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Abstract. We obtain the enumerator by node-valencies of planted plane trees, whose square
gives the enumerator of rooted plane trees. We also study the enumeration by number of nodes
and black-node-valencies of bichromatic rooted plane trees, encountering a remarkably simple
inversion formula. Finally, we remark that these bichromatic trees are in 1—1 correspondence
with solutions to the weak lead ballot problem.

1

A rooted tree is a tree with a single preferred node. A plane tree is a tree im-
bedded in the Euclidean plane and inheriting from the plane a sense of clockwise
orientation; thus at each node except the root node there is exactly one branch
leading to a node nearer to the root node, and at the root node and all other nodes
except terminals there are one or more ordered branches leading to nodes further
from the root node. Two such trees are isomorphic if their nodes can be placed in
1—1 correspondence so as to preserve all adjacency and ordering relationships.
Let N(xy, x,, - * *) be the enumerator of non-isomorphic rooted plane trees by
node-valency; thus

N(x) = X7 +2x2 %, +2x3 x5 +3x2 x2 4+ 2xF x, +8x3 x, x5 +4xT x4+ - -

A shrub, also called a planted tree, is a rooted tree in which the root is of unit
valency. To obtain an expression for N it is convenient to discuss first the enumer-
ation by valency of bichromatic plane shrubs, i.e. plane shrubs in which the root
is colored black, while all other nodes are colored black or white in such a way
that adjacent nodes are always colored oppositely. The five 4-node bichromatic
rooted plane trees appear in a diagram at the end of this paper. The first two of
them are shrubs.

2

Let by M(b, w) = by M(b,, by, " - *; wy, w,, - - *) be the enumerator of these
shrubs, where the appearance of a factor b, in a term denotes the existence of a k-
valent black node, and similarly for the w’s. We have
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by M(b,w) = byw, +biw,+bws+b, byw, wy+biw,+b, bywiw,
+2b3 by w, wytbib, Wit -

Enumeration by valency of the lowest white node leads immediately to the
key result

(1) M(b, w) = wy+w, M(w, b)+ws M*(w, b)+ * - -.
On dropping the color distinction we find
(2 xp = (1=x)M(x, x)—x3 M*(x, x)— - - -.

In the sequel we use repeatedly the following result, which can be found in
[1] (page 61) and follows simply from Lagrange’s formula for the inversion of
series (see [6] section 7.32).

Lemma. If
y=fix+f,xX°+f3x>+ -
then

rr r ap 2 az r—1+2a, +3a +|
1x=ry2(_y_f;_) (__y_j:}) oo ( 1 2 )
fi fi (r+a,+2a,+ - )aglay! -

where the sum is over all nonnegative integers a,, a,, * *

Applying this Lemma with r = 1 and expanding negative powers of (1-x,)
by the binomial theorem, we have from (2)

M(x, x) = Y x| x32x5* - - - (a,+2a3+3a, - - -)tlaylaz! - -

where ¢ = 1+a3+2a,+3as+ - - - and the sum is over all nonnegative integers
a,ay, - - -. This result is equivalent to equation (8) in [5].

For bichromatic rooted plane trees, enumerating according to the valency
of the root node, we have

3) N(b, w) = by M(b, w)+b, M*(b, w)+ - -+ = M(b, w)M(w, b).
Dropping the color distinction and using the Lemma with » = 2, we find
N(x) = N(x,x) =23 x{"'x52x% - - - (1 +ay+2a3+ - - )(t+1)aylay! - -

where t = 1+a3+2a,+ - - - as before.

3

In the problem which led to these investigations [2] the main interest lay in
the enumerator N(yb, y) (obtained from N(b, w) by replacing b,, w, by yb,, y
respectively, k = 1,2,---) in which white nodes are merely counted and not
enumerated by valency. From (1) we have on the one hand
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4) M(yb, y) = y/(1-M(y, yb))
and on the other
M(y, yb) = yb, +yb, M(yb, y)+ybs M*(yb, y)+ - - -
so that M (yb, y) satisfies
(5) M=y(l+bM+b,M*+ --")
Also from (3) and (4) we find
N(yb,y) = M(yb,y)—y.
Solving (5) (by the Lemma) gives
M(yb, y) = 3, y"by'b% - - - (a; +2a,+3as+ - - Y/(n—a;—a, -+ )a la,! -

where n = 1+a,;+2a,+ - - -, and the sum is over all non-negative a,, a,,* "
Explicitly,

M(yb, ) = y+y°b,+y*(by+b?)+ y*(b3+3b, b, + b3)
+y°(by+4b3 b, +2b3+6b, b2 +b})+ - -

4

Let us define F(y, b), f(b) = {f1(b),f>(b), - -} by

(6) F(y,b) = y"*M(yb, y) = L+3f1(b)+» fo(b)+ - -~
Notice that from (5) the function F(y, b) satisfies

™ F=1+4yb F+y*b,F*+ -- -

Then the following remarkably simple result holds.

LeMMA. If F(y, b) satisfies (1) and is expanded as in (6), and if G(0, x) =
1+0g,(x)+6%g,(x)+ - - - satisfies '

Ox; , 0%,

) G =1+ +G2+--

thenG(0,f(b)) = 14+60b,+0%b,+ - - .
ProoF. By definition G (6, f(b)) satisfies

so that according to (6)

G(6, f(b)) = F (% , b)
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Now using (6) we find that G (6, f(b)) satisfies

2
G = 1+-gb1G+ (%) byG*+ -+ = 1+6b,+60%b,+ - -

as required.
Notice that we have also F(y, g(z)) = 1 +yz,+y?z,+ - -, so that F, G are
in a sense inverses of one another. Explicitly,

gi(x) = x,

g(x) = Xz —X3

g3(x) = x3—3x, X, +2x]

ga(x) = x4 —4x, x3—2x3+10x2 x, ~5x7 .

Solving (8) (using the Lemma with r = —1) we find

G0, x) = 1— Y (=0x,)"(—0°x,)" - - - (2a,+3a,+ - - - —2)!/
ala(a, +2a,+ --- —1)!

where the summation is over all nonnegative a,, a,, - * - such thata, +a,+ - = 1.
This result was needed in [2].

If we write
fn(x9 X, 0 ) = an,kxk

then f, , is the number of weak lead lattice paths from (0, 0) to (n, n) having
exactly k horizontal (and k vertical) segments, i.e., it is the number of solutions
to the weak lead ballot problem that have k blocks of votes for each candidate
and finish with a n—n tie. Such a lattice path can be described uniquely by the
sequence ¢, ¢;, " - *, ¢, where¢; = 1,¢;_, < ¢; £ i; ¢;—1is the number of votes
that have been accumulated by the trailing candidate (B) when the leader’s
(A4’s) i-th vote is counted. Explicitly,

Fok = % (Z) (kil)'

It is perhaps of interest to remark that there are two ways in which c-
sequences can be placed in 1 — 1 correspondence with n+ 1 node rooted plane trees:
(i) The first such correspondence is well known; one circumnavigates the tree,
starting at the root, going up a new branch for each A-vote and down the other side
of an old branch for each B-vote. This gives a vote-sequence and hence a c-sequence.
(ii) For another correspondence, color the nodes of the tree black and white
alternately. Circumnavigate the tree, starting at the (black) root, assigning labels
1,2,- -+, n to the black nodes as they are encountered. (We do not assign a label
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n+1 to the root node on completing the circuit.) Then for each black node, each of
its labels is replaced by a copy of its lowest numerical label. This scheme results in
the assignment of a total of n labels to the black nodes. The set of assigned labels
can then be reordered to form a c-sequence. And conversely, uniquely. For the five
rooted plane trees with four nodes, the correspondences are shown in the diagram.

MR VIRVAR"

(i) vote-sequence  aaabbb  aababb  aabbab  abaabb  ababab

c-sequence 111 112 113 122 123
(ii) Labels 122 123 121 113 111

c-sequence 122 123 112 113 111

vote-sequence  abaabb ababab aababb aabbab aaabbb

Tutte [5] and Riordan [3], [4] have recently discussed some problems closely
related to those considered in this paper.

We thank John Riordan for his interest in this problem and for his help in
revising this paper; a referee’s comments were also very helpful.
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