,V ⟩ whose accessibility relation R satisfies

the Euclidean property.

A world w ∈W is called a lantern, if ⟨w′,w⟩ /∈ R holds for every w′ ∈W . The set of all

lanterns in A is denoted with LA. We say that lantern l ∈W illuminates a world w ∈W ,

if ⟨l,w⟩ ∈ R holds. The previous definition is lifted to the sets of worlds in an obvious

way: a lantern l illuminates a set of worlds I ⊆W if l illuminates every world w from I.
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l1 l2

QA

Fig. 3. A Euclidean structure A with lanterns LA = {l1, l2}.

We say that two worlds w1,w2 ∈ W are R-equivalent (or simply equivalent if R is

known from the context), if both ⟨w1,w2⟩ ∈ R and ⟨w2,w1⟩ ∈ R hold. The R-clique for a

world w1 in a structure A is the set QA(w1) ⊆ W consisting of w1 together with all of

its R-equivalent worlds. With QA we denote the set W ∖LA of inner (i.e., non-lantern)

worlds. See Figure 3 for a drawing of an example Euclidean structure.

It is easy to observe that for any world w1 ∈ W , all members of the clique QA(w1)
are R-equivalent. This justifies why we have chosen the term “clique” to name such sets.

Observation 1

Any distinct worlds w′,w′′ from the R-clique QA(w) of w are R-equivalent.

Proof

From the definition of R-equivalence, we know that both ⟨w,w′⟩ ∈ R and ⟨w,w′′⟩ ∈ R
hold. Since the relation R satisfies the Euclidean property we infer that ⟨w′,w′′⟩ ∈ R
holds and ⟨w′′,w′⟩ ∈ R holds, which implies R-equivalence of w and w′.

An immediate conclusion from the above observation is that the equality QA(w) =
QA(w1) holds for any world w ∈ QA(w1). Thus, we will say that Q is an R-clique in A if

the equality Q = QA(w1) holds for some (equivalently: for any) world w1 ∈ Q.

As usual in modal logics, we can restrict our attention to R-connected models, that is,

those models A = ⟨W,R,V ⟩ for which ⟨W,R ∪R−1⟩ is a connected graph. The following

lemma describes the shape of Euclidean structures under consideration. It is very similar

to Lemma 2 in Kazakov and Pratt-Hartmann (2009).

Lemma 1

If A is an R-connected structure over a Euclidean frame ⟨W,R⟩, then all worlds w in QA

are reflexive (i.e., ⟨w,w⟩ ∈ R holds) and QA is an R-clique.

Proof

In the course of proof, we will refer to the formula (5) from Section 2.1, which defines

Euclidean property. We will show that all worlds in QA are reflexive and all worlds

in QA are R-equivalent. To show reflexivity take any w ∈ QA. By definition of QA, there

exists w′ ∈ W such that ⟨w′,w⟩ ∈ R. Since A satisfies (5), by taking w′ as x and w as

both y and z in (5), we infer ⟨w,w⟩ ∈ R.
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To demonstrate R-equivalence, we will employ some simple observations. First, the

relation R ∩ (QA ×QA) is symmetric. To prove it take any w1,w2 ∈ QA with ⟨w1,w2⟩ ∈
R. Then, use reflexivity of w1 and the Euclidean property (with w1 taken as x and z

simultaneously, and w2 as y in (5)) to infer ⟨w2,w1⟩ ∈ R. Second, R ∩ (QA × QA) is

transitive. To prove it take any w1,w2,w3 ∈ QA with ⟨w1,w2⟩ ∈ R and ⟨w2,w3⟩ ∈ R.
Symmetry of R ∩ (QA × QA) gives us ⟨w2,w1⟩ ∈ R. Then, by the Euclidean property

(with w2 taken as x, w3 taken as z, and w1 as y in (5)) we infer ⟨w1,w3⟩ ∈ R. Third, if
⟨l,w1⟩ ∈ R and ⟨l,w2⟩ ∈ R, for some l ∈ L and w1,w2 ∈ QA, then ⟨w1,w2⟩ ∈ R ∪R−1. This
observation again simply follows from (5).

Now take any w ∈ QA. We will show that QA = QA(w), that is, that QA is the R-clique

for w. Take any w′ ∈ QA. We will show that both ⟨w,w′⟩ ∈ R and ⟨w′,w⟩ ∈ R. Since A

is connected, there exists a (R ∪R−1)-path from w to w′ in A. By inductive application

of the third observation above, we may assume that all elements of the path belong to

QA. Then by the first observation (symmetry) we may assume that this is actually an

R-path. Then, by the second observation (transitivity) the path reduces to a single edge

⟨w,w′⟩ ∈ R. In the same way, we may show that ⟨w′,w⟩ ∈ R. Thus, all worlds in QA are

R-equivalent with w. Since all other worlds in A are lanterns, they cannot be R-equivalent

with w. Thus, QA is indeed the R-clique for w.

3.2 The universal modality

Before we start proving complexity results for the family of Euclidean logics, we show

that global and local satisfiability problems are inter-reducible over any class of frames

involving the Euclidean property.

Having restricted our attention to R-connected models, we will show that the universal

modality U can be defined in terms of standard (i.e.,◇ and�) modalities. Recall that the

semantics of Uϕ is defined as follows: A,w ⊧Uϕ, iff for every world x the condition A, x ⊧
ϕ holds. Taking a look at the shape of Euclidean structures (see, e.g., Lemma 1), it is

not difficult to see that to propagate satisfaction of a given formula ϕ through the whole

structure, and it is sufficient to first traverse all inner elements and from each of them

propagate the satisfaction of ϕ to their predecessors. This intuition can be formalized by

taking Uϕ ∶= ϕ ∧ ◻ ◻ ⊟ϕ.

Lemma 2

Let A = ⟨W,R,V ⟩ be an R-connected Euclidean structure. Then A,w0 ⊧ ϕ∧◻◻⊟ϕ holds

for some world w0 ∈W iff A, v ⊧ ϕ holds for all worlds v ∈W .

Proof

Let A = ⟨W,R,V ⟩ be an R-connected Euclidean structure and let A,w ⊧ ϕ∧◻◻⊟ϕ hold

for some world w0 ∈W . We will show that it implies that ϕ is true in every world w ∈W
(the opposite direction of the Lemma is trivial).

First, if R = ∅, then A is a singleton structure, because it is R-connected. In this case,

the implication trivially holds. So, assume that R ≠ ∅. Define S = R ○R ○R−1. We will

show that S is the universal relation W ×W . Indeed, take any a, b ∈W . Then there exists

x ∈ QA such that R(a, x) holds (if a ∈ QA then, by Lemma 1, a is reflexive, so take x = a;
if a ∈ LA, such an x exists, since A is connected). Similarly, there exists y ∈ QA such

that R(b, y). Now we have R(x, y), since R is universal on QA by Lemma 1. Thus, we
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have R(a, x), R(x, y), and R−1(y, b), so S(a, b) holds and thus S = W ×W . Therefore,

A,w0 ⊧ ◻ ◻ ⊟ϕ implies A, v ⊧ ◻ ◻ ⊟ϕ, for any v ∈W .

We now argue that the local and global satisfiability problems coincide for modal logics

over Euclidean frames.

Lemma 3

Let (L,F) be a modal logic whose language contains ◇ and � and F is a class of frames

from the modal cube satisfying the Euclidean property. Then the global satisfiability

problem for F(L∗) is LogSpace reducible to the local satisfiability problem for F(L∗)
and vice versa.

Proof

As usual for modal logics, we may restrict to satisfiability over connected structures.

Since F is Euclidean and we have both ◇, � at our disposal, we know that the universal

modality U is definable in F(L∗) (see: Lemma 2). From the semantics of U, we can

immediately conclude that any modal formulas ϕl, ϕg the following equivalences hold: ϕl

is locally satisfiable iff ¬U¬ϕl is globally satisfiable and ϕg is globally satisfiable iff Uϕg

is locally satisfiable.

3.3 The upper bound for graded two-way K5 and D5

This section is dedicated to the following theorem.

Theorem 4

The local and global satisfiability problems for Euclidean modal logics K5(◇≥,�≥)
and D5(◇≥,�≥) are in NExpTime.

Proof

Note that here we may again restrict to satisfiability over connected frames. We start

with the case of the class of all Euclidean frames K5. We translate a given modal for-

mula ϕ to the two-variable logic with counting C2, in which both graded modalities and

the shape of connected Euclidean structures, as defined in Lemma 1, can be expressed.

Since satisfiability of C2 is in NExpTime (Pratt-Hartmann 2007), we obtain the desired

conclusion. Recall the standard translation st from Section 2.2. Let lantern(⋅) be a new

unary predicate and define ϕtr as

stx(ϕ) ∧ ∀x∀y. (¬lantern(x) ∧ ¬lantern(y) → R(x, y)) ∧ (lantern(y) → ¬R(x, y)) .

Since stx(ϕ) belongs to GC2, ϕtr belongs to C2 (but not to GC2) and has one free vari-

able x. Let B be a Kripke structure over a Euclidean frame. Expand B to a structure B+

by setting lanternB+ = {w ∈ B ∣ w ∈ LB}. Taking into account Lemma 1, a structural

induction on ϕ easily establishes the following condition:

B,w0 ⊧ ϕ if and only if B+ ⊧ ϕtr[w0/x] for every world w0 ∈ B.

Thus, a K5(◇≥,�≥) formula ϕ is locally satisfiable if and only if the C2 formula ∃≥1x.ϕtr

is satisfiable, yielding a NExpTime algorithm for K5(◇≥,�≥) local satisfiability. Mem-

bership of global satisfiability in NExpTime is implied by Lemma 2.
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For the case of serial Euclidean frames, D5, it suffices to supplement the C2 formula

defined in the case of K5 with the conjunct ∃x.(¬lantern(x)) expressing seriality. Cor-

rectness follows then from the simple observation that a Euclidean frame is serial iff it

contains at least one non-lantern world (recall that all these worlds are reflexive).

3.4 Lower bounds for two-way graded K5 and D5

We now show a matching NExpTime-lower bound for the logics from the previous sec-

tion. We concentrate on local satisfiability, but by Lemma 2 the results will hold also

for global satisfiability. Actually, we obtain a stronger result, namely we show that the

two-way graded modal logics K5 and D5 remain NExpTime-hard even if counting in

one-way (either backward or forward) is forbidden. Hence, we show hardness of the

logics K5(◇≥,�) and D5(◇≥,�). We recall that this gives a higher complexity than

the ExpTime-complexity of the language ◇,� (Demri and de Nivelle 2005) and NP-

complexity of the language◇≥ (Kazakov and Pratt-Hartmann 2009) over the same classes

of frames.

In order to prove NExpTime-hardness of the Euclidean two-way graded modal log-

ics K5 and D5, we employ a variant of the classical tiling problem, namely exponential

torus tiling problem from Lutz (2002).

Definition 1 (4.15 from Lutz 2002)

A torus tiling problem P is a tuple (T ,H,V), where T is a finite set of tile types andH,V ⊆
T × T represent the horizontal and vertical matching conditions. Let P be a tilling

problem and c = t0, t1, . . . , tn−1 ∈ T n an initial condition. A mapping τ ∶ {0,1, . . . ,2n −
1} × {0,1, . . . ,2n − 1} → T is a solution for P and c if and only if, for all i, j < 2n,

the following holds (τ(i, j), τ(i ⊕2n 1, j)) ∈ H, (τ(i, j), τ(i, j ⊕2n 1)) ∈ V and τ(0, i) = ti
for all i < n, where ⊕i denotes addition modulo i. It is well known that there exists

a NExpTime-complete torus tiling problem.

3.4.1 Outline of the proof

The proof is based on a polynomial time reduction from a torus tiling problem as in

Definition 1. Henceforward, we assume that a NExpTime-complete torus tiling prob-

lem P = (T ,H,V) is fixed. Let c = t0, t1, . . . , tn−1 ∈ T n be its initial condition. We write a

formula which is (locally) satisfiable iff ⟨P , c⟩ has a solution. Each cell of the torus carries

a position ⟨H,V ⟩ ∈ {0,1, . . . ,2n − 1} × {0,1, . . . ,2n − 1}, encoded in binary in a natural

way by means of propositional letters v0, v1, . . . , vn−1 and h0, h1, . . . , hn−1, with h0 and v0
denoting the least significant bits. In the reduction, a single cell of the torus corresponds

to a unique inner, that is, non-lantern, world. Since there are exactly 2n ⋅ 2n cells, we

enforce that also the total number of inner worlds is equal to 2n ⋅ 2n. We make use of

graded modalities to specify that every inner world has exactly 2n ⋅ 2n successors. We

stress here that this is the only place where we employ counting. Thus, the proof works in

the case where graded converse modalities are disallowed (but the basic converse modal-

ity will be necessary). Alternatively we could equivalently write that every inner world

has exactly 2n ⋅ 2n inner predecessors and obtain hardness of the language with graded

converse modalities but without graded forward modalities.
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Once we enforced a proper size of our torus, we must be sure that two distinct inner

worlds carry different positions. We do this in two steps. We first write that a world

with position (0,0) occurs in a model. For the second step, we assume that the grid is

chessboard-like, that is, all elements are colored black or white in the same way as a

chessboard is. Then, we say that every world is illuminated by four lanterns, where each

of them propagates ⊕2n1 relation on the proper axis (from a black node to a white one

and vice versa). Finally, having the torus prepared we encode a solution for the given

tiling by simply labelling each inner world with some tile letter t and ensure (from the

vantage point of the lanterns) that any two horizontal or vertical neighbors do not violate

the tiling constraints.

3.4.2 Encoding the exponential torus

Our goal is now to define a formula describing the exponential torus. The shape of the

formula is as follows:

ϕtorus
def= ϕfirstCell ∧U (ϕpartition ∧ϕchessboard ∧ϕtorusSize ∧ϕsucc)

where U is the universal modality as in Lemma 2. The formula is going to say that:

(i) the current world has position (0,0); (ii) every world is either a lantern or an inner

world; (iii) the torus is chessboard-like, that is, its cells are colored with blk (black) and

with wht (white) exactly as a real chessboard is; (iv) the overall size of the torus is

equal to 2n ⋅2n; (v) each world of the torus has a proper vertical and a proper horizontal

successor. The first four properties are straightforward to define:

ϕfirstCell
def= inner ∧wht ∧

n−1

⋀
i=0

(¬vi ∧ ¬hi)

ϕpartition
def= (lantern ↔ ¬inner) ∧ (lantern ↔ ¬�⊺)

ϕchessboard
def= (wht ↔ ¬blk) ∧ (wht ↔ (v0 ↔ h0))

ϕtorusSize
def= inner →◇=2n⋅2n⊺

Note that the formula ϕtorusSize indeed expresses (iv), as the set of all inner worlds

forms a clique. The obtained formulas are of polynomial length since the number 2n ⋅ 2n

is encoded in binary.

What remains is to define ϕsucc. For this, for every inner world we ensure that there ex-

ists a proper lantern responsible for establishing the appropriate successor relation. There

will be four different types of such lanterns, denoted by symbols: vbw , hbw , vwb, hwb. The

intuition is the following: the first letter h or v indicates whether a lantern is responsible

for an H– or V –relation. The last two letters say whether a successor relation will be

established between black and white worlds, or in the opposite way.

ϕsucc
def= (lantern → ⋁

♡∈{vbw ,hbw ,vwb,hwb}

(♡ ∧ϕ♡))∧

(inner → ⋀
♡∈{vbw ,hbw ,vwb,hwb}

�(lantern ∧ϕ♡)).

It suffices to define formulas ϕvbw , ϕhbw , ϕvwb , and ϕhwb . Let us first define ϕvbw .

The formula below, intended to be interpreted at a lantern, consists of three parts: (i)
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the black and the white worlds illuminated by the lantern are pseudo-unique, that is,

all white (respectively, black) worlds illuminated by the same lantern carry the same

position; uniqueness will follow later from ϕtorusSize; (ii) all black worlds illuminated by

the lantern have the same H-position as all white worlds illuminated by this lantern;

(iii) if Vw (respectively, Vb) encodes a V -position of the white (respectively, black) worlds

illuminated by the lantern, then Vw = Vb ⊕2n 1. Let us define ϕvbw as:

ϕvbw
def= ϕpseudoUniqueness ∧ϕequalH ∧ϕVw=Vb⊕2n1.

The definitions of the first and the second part of ϕvbw are simple:

ϕpseudoUniqueness
def= ⋀

c∈{wht,blk}

⋀
p∈{v,h}

n−1

⋀
i=0

◇(c ∧ pi) → ◻(c ∧ pi)

ϕequalH
def=

n−1

⋀
i=0

◇(blk ∧ hi) ↔ ◇(wht ∧ hi)

Finally, we encode the ⊕2n -operation as the formula ϕVw=Vb⊕2n1 by, a rather standard,

implementation of binary addition. Below we distinguish two cases: when Vb is equal

to 2n−1 and when Vb is smaller than 2n−1.

ϕVw=Vb⊕2n1
def= (◇(blk ∧

n−1

⋀
i=0

vi) → ◇(wht ∧
n−1

⋀
i=0

¬vi)) ∧

n−1

⋁
i=0

(◇(blk ∧ ¬vi ∧
i−1

⋀
j=0

vj) ∧◇(wht ∧ vi ∧
i−1

⋀
j=0

¬vj) ∧
n−1

⋀
j=i+1

◇(blk ∧ vj) ↔ ◇(wht ∧ vj)).

This completes the definition of ϕvbw . The following three definitions are analogous:

ϕhbw
def= ϕpseudoUniqueness ∧ϕequalV ∧ϕHw=Hb⊕2n1

ϕvwb
def= ϕpseudoUniqueness ∧ϕequalH ∧ϕVb=Vw⊕2n1

ϕhwb
def= ϕpseudoUniqueness ∧ϕequalV ∧ϕHb=Hw⊕2n1.

The formula ϕequalV can be obtained from ϕequalH by replacing, for every i, the letter hi
with the letter vi, and defining the formulas ϕHw=Hb⊕2n1, ϕVb=Vw⊕2n1, and ϕHb=Hw⊕2n1 as

simple modifications of ϕVw=Vb⊕2n1. While modifying the mentioned formula, one should

only switch blk and wht propositional symbols and possibly change v to h (when we

consider adding ⊕2n1 on the H axis).

The following lemma simply states that the formula ϕtorus indeed defines a valid

torus. Its proof is routine and follows directly from correctness of all presented

formulas.

Lemma 4

Assume that the formula ϕtorus is locally satisfied at a world w of a Euclidean struc-

ture A = ⟨W,R,V ⟩. Then, set QA(w), that is, the R-clique for w, contains exactly 2n ⋅ 2n

elements and each of them carries a different position ⟨H,V ⟩, that is, there are no two

worlds v, v′ satisfying exactly the same hi- and vi-predicates.

Having defined a proper torus, it is quite easy to encode a solution to the torus tiling

problem P with the initial condition c. Each inner node will be labelled with a single tile
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from T and using appropriate lanterns we enforce that any two neighboring worlds do

not violate the tiling rules H and V. This is the purpose of the formula ϕtiling defined

below:

ϕtiling
def= U(ϕtile ∧ϕinitCond ∧ϕtilingRules).

The first conjunct specifies that each inner world is labelled with exactly one tile.

ϕtile
def= inner → (⋁

t∈T

t) ∧ ⋀
t,t′∈T ,t≠t′

(¬t ∨ ¬t′).

The second conjunct distributes the initial tiling among torus cells. To define it we use

handy macros V =k and H=k, with their intuitive meaning that the binary representa-

tion of the number k is written on atomic letters v0, v1, . . . , vn−1 and h0, h1, . . . , hn−1,

respectively. Thus,

ϕinitCond
def=

n−1

⋀
i=0

(inner ∧H=0 ∧ V =i) → ti.

The last formula says that any two successive worlds do not violate tiling rules. Since

any two neighbors are connected via a lantern, we describe the formula from the point

of view of such lantern.

ϕtilingRules
def= (lantern ∧ vbw → ⋁

(t,t′)∈V

(◇(blk ∧ t) ∧◇(wht ∧ t′))) ∧

(lantern ∧ vwb → ⋁
(t′,t)∈V

(◇(wht ∧ t) ∧◇(blk ∧ t′))) ∧

(lantern ∧ hbw → ⋁
(t,t′)∈H

(◇(blk ∧ t) ∧◇(wht ∧ t′))) ∧

(lantern ∧ hwb → ⋁
(t′,t)∈H

(◇(wht ∧ t) ∧◇(blk ∧ t′))).

In the following lemma, we claim that the presented reduction is correct. Its proof is

once again routine and follows directly from correctness of all presented formulas.

Lemma 5

Let ϕreduction
def= ϕtorus ∧ϕtiling. The torus tiling problem instance ⟨P , c⟩ has a solution if

and only if the formula is ϕreduction locally satisfiable.

Note that our intended models are serial. Thus, the result holds also for the logic D5.

This gives the following theorem.

Theorem 5

The local and global satisfiability problems for the logics K5(◇≥,�) and D5(◇≥,�)
are NExpTime-hard.

Together with Theorem 4, this gives:

Theorem 6

The local and global satisfiability problems for the logics K5(◇≥,�), K5(◇≥,�≥) and
for logics D5(◇≥,�), D5(◇≥,�≥) are NExpTime-complete.
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3.5 Transitive Euclidean frames

It turns out that the logics of transitive Euclidean frames have lower computational

complexity. This is due to the following lemma.

Lemma 6

Let A be an R-connected structure over a transitive Euclidean frame ⟨W,R⟩. Then, every
world l ∈ LA illuminates QA.

Proof

Take any world q ∈ QA. We will show that a lantern l illuminates q. Since l has no

R-predecessor and A is R-connected, there exists a world q′ ∈ QA such that ⟨l, q′⟩ ∈ R. By
Lemma 1 set QA is an R-clique, and thus we have ⟨q′, q⟩ ∈ R. By transitivity, we conclude

that ⟨l, q⟩ ∈ R. Thus, a lantern l illuminates QA.

A first-order formula stating that all non-lanterns are R-successors of all lanterns re-

quires only two variables. Thus, as an immediate conclusion from Lemma 6, we can extend

the translation developed in the previous section to handle the logic K45(◇≥,�≥), and
obtain a NExpTime-upper bound for the satisfiability problem. In fact, the shape of

transitive Euclidean structures is so simple that two-variable logic is no longer necessary.

Below we translate K45(◇≥,�≥) and D45(◇≥,�≥) to one-variable logic with counting C1,

which is NP-complete (Pratt-Hartmann 2008).

Theorem 7

The local and the global satisfiability problems for transitive Euclidean modal log-

ics K45(◇≥,�≥) and D45(◇≥,�≥) are in NP.

Proof

The proof is similar in spirit to the proof of Lemma 3 in Kazakov and Pratt-Hartmann

(2009). Let lantern(⋅) be a new unary predicate. We first define translation function tr

that, given a K45(◇≥,�≥) formula ϕ, produces an equisatisfiable C1 formula tr(ϕ). We

assume that all counting subscripts ϕ are non-zero.

tr(p) = p(x) for all p ∈ Π (5)

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ) similarly for ¬, ∨, etc. (6)

tr(◇≥nϕ) = ∃≥n.x(¬lantern(x) ∧ tr(ϕ)) (7)

tr(◇≤nϕ) = ∃≤n.x(¬lantern(x) ∧ tr(ϕ)) (8)

tr(�≥nϕ) = ¬lantern(x) ∧ ∃≥n.x(tr(ϕ)) (9)

tr(�≤nϕ) = lantern(x) ∨ ∃≤n.x(tr(ϕ)). (10)

Observe that tr(ϕ) is linear in the size of ϕ. Let B be a Kripke structure over a

transitive Euclidean frame. Expand B to a structure B+ by setting an interpretation of

a symbol lantern to be lanternB+ = {w ∈ B ∣ w ∈ LB}. Taking into account Lemmas 1

and 6, a structural induction on ϕ easily establishes the following condition:

B,w0 ⊧ ϕ if and only if B+ ⊧ tr(ϕ)[w0/x] for every world w0.

Thus, a K45(◇≥,�≥) formula ϕ is locally satisfiable if and only if C1 formula ∃≥1.x(tr(x))
is satisfiable, yielding an NP algorithm for K45(◇≥,�≥) satisfiability. The algorithm
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for D45(◇≥,�≥) is obtained by just a slight update to the one given above. It suffices to

supplement the C1 formula defined in the case of K45 with the conjunct ∃x.(¬lantern(x))
expressing seriality (cf. the proof of Theorem 4).

4 Transitive frames: counting successors, accessing predecessors

In this section, we consider the language ◇≥,�, that is, the modal language in which we

can count the successors, but cannot count the predecessors, having at our disposal only

the basic converse modality. Over all classes of frames involving neither transitivity nor

Euclideanness, local satisfiability is PSpace-complete and global satisfiability is Exp-

Time-complete, as the tight lower and upper bounds can be transferred from, resp., the

one-way non-graded language ◇ and the full two-way graded language. Over the classes

of Euclidean frames K5 and D5, both problems are NExpTime-complete, as proved in

Theorem 6. Over the classes of transitive Euclidean frames KB45, K45, D45, and S5,

the problems are NP-complete, as the lower bound transfers from the language ◇ and

the upper bound from the full two-way graded language (Theorem 7). So, over all the

above-discussed classes of frames the complexities of ◇≥,� and ◇≥,�≥ coincide.

What is left are the classes of transitive frames K4, D4, and S4. Recall that, in contrast

to their one-way counterparts, the two-way graded logics of transitive frames K4(◇≥,�≥),
D4(◇≥,�≥), and S4(◇≥,�≥) are undecidable (Zolin 2017). In Zolin (2017), the question

is asked if the decidability is regained when the language is restricted to ◇≥,�. Here we

answer this question, demonstrating the local and global finite model property for the

obtained logics; this implies that their satisfiability problems are indeed decidable.

In Lemma 5.5 from Zolin (2017), it is shown that over the class of transitive frames

the global satisfiability and local satisfiability problems for the considered language are

polynomially equivalent. Moreover, they are polynomially equivalent to the combined

satisfiability problem, asking if for a given pair of formulas φ,φ′ there exists a structure

in which φ is true at every world and φ′ is true at some world. The remark following the

proof of that lemma says that it holds also for reflexive transitive frames. The same can

be easily shown also for serial transitive frames. We thus have:

Lemma 7

For each of the logics K4(◇≥,�), D4(◇≥,�), and S4(◇≥,�), their global, local, and

combined satisfiability problems are polynomially equivalent.

Below we explicitly deal with global satisfiability. The above lemma implies, however,

that our results apply also to local satisfiability.

Let us concentrate on the class K4 of all transitive frames. The finite model construction

we are going to present is the most complicated part of this paper. It begins similarly

to the exponential model construction in the case of local satisfiability of K4(◇≥) from
Kazakov and Pratt-Hartmann (2009): we introduce a Scott-type normal form (Lemma 8)

and then generalize two pieces of model surgery used there (Lemma 9) to our setting:

starting from any model, we first obtain a model with short paths of cliques and then we

decrease the size of the cliques. Some modifications of the constructions from Kazakov

and Pratt-Hartmann (2009) are necessary to properly deal with the converse modality;

they are, however, rather straightforward. Having a model with short paths of cliques and
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small cliques, we develop some new machinery of clique profiles and clique types allowing

us to decrease the overall size of the structure; this fragment is our main contribution.

Lemma 8

Given a formula ϕ of the language (◇≥,�), we can compute in polynomial time a for-

mula ψ of the form

η ∧ ⋀
1≤i≤l

(pi →◇≥Ci
πi) ∧ ⋀

1≤i≤m

(qi →◇≤Di
χi)∧

⋀
1≤i≤l′

(p′i →�π
′
i) ∧ ⋀

1≤i≤m′
(q′i → ⊟¬χ

′
i), (11)

where the pi, qi, p
′
i, q
′
i are propositional variables, the Ci, Di are natural numbers, and η

and the πi, χi, π
′
i, χ

′
i are propositional formulas, such that ϕ and ψ are globally satisfiable

over exactly the same transitive frames.

Proof

Follows by a routine renaming process, which is similar to the proof of Lemma 4 from

Kazakov and Pratt-Hartmann (2009).

Next, let us introduce some helpful terminology, copying it mostly from the above-

mentioned paper (Kazakov and Pratt-Hartmann 2009). Let A = ⟨W,R,V ⟩ be a transitive

structure, and w1,w2 ∈ W . We say that w2 is an R-successor of w1 if ⟨w1,w2⟩ ∈ R; w2

is a strict R-successor of w1 if ⟨w1,w2⟩ ∈ R, but ⟨w2,w1⟩ /∈ R; w2 is a direct R-successor

of w1 if w2 is a strict R-successor of w1 and, for every w ∈ W such that ⟨w1,w⟩ ∈ R
and ⟨w,w2⟩ ∈ R we have either w ∈ QA(w1) or w ∈ QA(w2). Recall that QA(w) denotes
the R-clique for w in A.

The depth of a structure A is the maximum over all k ≥ 0 for which there exist

worlds w0, . . . ,wk ∈ W such that wi is a strict R-successor of wi−1 for every 1 ≤ i ≤ k,
or ∞ if no such a maximum exists. The breadth of A is the maximum over all k ≥ 0

for which there exist worlds w,w1, . . . ,wk such that wi is a direct R-successor of w for

every 1 ≤ i ≤ k, and the sets QA(w1), . . .QA(wk) are disjoint, or∞ if no such a maximum

exists. The width of A is the smallest k such that k ≥ ∣QA(w)∣ for all w ∈W , or ∞ if no

such k exists.

Lemma 9

Let ϕ be a normal form formula as in equation (11). If ϕ is globally satisfied in a transitive

model A, then it is globally satisfied in a transitive model A′ with depth d′ ≤ (∑m
i=1Di)+

m +m′ + 1 and width c′ ≤ (∑l
i=1Ci) + l′ + 1.

Proof

The proof is a construction being a minor modification of Stages 1 and 4 of the con-

struction from the proof of Lemma 6 in Kazakov and Pratt-Hartmann (2009), where

the language without backward modalities is considered. We closely follow the lines

of Kazakov and Pratt-Hartmann’s construction, just taking additional care of back-

ward witnesses. We remark here that also Stage 2 of the above-mentioned construction

could be adapted, giving a better bound on the depth of A′. We omit it here since

such an improvement would not be crucial for our purposes. Stage 3 cannot be directly

adapted.
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Let us turn to the detailed proof.

Stage 1. Small depth. Let A = ⟨W,R,V ⟩. For w ∈ W define diA(w) ∶= min(Di + 1, ∣{w′ ∶
A,w′ ⊧ χi, ⟨w,w′⟩ ∈ R∗}∣) where Di and χi, 1 ≤ i ≤ m, are as in Equation 11 and R∗

is the reflexive closure of R. We also define SA(w) ∶= {χ′i ∶ there is w′ such that A,w′ ⊧
χ′i and ⟨w

′,w⟩ ∈ R∗}, where χ′i, 1 ≤ i ≤m
′ are also as in equation (11).

Let R∼ ∶= {⟨w1,w2⟩ ∈ R ∶ diA(w1) = diA(w2) for all 1 ≤ i ≤m and SA(w1) = SA(w2)} be
the restriction of R to pairs of worlds that have the same values of the diA and SA. Let R

−
∼

be the inverse of R∼. Let A
′ = ⟨W,R′, V ⟩ be obtained from A = ⟨W,R,V ⟩ by setting R′ ∶=

(R ∪R−∼)
+, where the superscript + is the transitive closure operator. Intuitively, if w1

is R-reachable from w2 w1 and w2 agree on the number (up to the limit of Di) of the

worlds satisfying χi reachable from them, for all 1 ≤ i ≤ m, and, for all i, w1 is an

R-successor of a world satisfying χ′i iff w2 is, then we make w1 and w2 R
′-equivalent.

The effect is that some R-cliques of A are joined into bigger R-cliques in A′. We show

that A′ satisfies ϕ and has appropriately bounded depth.

For every w1,w2 ∈ W such that w2 is a strict R′-successor of w1, we have diA(w1) ≥
diA(w2) for all 1 ≤ i ≤ m, SA(w1) ⊆ SA(w2) and either diA(w1) > diA(w2) for some i, and

thus∑m
i=1 d

i
A(w1) > ∑

m
i=1 d

i
A(w2) or the inclusion SA(w1) ⊆ SA(w2) is strict. Since diA(w) ≤

Di + 1 for every w ∈W and every 1 ≤ i ≤m, and the size of SA(w) is bounded by m′, the

length of every chain w0, . . . ,wk such that wi is a strict R′-successor of wi−1 is bounded

by (∑m
i=1Dj) +m +m′ + 1.

In order to prove that A′ ⊧ ϕ, we first prove that diA(w) = d
i
A′(w) for every w ∈ W

and 1 ≤ i ≤m. Assume to the contrary that diA(w) /= d
i
A′(w) for some w ∈W and some i.

Since R ⊆ R′, we have diA(w) < d
i
A′(w) ≤ Di + 1, which means, in particular, that there

exists an element w′ ∈W with A,w′ ⊧ χi, such that ⟨w,w′⟩ ∈ R′ but ⟨w,w′⟩ /∈ R.
Since ⟨w,w′⟩ ∈ R′, by definition of R′, there exists a sequence w0, . . . ,wk of different

worlds in W such that w0 = w, wk = w′ and ⟨wj−1,wj⟩ ∈ R ∪R−∼ for every 1 ≤ j ≤ k. Note
that diA(wj−1) ≥ diA(wj) for every 1 ≤ j ≤ k and every 1 ≤ i ≤ m. Take the maximal j

such that ⟨wj−1,w
′⟩ /∈ R. Since ⟨w0,w

′⟩ = ⟨w,w′⟩ /∈ R, such a maximal j always exists.

Then ⟨wj ,w
′⟩ ∈ R∗, and ⟨wj−1,wj⟩ /∈ R. Since ⟨wj−1,wj⟩ ∈ R∪R−∼ , we have ⟨wj−1,wj⟩ ∈ R−∼ ,

and so diA(wj−1) = diA(wj) by definition of R∼. Since d
i
A(wj) ≤ diA(w0) = diA(w) <Di + 1,

we obtain a contradiction, due to the fact that diA(wj−1) = diA(wj) ≤ Di, ⟨wj−1,w ⟩ /∈
R∗, ⟨wj ,w

′⟩ ∈ R∗, ⟨wj ,wj−1⟩ ∈ R, and A,w′ ⊧ χi.

The observation that SA(w) = SA′(w) for all w ∈ W is even simpler. Assume to the

contrary that this equality does not hold for some w ∈W . This means that χ′i ∈ SA′(w)
and χ′i /∈ SA(w) for some 1 ≤ i ≤ m′. In particular, there exists an element w′ ∈ W
with A,w′ ⊧ χ′i, such that ⟨w′,w⟩ ∈ R′ but ⟨w′,w⟩ /∈ R. Thus, there is a sequence of

different worlds w′ = w0, . . . ,wk = w such that ⟨wj−1,wj⟩ ∈ R∪R−∼ for every 1 ≤ j ≤ k. Note
that SA(wj−1) ⊆ SA(wj) for every 1 ≤ j ≤ k. Since χ′i ∈ SA(w0) it follows that χ′i ∈ SA(wk).
Contradiction.

To complete the proof that A′ ⊧ ϕ we demonstrate that if ψ is any conjunct of ϕ

and w ∈W , then A,w ⊧ ψ implies A′,w ⊧ ψ. Indeed, for the propositional formula η it is

immediate. For subformulas (pi → ◇≥Ci
πi) and (p′i →�π

′
i), this holds since R ⊆ R

′. For

subformulas (qi → ◇≤Di
χi), this follows from the property diA(w) = d

i
A′(w). Finally, for

subformulas (q′i → ⊟¬χ
′
i) this follows from the property SA(w) = SA′(w).
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Stage 2. Small width. By Stage 1, we may assume that A has depth bounded

by (∑m
i=1Dj) +m +m′ + 1. For every element w ∈ W , we define Qπi

(w) to be the set

of elements of QA(w) for which πi holds (1 ≤ i ≤ l) and Qπ′i
(w) to be the set of elements

of QA(w) for which π′i holds (1 ≤ i ≤ l
′). We call the elements of each Qπ(w) the equiva-

lent π-witnesses for w. Note that for each relevant π we have Qπ(w1) = Qπ(w2) when w1

and w2 are R-equivalent. For 1 ≤ i ≤ l, let Q′πi
(w) be Qπi

(w) if ∣Qπi
(w)∣ ≤ Ci, or, other-

wise, a subset of Qπi
(w) which contains exactly Ci elements. We call Q′πi

(w) the selected
equivalent πi-witnesses for w. For 1 ≤ i ≤ l′, let Q′π′i(w) be Qπ′i

(w) if ∣Qπi
(w)∣ ≤ 1, or,

otherwise, a singleton subset of Qπi
(w). We call Q′πi

(w) the selected equivalent π′i-witness

for w. Additionally, define Q′∗(w) to be any singleton subset of QA(w). We assume that

if w1 and w2 are R-equivalent thenQ
′
πi
(w1) = Q′πi

(w2) for all 1 ≤ i ≤ l,Q′π′i(w1) = Q′π′i(w2)

for 1 ≤ i ≤ l′, and Q′∗(w1) = Q′∗(w2). Define the structure A′ = ⟨W ′,R′, V ′⟩ by set-

ting W ′ = ⋃w∈W,1≤i≤lQ
′
πi
(w) ∪ ⋃w∈W,1≤i≤l′ Q

′
π′i
(w) ∪Q′∗(w), R

′ ∶= R↾W ′, and V ′ = V ↾W ′.

Intuitively A′ is obtained from A by removing elements in every R-clique, except for those

that are selected witnesses for other elements or are members of the singleton set Q∗,

guaranteeing that the clique will remain non-empty. It is not difficult to see that A′ has

the required properties. In particular, our selection process selects at most (∑l
i=1Ci)+l′+1

elements in every R-clique.

To describe our next step, we need a few more definitions. Given a world w of a

structure A, we define its depth as the maximum over all k ≥ 0 for which there exist

worlds w = w0, . . . ,wk ∈W such that wi is a strict R-successor of wi−1 for every 1 ≤ i ≤ k,
or as ∞ if no such a maximum exists. For an R-clique Q, we define its depth as the depth

of w for any w ∈ Q; this definition is sound since for all w1 ∈ QA(w) the depth of w is

equal to the depth of w1.

From this point, we will mostly work on the level of cliques rather than individ-

ual worlds. We may view any structure A as a partially ordered set of cliques. We

write ⟨Q1,Q2⟩ ∈ R, and say that a clique Q1 sends an edge to a clique Q2 (or that Q2

receives an edge from Q1) if ⟨w1,w2⟩ ∈ R for any (equivalently: for all) w1 ∈ Q1, w2 ∈ Q2.

A 1-type of a world w in A is the set of all propositional variables p such that A ⊧ p.
We sometimes identify a 1-type with the conjunction of all its elements and negations of

variables it does not contain. Given a natural number k, a structure A, and a clique Q

in this structure A, we define a k-profile of Q (called just a profile if k is clear from the

context) in A as the tuple profkA(Q) = (H,A,B, irref ), where H is the multiset of 1-types

in which the number of copies of each 1-type α equals min(k + 1, ∣{w ∈ Q ∶ A,w ⊧ α}∣), A
is the multiset of 1-types in which the number of copies of each 1-type α equals

min(k, ∣{w ∶ A,w ⊧ α and w is a strict R-successor of a world from Q}∣), B is the set

of 1-types of worlds for which a world from Q is its strict R-successor, and irref

is a Boolean variable set to 1 iff the clique consists of a single irreflexive element

(note that if the clique contains at least two elements then they all must be re-

flexive). Intuitively, H counts (up to k + 1) realizations of 1-types (H)ere in Q, A
counts (up to k) realizations 1-types (A)bove Q, and B says which 1-types appear

(B)elow Q. Usually, given a normal form ϕ as in equation (11), we will be interested

in Mϕ-profiles of cliques, where Mϕ = max({Ci}li=1 ∪ {Di + 1}mi=1). Note that, given

the Mϕ-profiles of all cliques in a structure we are able to determine whether this

structure is a global model of ϕ. Indeed, given the Mϕ-profile of a clique we know
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the 1-types of elements it contains, for each such element we can count, at least

up to Mϕ, how many successors of each 1-type it has (for this we use the values

of H, A, and irref ), and for each element we know the set of 1-types of its predecessors

(for this we use the values of H, B and irref ). Clearly, this information is sufficient to

check if every conjunct of ϕ is satisfied. The following observation is also straightforward.

Lemma 10

If A ⊧ ϕ for a normal form ϕ, and if in a structure A′ the Mϕ-profile of every clique is

equal to the Mϕ-profile of some clique from A, then A′ ⊧ ϕ.

We now prove the finite model property.

Lemma 11

Let ϕ be a normal form formula. If ϕ is globally satisfied in a transitive model A, then

it is globally satisfied in a finite transitive model A′.

Proof

Construction of A′.We assume that ϕ is as in equation (11). By Lemma 9, we may assume

that A = ⟨W,R,V ⟩ has depth d ≤ (∑m
i=1Di) +m +m′ + 1 and width c ≤ (∑l

i=1Ci) + l′ + 1.
Note that A may be infinite due to possibly infinite breadth.

Let us split W into sets U0, . . . , Ud with Ui consisting of all elements of W of depth i

in A (equivalently speaking: being the union of all cliques of depth i in A). They are called

layers. Note that cliques from Ui may send R-edges only to cliques from Uj with j < i.
We now inductively define a sequence of models A = A−1,A0, . . . ,Ad = A′, with Ai =

⟨Wi,Ri, Vi⟩ such that

● Wi = U ′0 ∪ . . . ∪ U
′
i ∪ Ui+1 ∪ . . . ∪ Ud, where each U ′i is a finite union of some cliques

from Ui,

● Vi = V ↾Wi

● Ai↾(U ′0 ∪ . . . ∪U
′
i) = Ai−1↾(U ′0 ∪ . . . ∪U

′
i),

● Ai↾(U ′0 ∪ . . . ∪U
′
i−1 ∪Ui+1 ∪ . . . ∪Ud) = Ai−1↾(U ′0 ∪ . . . ∪U

′
i−1 ∪Ui+1 ∪ . . . ∪Ud)

● in particular: Ai↾(Ui+1 ∪ . . . ∪Ud) = A↾(Ui+1 ∪ . . . ∪Ud).

We obtain Ai from Ai−1 by distinguishing a fragment U ′i of Ui, removing Ui/U ′i and

adding some edges from Ui+1∪. . .∪Ud to U ′i ; all the other edges remain untouched. We do

it carefully, to avoid modifications of the profiles of the surviving cliques. Let us describe

the process of constructing Ai in detail.

Assume i ≥ 0. We first distinguish a finite subset U ′i of Ui. We define a clique type of

every clique Q from Ui in Ai−1 as a triple (H,B, S), where H and B are as in prof
Mϕ

Ai−1
(Q)

and S is the subset of cliques from U ′0 ∪ . . .∪U
′
i−1, consisting of those cliques to which Q

sends an Ri−1-edge. We stress that during the construction of Ai, the clique types of

cliques are always computed in Ai−1. In particular, S is empty for i = 0 and, as we will

always have that U ′0 ∪ . . . ∪ U
′
i−1 is finite, S is finite for any i > 0. Thus, for each i there

will be only finitely many clique types.

For every clique type β realized in Ui, we mark Mϕ cliques of this type, or all such

cliques if there are less than Mϕ of them. Let U ′i be the union of the marked cliques. We

fix some arbitrary numbering of the marked cliques.
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Now we define the relation Ri. As said before, for any pair of cliques Q1,Q2 both of

which are contained in U ′0∪. . .∪U
′
i−1∪Ui+1∪. . .∪Ud or in U ′0∪. . .∪U

′
i , we set ⟨Q1,Q2⟩ ∈ Ri

iff ⟨Q1,Q2⟩ ∈ Ri−1. It remains to define the Ri-edges from Ui+1 ∪ . . .∪Ud to U ′i . For every

clique Q from Ui+1 ∪ . . . ∪ Ud and every clique type β realized in U ′i , let f(β) be the

number of Ri−1-edges sent by Q to cliques of type β in Ui, if this number is not greater

than Mϕ, or, otherwise, let f(β) = Mϕ. Let f
′(β) be the number of Ri−1-edges sent

by Q to cliques of type β in U ′i (recall that this number is not greater than Mϕ). We let

all the Ri−1-edges sent by Q to the cliques of type β in U ′i to be also members of Ri,

that is, to be edges in Ai. Additionally, we link Q by Ri to the first (with respect to the

numbering we have fixed) f(β)−f ′(β) cliques of type β in U ′i to which Q is not linked by

Ri−1. By the choice of U ′i , we have enough such cliques in U ′i . We finish the construction

of Ai by removing all the cliques from Ui/U ′i .
That Ai has the desired properties is shown in the following two claims.

Claim 1: Each of the Ai is a transitive structure.

We show this by induction by i = −1,0, . . . , d. Obviously A−1 = A is transitive. Assume

that Ai−1 is transitive, and assume to the contrary that Ai is not. This means there are

cliques Q1,Q2,Q3 in Ai such that ⟨Q1,Q2⟩ ∈ Ri, ⟨Q2,Q3⟩ ∈ Ri but ⟨Q1,Q3⟩ /∈ Ri. It is

easy to see that the cliques Q1,Q2,Q3 must belong to three different layers, and that

precisely one of the two cases holds: either Q2 ⊆ U ′i , ⟨Q1,Q2⟩ /∈ Ri−1, ⟨Q2,Q3⟩ ∈ Ri−1

or Q3 ⊆ U ′i , ⟨Q1,Q2⟩ ∈ Ri−1, ⟨Q2,Q3⟩ /∈ Ri−1. In the first case, our construction implies

that there is a clique Q′ ⊆ Ui ∖ U ′i such that ⟨Q1,Q
′⟩ ∈ Ri−1, and the clique types

of Q2 and Q′ are identical. But from the latter it follows that ⟨Q′,Q3⟩ ∈ Ri−1 and

from transitivity of Ri−1 we have ⟨Q1,Q3⟩ ∈ Ri−1. Since none of Q1, Q3 is contained

in Ui, by our construction we have that ⟨Q1,Q3⟩ ∈ Ri. Contradiction. In the second case,

let β be the clique type of Q3 and let Q′1, . . . ,Q
′
k1

be the cliques of type β from U ′i
to which Q2 sends Ri−1-edges, Q′′1 , . . . ,Q

′′
k2

be the cliques of type β from Ui ∖ U ′i to

which Q2 sends Ri−1-edges, and let Q′′′1 , . . . ,Q
′′′
k3

be the cliques of type β from U ′i to

which Q1 sends Ri−1-edges, but Q2 does not. Note that, by transitivity of Ri−1, Q1

sends Ri−1-edges to all of the Q′i and all of the Q′′i . If k1 + k2 + k3 ≥Mϕ, then Q1 must

send, by our construction, an Ri-edge to every clique of type β from U ′i , in particular

to Q3; contradiction. Thus, k1 + k2 + k3 < Mϕ and Q1 sends at least k2 Ri-edges to

cliques of type β from U ′i to which it does not sent Ri−1-edges. Q2 sends precisely k2
such edges. Thus, since our strategy of choosing always cliques of type β with minimal

possible numbers in the numbering we have fixed requires Q2 to send an Ri-edge to Q3,

the same strategy requires Q1 also to send an Ri-edge to Q3. Contradiction.

Claim 2: The Mϕ-profile of every clique in Ai is the same as its Mϕ-profile

in A. Again we work by induction. Assume that the Mϕ-profiles of the sur-

viving cliques in Ai−1 are the same as in A. We show that the Mϕ-profiles

of cliques surviving in Ai are the same as in Ai−1. It is obvious for the H-
components and the values of irref , as we do not change the cliques. The

A-components for the cliques from U ′0 . . . U
′
i cannot change since they send Ri-edges

to precisely the same cliques they send Ri−1-edges. Similarly, the B-components for the

cliques from Ui+1 . . . Ud cannot change since they receive Ri-edges precisely from the same

cliques they receive Ri−1-edges.

Consider a clique Q from U ′0 . . . U
′
i−1. Note that prof

Mϕ

Ai
(Q).B ⊆ profMϕ

Ai−1
(Q).B since

any Ri-edge received by Q is also an Ri−1-edge. To see that ⊇ also holds take any
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1-type α ∈ profMϕ

Ai−1
(Q).B. Then there exists a clique Q′ containing a realization of α

such that Q′ sends an Ri−1-edge to Q. If Q′ survives in Ai then it sends an Ri-edge to Q.

Otherwise Q′/Ui ∖U ′i and there is a clique Q′′ of the same clique type as Q′ in U ′i . This

equality of the clique types implies that α is realized in Q′′ and Q′′ sends an Ri-edge

to Q. It follows that α ∈ profMϕ

Ai
(Q). Thus, profMϕ

Ai−1
(Q) = profMϕ

Ai
(Q).

Consider a clique Q from U ′i . Obviously prof
Mϕ

Ai−1
(Q).B ⊆ prof

Mϕ

Ai
(Q).B since all

the Ri−1-edges received by Q remain Ri-edges. To see ⊇ assume α ∈ profMϕ

Ai
(Q).B for

some 1-type α. Then there exists a clique Q′ containing a realization of α such that Q′

sends an Ri-edge to Q. If Q′ sends also an Ri−1-edge to Q, then α ∈ profMϕ

Ai−1
(Q).B.

Otherwise, by our construction, Q′ sends an Ri−1-edge to a clique Q′′ ⊆ Ui ∖ U ′i
such that the clique types of Q and Q′′ are equal. But then α belongs to the

B-component of the clique type of Q′′ and also of Q. So, α ∈ profMϕ

Ai−1
(Q).B. It follows

that prof
Mϕ

Ai−1
(Q).B = profMϕ

Ai
(Q).B.

Finally, consider a cliqueQ from Ui+1∪. . .∪Ud. It remains to show that prof
Mϕ

Ai−1
(Q).A =

prof
Mϕ

Ai
(Q).A. By our construction, the Ri-edges sent by Q to U ′0∪. . .∪U

′
i−1∪Ui+1∪. . .∪Ud

are the same asRi−1-edges sent byQ to this set. The desired equality of theA-components

(as multisets) follows now easily from the fact that, for any clique-type β, whenever Q

sends precisely k Ri−1-edges to cliques of Ui of type β then it sends precisely k′-edges to

cliques of U ′i of type β, where k′ =min(k,Mϕ). This finishes the proof of Claim 2.

The two above claims and Lemma 10 imply that A′ = Ad is indeed a model of ϕ. As

each of the U ′i contains a finite number of cliques and each of the cliques is finite, we get

that A′ is finite. This finishes the proof of Lemma 11.

Let us estimate the size of the constructed finite model A′. For U ′0 we take at mostMϕ

realizations of every clique type from U0.Mϕ is bounded exponentially, and the number of

possible clique types in U0 is bounded doubly exponentially in ∣ϕ∣ (note that such cliques

do not send any edges). Then, to construct U ′i we consider clique types distinguished, in

particular, by the sets of cliques from U ′0 ∪ . . . U
′
i−1 to which a given clique sends edges.

Thus, the number of cliques in U ′i may become exponentially larger than the number of

cliques in U ′i−1. Thus, we can only estimate the number of cliques in our eventual finite

model by a tower of exponents of height d (recall that our bound on d is exponential

in ∣ϕ∣, though a polynomial bound would not be difficult to obtain). We leave open the

question if a construction building smaller (e.g., doubly exponential in ∣ϕ∣) models exist.

A careful inspection shows that all our constructions respect reflexivity and seriality,

that is, if we replace the word transitive in the statements of Lemmas 9 and 11 with the

phrases reflexive transitive or serial transitive then they remain correct.

Theorem 8

The logics K4(◇≥,�), D4(◇≥,�), S4(◇≥,�) have the finite model property. Their local

and global satisfiability problems are decidable.

A natural decision procedure arising from our work is as follows: guess a finite model of

the given formula and check that it indeed is a model. However, this procedure does not

give a good upper complexity bound, since it needs to take into account very large finite

models. The precise complexity can be established using the above-mentioned results

from Gogacz et al . (2019) concerning the DL SIQ−.
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Theorem 9

The local and global satisfiability problems for the logics K4(◇≥,�), D4(◇≥,�),
S4(◇≥,�) are 2-ExpTime-complete.

Proof

In Gogacz et al . (2019), it is shown that the knowledge base satisfiabil-

ity problem for the logic SIQ−, restricted to a single transitive role, is

2-ExpTime-complete. With this single role restriction, the language of SIQ− becomes a

syntactic variant of K4 (◇≥,�). The knowledge base satisfiability in SIQ− is the ques-

tion if for a given pair (T ,A), where T is a TBox and A is an ABox, there exists a

structure containing A and respecting T at every element. We do not want to define

these notions formally here and refer the interested reader to Gogacz et al . (2019) or

some other articles on DLs. For our purposes, it is sufficient to say that T consists of

implications of the form φ → ψ and A is a collection of assertions of the form φ(a)
or T (a, b) where a, b are names for domain elements (which can be used only in A), φ(a)
means that φ is satisfied at a, and T (a, b) means that there is an edge from a to b.

To solve global satisfiability for K4(◇≥,�), we just translate the input formula φ to

the knowledge base ({⊺ → φ},∅) and ask for its satisfiability. Regarding the lower bound,

we can easily adapt the lower bound proof from Gogacz et al . (2019) (Theorem 4) to our

scenario. The proof there goes by a reduction from the acceptance problem for alternating

Turing machines with exponentially bounded space and uses both TBoxes and ABoxes.

However, ABoxes are always of a simple form φ′(a). What we can do is to take the

conjunction φ of the K4-counterparts of the implications from the given TBox and ask

for combined satisfiability of φ and φ′. This gives the 2-ExpTime-lower bound for the

combined complexity of K4(◇≥,�). Due to Lemma 7 we infer 2-ExpTime-completeness

of local and global satisfiability in K4(◇≥,�).
The upper and lower complexity bounds for K4(◇≥,�) and S4(◇≥,�) can be obtained

by an inspection of the proofs from Gogacz et al . (2019) and observing that they work

for structures with a reflexive or serial transitive relation.

5 Missing lower bounds for logics with converse and without graded

modalities

To complete the picture, we consider in this section the modal language with converse but

without graded modalities. Over most relevant classes of frames tight complexity bounds

for local and global satisfiability of this language are known. However, according to Zolin’s

survey (Zolin 2017), the three logics of transitive frames K4 (◇,�), S4 (◇,�), and
D4 (◇,�) whose global satisfiability is known to be in ExpTime lack the corresponding

lower bound. We provide it here. We were also not able to find a tight lower bound in

the literature for the logics of Euclidean frames, K5 (◇,�), D5 (◇,�). We also show

it here. Interestingly, the two reductions are identical, that is, in both cases we produce

the same formulas (but the shapes of the intended models differ).

In the conference version of this paper, we used a rather heavy reductions from the

halting problem for alternating Turing machines working in polynomial space. Following

the suggestion of one of the referees, we looked for an alternative proof by a reduction
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from global satisfiability of the logic K(◇). The general idea is essentially the same as

in our previous proof, but the reduction is arguably simpler.

Theorem 10

The global satisfiability problem for K4(◇,�), D4(◇,�), and S4(◇,�) is ExpTime-

hard.

Proof

We recall that global satisfiability problem for K(◇) is ExpTime-hard. We reduce this

problem simultaneously to global satisfiability of the three logics we consider.

Take any modal formula ϕ of K(◇). Without loss of generality, we assume that ϕ

contains no nested occurrences of ◇ and ◻. (Indeed, if ϕ contains a nested occurrence of

a modal operator, that is, it contains a subformula ◇ψ or ◻ψ in the scope of another ◇ or

◻, then we replace that subformula by a fresh variable p and append the conjunct p↔◇ψ,
resp., p ↔ ◇ψ. Successively treating in this way all occurrences of modal operators we

eventually end up with a formula equisatisfiable to ϕ in which they are not nested.)

Assuming that c0, c1, c2, and c3 are fresh propositional variables not occurring in ϕ we

define the translation tr(ϕ) as follows:

● tr(p) = p for all propositional variables p,

● tr(ϕ′ ∨ϕ′′) = tr(ϕ′) ∨ tr(ϕ′′) and analogously for ∨,→,↔,

● tr(¬ϕ′) = ¬tr(ϕ′),
● tr(◇ϕ′) = [c0 →◇(c1 ∧tr(ϕ′))]∧[c1 →�(c2 ∧tr(ϕ′))]∧[c2 →◇(c3 ∧tr(ϕ′))]∧[c3 →
�(c0 ∧ tr(ϕ′))] and analogously for ◻ϕ′

Let ϕ∗ = tr(ϕ) ∧ (⋁0≤i≤3 ci) ∧ (⋀0≤i<j≤3(¬ci ∨ ¬cj)). Note that ϕ∗ is composed of the

translated ϕ and a formula stipulating that for each node exactly one of ci holds true.

The size of ϕ∗ is clearly polynomial in ∣ϕ∣ since ◇ and ◻ have no nested occurrences in ϕ.

Claim 1

If ϕ is globally satisfiable in K(◇), then ϕ∗ is globally satisfiable in K4(◇,�), D4(◇,�),
and S4(◇,�).

Proof

Let A = ⟨W,R,V ⟩ be a model of ϕ. We assume that A is tree-shaped (this is done without

loss of generality since K(◇) has the tree-shaped model property). Let wr denote the

root of A.

For any world w define its distance from the root, denoted with d(w), as the length of

the R-path from wr, that is, d(wr) = 0, d(w) = 1 iff R(wr,w) holds, d(w) = 2 iff there is a

world v such that R(wr, v),R(v,w), etc. We define the Kripke structure A′ = (W ′,R′, V ′)
by inverting every second R-edge of A and labelling the worlds on every path, leading

from the root, repetitively c0, c1, c2, c3, c0, . . .. Formally:

● W =W ′,

● For every propositional variable p /∈ {c0, c1, c2, c3}, we set V ′(p) = V (p) while for the

variables ci we set V ′(ci) = {w ∶ d(w) mod 4 = i} for i ∈ {0,1,2,3},
● R′ is the reflexive closure of R(0,1) ∪R

−1
(1,2) ∪R(2,3) ∪R

−1
(3,0), with R(i,j) = R ∩ V

′(ci) ×
V ′(cj).
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Fig. 4. Shape of intended models in the proof of Theorem 10. All worlds are reflexive.

The shape of the obtained model is illustrated in Figure 4.

Now we show that ϕ∗ is globally satisfiable in K4(◇,�), D4(◇,�), and S4(◇,�).
First, note that due to the construction R′ is transitive and reflexive (and thus also

serial). Next, note that the second part of the formula ϕ∗ is globally satisfied in A′,

since every world belongs to exactly one of V ′(ci) (due to the fact that the satisfaction

of ci depends on a distance from the root, which is unique since A is assumed to be

tree-shaped). Finally, we show that A′ ⊧ tr(ϕ). The proof is by induction, where the

inductive hypothesis states that for any subformula ψ of ϕ and every world w we have

A,w ⊧ ψ if and only if A′,w ⊧ tr(ψ). The case of ψ being a propositional variable follows

from the second item of definition of A′. The case when ψ is a Boolean combination of

formulas is immediate from the inductive hypothesis and the semantics of ⊧. Hence, the
only interesting case is when ψ is of the form ◇(ψ′). We prove only one implication;

the second one is analogous. Assume that A,w ⊧ ◇(ψ′). Thus, there is a world v such

that R(w, v) and A, v ⊧ ψ′. By induction hypothesis, we deduce that A′, v ⊧ tr(ψ′).
Moreover, for i = d(w) mod 4 and j = d(v) mod 4 = (i + 1) mod 4, we have A′,w ⊧ ci
and A′, v ⊧ cj . Moreover, if i is even, then (w, v) ∈ R′ and (v,w) ∈ R′ otherwise. In each

of the cases i ∈ {0,1,2,3} these all imply that A′,w ⊧ tr(ψ), which finishes the proof.

Claim 2

If ϕ∗ is globally satisfiable in K4(◇,�), D4(◇,�), or S4(◇,�) then ϕ is globally satis-

fiable in K(◇).

Proof

Let A = ⟨W,R,V ⟩ be a model of ϕ∗. We will define an increasing chain of structures A′0,

A′1, . . ., in which A′i = ⟨W
′
i ,R

′
i, V

′
i ⟩, together with a pattern function f ∶ A0∪A1∪. . .→W .

The Kripke structure A′ = ⟨W ′,R′, V ′⟩ defined as the union of the chain will turn out to

be a model of ϕ. Our chain of structures is defined as follows.

We fix a world w ∈W , set A′0 = ⟨{w
′},∅, V ′0⟩ with V

′
0(w

′) = V (w) and set f(w′) = w.
For simplicity, let us assume that A,w ⊧ c0. In our construction, for every element w′

freshly added to A′i, we will have that f(w′) satisfy ci mod 4.

Assume now that A′i is defined. To construct A′i+1 we repeat for every element w′

freshly added to A′i: if i is even (odd) then for every R-successor (R-predecessor) v of

f(w′) in A such that A, v ⊧ ci+1 mod 4 add to Wi+1 a fresh R-successor v′ of w′ and let

V ′i (v
′) = V (v) and f(v′) = v.
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We prove inductively over the shape of ψ that A′,w′ ⊧ ψ iff A, f(w′) ⊧ tr(ψ). The case
of atomic propositions and Boolean combinations follows immediately from the definition.

The only interesting case is of ψ = ◇(ψ′). Here we show only one case of one implication;

the other cases are analogous. Assume that A, f(w′) ⊧ tr(ψ) holds as well as f(w′) ⊧ c0.
Then there is an R-successor v of f(w′) satisfying tr(ψ′)∧c1. Note that the R′-successors
of w′ are copies of R-successors of f(w′) satisfying c1; thus, there is a world v′ being an

R′-successor of f(w′) and satisfying f(v′) = v. Hence, from the inductive assumption,

we infer A′, v′ ⊧ ψ′, which implies A′,w′ ⊧ ψ. Analyzing analogously the other cases we

finish the inductive proof of the claim.

The two proceeding claims show the correctness of the translation, allowing us to

conclude Theorem 10.

We next handle the case of Euclidean frames.

Theorem 11

The global and local satisfiability problem for K5(◇,�) and D5 (◇,�) is

ExpTime-hard.

Proof

We explicitly consider the global satisfiability problem, but due to Lemma 3 our proof

applies also to local satisfiability. The proof goes as the proof of Theorem 10. Our current

intended models are similar to the intended models there (as on Figure 4). The difference

is that all the worlds satisfying c1 or c3 are made equivalent to each other, and the worlds

satisfying c0 or c2 are irreflexive. Note that this does not violate the property that

each world can identify its children in the tree. Observe also that such intended models

are indeed Euclidean and serial (however, they are neither transitive nor reflexive); in

particular all worlds satisfying c0 or c2 are lanterns. Now, for a given K formula we can

construct precisely the same formula as in the previous proof. We leave the routine details

to the reader. The correctness proof is essentially identical to the correctness proof of

Theorem 10 so we omit it here.

6 Conclusions

We have filled the gaps remaining in the classification of the complexity of the local

and global satisfiability problems for natural modal languages with graded and converse

modalities over traditional classes of frames. What we have not systematically studied

are the problem of combined satisfiability (given two formulas check if there exists a

model in which the first is satisfied locally and the second is satisfied globally) and

the problem of finite (local, global, combined) satisfiability (asking about the existence

of finite models). We suspect that the classification could be extended to cover these

problems using results/techniques from our paper and the referenced articles without

major obstacles.

Two other questions we leave open are if the NExpTime-lower bound in Theorem 5

remains valid, if the numbers in graded modalities are encoded in unary rather than in

binary, and if our finite model construction from Section 4 can be replaced by a one

producing smaller models.
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