AN APPLICATION OF IWASAWA THEORY TO CONSTRUCTING FIELDS $\mathbf{Q}(\zeta_n+\zeta_n^{-1})$ WHICH HAVE CLASS GROUP WITH LARGE p-RANK

MANABU OZAKI*

Abstract. Let p be an odd prime number. By using Iwasawa theory, we shall construct cyclotomic fields whose maximal real subfields have class group with arbitrarily large p-rank and conductor with only four prime factors.

§1. Introduction

The class group of the n-th cyclotomic field $\mathbf{Q}(\zeta_n)$ is a much studied classical and fascinating object in algebraic number theory. The class group of $\mathbf{Q}(\zeta_n)$ can be divided into two "parts": the relative class group (or the minus part of the class group) and the real class group, the latter being the class group of the maximal real subfield of $\mathbf{Q}(\zeta_n)$. The relative class group is easier to manage than the real class group. For example, the order h_n^- of the relative class group has an "elementary" expression, namely, the product of generalized Bernoulli numbers. In contrast to this, the real class number h_n^+ is much harder to calculate since the formula for h_n^+ includes a mysterious quantity related to units, namely, the regulator of the maximal real subfield $\mathbf{Q}(\zeta_n + \zeta_n^{-1})$. This gives a hint of the difficulty of the study of the real class group. The number h_n^+ is so difficult to compute that we only know the exact value of h_n^+ for small n (However, R. Schoof calculated certain factors h_p^+ of h_p^+ for prime numbers p < 10000, which are very likely the exact values (see [8, pp.420-423])), and h_n^+ is quite small compared to h_n^- . Consequently one would like to find large h_n^+ , and refining this problem, one would like to find real class groups with large p-rank for given prime p. In [1] and [2], Cornell and Rosen studied the p-rank of the class group of the maximal real subfield of cyclotomic fields. By using the genus theory,

Received March 17, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R23, 11R18, 11R29.

^{*}This research is partially supported by the Grant-in-Aid for Encouragement of Young Scientists, Ministry of Education, Science, Sports and Culture, Japan.

they gave methods to construct fields $\mathbf{Q}(\zeta_n + \zeta_n^{-1})$ which have class group with arbitrarily large p-rank. Specifically, they proved that if the number of distinct prime factors l of n with $l \equiv 1 \pmod{p}$ increases, then the p-rank of the class group of $\mathbf{Q}(\zeta_n + \zeta_n^{-1})$ also increases.

In the present paper, we shall construct cyclotomic fields whose maximal real subfields have class groups with arbitrarily large p-rank and conductors with only four prime factors. Usually, one would try to apply the genus theory to the construction of fields with the above properties. In fact, Lemmermeyer [6] recently done such construction by using the genus theory. However, interestingly, our method is based on Iwasawa theory of cyclotomic \mathbf{Z}_p -extensions, specifically, Iwasawa's main conjecture for totally real number fields, which was proved by Wiles [9].

In section 2, by using Iwasawa theory we shall give a criterion for the p-divisibility of the class number of a certain type of totally real number fields. In section 3, we shall apply the result obtained in section 2 to the construction of the maximal real subfield of a cyclotomic field with class group whose p-rank is arbitrarily large and also whose conductor has only four prime factors. In section 4, applying our construction, we shall give a lower bound of the order of the p-rank of the class group of $\mathbf{Q}(\zeta_n + \zeta_n^{-1})$ as $n \to \infty$.

§2. Criterion for the *p*-divisibility of the class number of a certain totally real number field

Let p be a fixed odd prime number, and let K be a totally real finite abelian extension of a totally real number field k. We assume that $p \nmid [K:k]$. We denote by K_{∞} the cyclotomic \mathbf{Z}_p -extension of K, and let K_n be its n-th layer. Put $\Gamma = \operatorname{Gal}(K_{\infty}/K)$, fixing a topological generator γ of Γ . For any field $F \subseteq \overline{\mathbf{Q}}$, we denote by L(F) and M(F) the maximal unramified pro-p abelian extension over F and the maximal pro-p abelian extension over F which is unramified outside p, respectively, and by A(F) the Sylow p-subgroup of the class group of F. Put $\Delta = \operatorname{Gal}(K/k)$ and $\widehat{\Delta} = \operatorname{Hom}(\Delta, \overline{\mathbf{Q}}_p^{\times})$. For any $\mathbf{Z}_p[\Delta]$ -module M and $\chi \in \widehat{\Delta}$, we define the χ -part of M by $M^{\chi} = (\#(\Delta)^{-1} \sum_{\sigma \in \Delta} \operatorname{Tr}_{\mathbf{Q}_p(\chi(\Delta))/\mathbf{Q}_p}(\chi(\sigma))\sigma^{-1})M$. Then we have $M = \bigoplus_{\chi} M^{\chi}$, where χ runs over $\chi \in \widehat{\Delta}$ modulo $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy, namely, representatives of one dimensional factors over $\overline{\mathbf{Q}}_p$ of every irreducible \mathbf{Q}_p -character of Δ .

In this section, using Iwasawa's main conjecture proved by Wiles [9] and the idea given in [7], we shall give a criterion for the p-divisibility of

the class number of K_n for $n \ge 1$ under some assumption on K. Actually, we shall give a criterion for non-triviality of the χ -part of $A(K_n)$ by means of estimating the value of p-adic L-function of k for $n \ge 1$ and $\chi \in \widehat{\Delta}$, which can be regarded as a totally real analogue of the theorems of Herbrand and Ribet for the minus part of the class group of the p-th cyclotomic field (see [8, Theorems 6.17 and 6.18]).

Our aim in this section is to prove the following theorem:

THEOREM 1. Let notations be as above. We assume that the prime p is completely decomposed in K. Then the following two statements are equivalent for every $\chi \in \widehat{\Delta}$:

(i) $A(K_n)^{\chi} \neq 0$ for all $n \geq 1$,

(ii)
$$\begin{cases} L_p(0,\chi,k) \equiv 0 \pmod{p} & (if \chi \neq 1), \\ p\zeta_p(0,k) \equiv 0 \pmod{p} & (if \chi = 1), \end{cases}$$

where $L_p(s,\chi,k)$ and $\zeta_p(s,k)$ are the p-adic L-function of k and the p-adic zeta function of k, respectively.

In order to prove Theorem 1, we need the following lemma:

LEMMA 1. Let K be as in the statement of Theorem 1. Then M(K)/K is the maximal abelian sub-extension of $L(K_{\infty})/K$.

Proof. We denote by $I_{\mathfrak{p}} \subseteq \operatorname{Gal}(M(K)/K)$ the inertia group for a prime \mathfrak{p} of K lying above p. It follows from the assumption on K that the pro-p part of the local unit group of $K_{\mathfrak{p}}$ is isomorphic to \mathbf{Z}_p , where $K_{\mathfrak{p}}$ stands for the completion of K at \mathfrak{p} . Hence class field theory shows that $I_{\mathfrak{p}}$ is isomorphic to a quotient group of \mathbf{Z}_p . Since \mathfrak{p} is infinitely ramified in $K_{\infty} \subseteq M(K)$, we see that $I_{\mathfrak{p}} \simeq \mathbf{Z}_p$, and that $I_{\mathfrak{p}} \cap \operatorname{Gal}(M(K)/K_{\infty}) = 0$. This equality implies that the primes of K_{∞} lying above \mathfrak{p} are unramified in M(K). Therefore $M(K)/K_{\infty}$ is an unramified extension, and $M(K) \subseteq L(K_{\infty})$. Thus we obtain Lemma 1.

Let $\mathfrak{X} = \operatorname{Gal}(M(K_{\infty})/K_{\infty})$, $X = \operatorname{Gal}(L(K_{\infty})/K_{\infty})$, and $Y = \operatorname{Gal}(L(K_{\infty})/K_{\infty})$. Then these Galois groups are finitely generated torsion Λ -modules, where $\Lambda = \mathbf{Z}_p[\Delta][[\Gamma]]$ (see [4] or [8]).

We need the following theorem proved by Wiles [9].

THEOREM A (IWASAWA'S MAIN CONJECTURE). Let settings and notations be as above. We put $\Lambda = \mathbf{Z}_p[\Delta][[\Gamma]]$. Let $\tilde{\gamma} \in \operatorname{Gal}(K_{\infty}(\zeta_p)/K(\zeta_p))$ be the image of $\gamma \in \Gamma$ by the natural isomorphism $\Gamma \simeq \operatorname{Gal}(K_{\infty}(\zeta_p)/K(\zeta_p))$. We let $\kappa \in 1 + p\mathbf{Z}_p$ be the number such that $\zeta^{\tilde{\gamma}} = \zeta^{\kappa}$ for any p-power-th root of unity ζ . Let $F_{\chi}(T) \in \mathbf{Z}_p[\Delta]^{\chi}[[T]] \simeq \mathbf{Z}_p[\chi(\Delta)][[T]]$ be the power series such that

$$L_p(s,\chi,k) = \begin{cases} F_{\chi}(\kappa^{1-s} - 1) & (if \ \chi \neq 1), \\ \frac{F_{\chi}(\kappa^{1-s} - 1)}{\kappa^{1-s} - 1} & (if \ \chi = 1) \end{cases}$$

for $s \in \mathbf{Z}_p$. Then

$$\operatorname{char}_{\Lambda^{\chi}} \mathfrak{X}^{\chi} = F_{\chi}(\gamma - 1)\Lambda^{\chi},$$

where $\operatorname{char}_{\Lambda^{\chi}}\mathfrak{X}^{\chi}$ denotes the characteristic ideal of the Λ^{χ} -module \mathfrak{X}^{χ} and $F_{\chi}(\gamma-1)$ is the image of $F_{\chi}(T)$ by the isomorphism $\mathbf{Z}_p[\chi(\Delta)][[T]] \simeq \Lambda^{\chi}$ sending T to $\gamma-1$.

Proof of Theorem 1. Let
$$\nu_n = \frac{\gamma^{p^n} - 1}{\gamma - 1} \in \Lambda = \mathbf{Z}_p[\Delta][[\Gamma]]$$
. Then
$$A(K_n)^{\chi} \simeq X^{\chi}/\nu_n Y^{\chi}$$

by [4, Theorem 6]. Since X is finitely generated over Λ , we have

(1)
$$A(K_n)^{\chi} \neq 0 \text{ for all } n \geq 1 \iff X^{\chi} \neq 0$$

by the above isomorphism and Nakayama's lemma. We denote by $L(K_{\infty})^{ab}/K$ the maximal abelian sub-extension of $L(K_{\infty})/K$. Then

$$\operatorname{Gal}(L(K_{\infty})^{\operatorname{ab}}/K_{\infty}) \simeq X/(\gamma-1)X.$$

Since $L(K_{\infty})^{ab} = M(K)$ by Lemma 1, and $Gal(M(K)/K_{\infty}) \simeq \mathfrak{X}/(\gamma - 1)\mathfrak{X}$, we have

$$X^{\chi}/(\gamma-1)X^{\chi} \simeq \mathfrak{X}^{\chi}/(\gamma-1)\mathfrak{X}^{\chi}.$$

Hence we see that

$$(2) X^{\chi} \neq 0 \Longleftrightarrow \mathfrak{X}^{\chi} \neq 0$$

by Nakayama's lemma. Since \mathfrak{X}^{χ} has no non-trivial finite Λ^{χ} -submodules (see [3]), $\mathfrak{X}^{\chi} \neq 0$ is equivalent to $\operatorname{char}_{\Lambda^{\chi}}(\mathfrak{X}) \neq \Lambda^{\chi}$, which in turn is equivalent to $F_{\chi}(T) \notin \mathbf{Z}_p[\chi(\Delta)][[T]]^{\chi}$ by Theorem A. This is also equivalent to $F_{\chi}(\kappa - 1)$

1) $\equiv 0 \pmod{p}$. We note that the number κ in Theorem A satisfies $\kappa \notin 1 + p^2 \mathbf{Z}_p$ by the assumption on K. It follows from

$$F_{\chi}(\kappa - 1) = \begin{cases} L_p(0, \chi, k) & \text{(if } \chi \neq 1), \\ (\kappa - 1)\zeta_p(0, k) & \text{(if } \chi = 1) \end{cases}$$

that

(3)
$$\mathfrak{X}^{\chi} \neq 0 \Longleftrightarrow \begin{cases} L_p(0,\chi,k) \equiv 0 \pmod{p} & (\text{if } \chi \neq 1), \\ p\zeta_p(0,k) \equiv 0 \pmod{p} & (\text{if } \chi = 1). \end{cases}$$

Combining (1), (2) and (3), we obtain Theorem 1.

§3. Construction of the maximal real subfield of a cyclotomic field which has class group with large p-rank

In this section, by using Theorem 1 in the previous section, we shall find n with four prime factors for which the class group of the maximal real subfield of the n-th cyclotomic field has arbitrarily large p-rank.

Let p be a fixed odd prime, and let k and k' be a pair of real abelian number fields satisfying the following three conditions:

- (a) The conductor of k is a prime q which splits completely in k', and $[k:\mathbf{Q}]=p$.
- (b) The prime p does not divide $[k': \mathbf{Q}]$.
- (c) The prime p splits completely in kk'.

We note that $q \equiv 1 \pmod{p}$ from (a).

LEMMA 2. Let k and k' be real abelian number fields with properties (a), (b) and (c). Then we have

$$B_{1,\chi\psi\omega^{-1}} = \frac{1}{pqf_{\chi}} \sum_{a=1}^{pqf_{\chi}} a\chi\psi\omega^{-1}(a) \equiv 0 \pmod{(1-\zeta_p)}$$

for any p-adic Dirichlet characters $\chi \in \operatorname{Gal}(k'/\mathbf{Q})^{\widehat{}} - \{1\}$ and $\psi \in \operatorname{Gal}(k/\mathbf{Q})^{\widehat{}} - \{1\}$, where f_{χ} is the conductor of χ , ω is the Teichmüller character for the prime p and ζ_p is a primitive p-th root of unity. If we assume $q \equiv 1 \pmod{p^2}$, then the above congruence also holds for $\chi = 1 \in \operatorname{Gal}(k'/\mathbf{Q})^{\widehat{}}$.

Proof. We first note that p, q and f_{χ} are pairwise coprime by conditions (a) and (c).

$$B_{1,\chi\psi\omega^{-1}} = \frac{1}{pqf_{\chi}} \sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a)\psi(a)$$

$$= \frac{1}{pqf_{\chi}} \sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a)(\psi(a)-1)$$

$$+ \frac{1}{pqf_{\chi}} \sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a).$$

We write S for the latter term of the bottom row in the above expression. Since $\psi(a)^p = 1$ and $a\omega^{-1}(a) \equiv 1 \pmod{p}$, we have

(4)
$$B_{1,\chi\psi\omega^{-1}} \equiv \frac{1}{pqf_{\chi}} \sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} \chi(a)(\psi(a)-1) + S \pmod{(1-\zeta_p)}.$$

We can easily see that

(5)
$$\sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} \chi(a)\psi(a)$$

$$= \sum_{\substack{a=1\\(a,qf_{\chi})=1}}^{pqf_{\chi}} \chi(a)\psi(a) - \chi(p)\psi(p) \sum_{\substack{b=1\\(b,qf_{\chi})=1}}^{qf_{\chi}} \chi(b)\psi(b) = 0 - 0 = 0,$$

since $\chi\psi$ is a non-trivial character. Also we have

(6)
$$\sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} \chi(a) = \begin{cases} 0 & \text{(if } \chi \neq 1), \\ (p-1)(q-1) & \text{(if } \chi = 1). \end{cases}$$

Now we shall calculate S:

$$S = \frac{1}{pqf_{\chi}} \sum_{\substack{a=1\\(a,pqf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a)$$

$$= \frac{1}{pqf_{\chi}} \left\{ \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a) - q\omega^{-1}(q)\chi(q) \sum_{\substack{b=1\\(b,pf_{\chi})=1}}^{pf_{\chi}} b\omega^{-1}(b)\chi(b) \right\}.$$

We see that

$$\sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pqf_{\chi}} a\omega^{-1}(a)\chi(a) = \sum_{b=0}^{q-1} \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pf_{\chi}} (a+bpf_{\chi})\omega^{-1}(a)\chi(a)$$

$$= \sum_{b=0}^{q-1} \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pf_{\chi}} a\omega^{-1}(a)\chi(a)$$

$$= q \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pf_{\chi}} a\omega^{-1}(a)\chi(a),$$

since the conductor of the non-trivial character $\omega^{-1}\chi$ is pf_{χ} . Hence we find that

$$S = \frac{1}{pqf_{\chi}} \left\{ q \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pf_{\chi}} a\omega^{-1}(a)\chi(a) - q\omega^{-1}(q)\chi(q) \sum_{\substack{a=1\\(a,pf_{\chi})=1}}^{pf_{\chi}} a\omega^{-1}(a)\chi(a) \right\}$$

$$= 0,$$

since $\omega^{-1}(q)\chi(q)=1$ from condition (a). Therefore it follows from (4), (5) and (6) that

$$B_{1,\omega^{-1}\chi\psi} \equiv \left\{ \begin{array}{ll} 0 & (\text{if } \chi \neq 1), \\ -\frac{1}{pq}(p-1)(q-1) & (\text{if } \chi = 1), \end{array} \right. \pmod{(1-\zeta_p)}$$

which completes the proof of Lemma 2.

We shall give real abelian number fields k and k' satisfying conditions (a), (b) and (c) in the following. Given an odd prime p, we choose a prime q satisfying

(7)
$$\begin{cases} q \equiv 1 \pmod{p}, \\ p^{\frac{q-1}{p}} \equiv 1 \pmod{q}. \end{cases}$$

Since (7) is equivalent to the statement that a prime q splits completely in $\mathbf{Q}(\zeta_p,\sqrt[p]{p})$ (ζ_n denotes a primitive n-th root of unity for $n \geq 1$), there exist infinitely many primes q satisfying (7) by the Chebotarev density theorem. If k denotes the unique subfield of $\mathbf{Q}(\zeta_q)$ with $[k:\mathbf{Q}]=p$, then p splits completely in k by (7). Take a prime number r with (r,pq)=1, and let k' be a subfield of $\mathbf{Q}(\zeta_r + \zeta_r^{-1})$ with $p \nmid [k':\mathbf{Q}]$ in which both primes p and q split completely. Then the real abelian number fields k and k' satisfy conditions (a), (b) and (c).

THEOREM 2. Let q, r, and k' be as above. Then we have

$$p$$
-rank $A(\mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1})) \ge [k': \mathbf{Q}] - 1.$

To prove Theorem 2, we need the following lemma:

LEMMA 3. Let p be a prime and M a finite \mathbf{Z}_p -module on which a finite abelian group G with $p \nmid \#G$ acts. Then $\#\{\chi^{\sigma} | \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)\}$ divides p-rank M^{χ} for any $\chi \in \widehat{G} = \operatorname{Hom}(G, \overline{\mathbf{Q}}_p^{\chi})$.

Proof. Put $\overline{G} = G/\mathrm{Ker}\chi$. Then the cyclic group \overline{G} acts on $M^{\chi} = e_{\chi}M$ since $he_{\chi} = e_{\chi}$ for $h \in \mathrm{Ker}\chi$, where $e_{\chi} = (\#G)^{-1} \sum_{g \in G} \mathrm{Tr}_{\mathbf{Q}_{p}(\chi(G))/\mathbf{Q}_{p}}(\chi(g))g^{-1}$. We define $N_{\overline{H}} = \sum_{h \in \overline{H}} h$ for any non-trivial subgroup \overline{H} of \overline{G} . Then we have

$$N_{\overline{H}} \sum_{g \in G} \chi^{\sigma}(g) g^{-1} = \sum_{h \in \overline{H}} \chi^{\sigma}(h) \sum_{g \in G} \chi^{\sigma}(g) g^{-1} = 0$$

for every $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ since χ is a faithful character of \overline{G} . Hence $\operatorname{N}_{\overline{H}}$ annihilates M^{χ} for any non-trivial subgroup $\overline{H} \subseteq \overline{G}$. Therefore a similar argument to the proof of [8, Theorem 10.8] shows that the order of $p \operatorname{mod} \# \overline{G}$ divides $p\operatorname{-rank} M^{\chi}$. Since the order of $p \operatorname{mod} \# \overline{G}$ is equal to $\# \{\chi^{\sigma} | \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)\}$, we obtain the lemma.

Proof of Theorem 2. Let K = kk'. Then the prime p splits completely in K by condition (c), and $p \nmid [K : k] = [k' : \mathbf{Q}]$ by condition (b). Thus we can apply Theorem 1 to K/k. For $\chi \in \operatorname{Gal}(K/k)^{\hat{}} - \{1\}$ we have

$$L_p(0,k,\chi) = \prod_{\psi \in \operatorname{Gal}(k/\mathbf{Q})^{\hat{}}} L_p(0,\mathbf{Q},\chi\psi) = \prod_{\psi \in \operatorname{Gal}(k/\mathbf{Q})^{\hat{}}} (-B_{1,\chi\psi\omega^{-1}}),$$

where we identify $\operatorname{Gal}(K/k)^{\hat{}}$ with $\operatorname{Gal}(k'/\mathbf{Q})^{\hat{}}$ by the natural isomorphism. Hence we find that

$$L_p(0, k, \chi) \equiv 0 \pmod{p}$$

by Lemma 2. Therefore it follows from Theorem 1 that $A(K_1)^{\chi} \neq 0$ for every $\chi \in \text{Gal}(K/k)^{\hat{}} - \{1\}$. This and Lemma 3 imply

$$p$$
-rank $A(K_1)^{\chi} \ge \#\{\chi^{\sigma} | \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)\}\$

for every $\chi \in \operatorname{Gal}(K/k)^{\hat{}} - \{1\}$. Therefore

(8)
$$p\text{-rank }A(K_1) \ge \sum_{\chi} \#\{\chi^{\sigma} | \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)\}$$
$$= [K:k] - 1 = [k':\mathbf{Q}] - 1,$$

where χ runs over $\chi \in \operatorname{Gal}(K/k)^{\smallfrown} - \{1\}$ modulo $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy in $\sum_{\chi}{}'$. We consider the ascending chain of fields $K_1 \subseteq K(\zeta_{p^2})^+ \subseteq K(\zeta_{p^2r})^+ \subseteq \mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1})$, where F^+ denotes the maximal real subfield of F for any abelian number field F. Since $p \nmid [K(\zeta_{p^2})^+ : K_1] = \frac{p-1}{2}$ and the primes of $K(\zeta_{p^2})^+$ (resp. $K(\zeta_{p^2r})^+$) lying above r (resp. q) are totally ramified in $K(\zeta_{p^2r})^+$ (resp. $\mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1})$), the norm map from $A(\mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1}))$ to $A(K_1)$ is surjective. Hence we obtain Theorem 2 by (8).

Now we shall derive the following our main result from Theorem 2:

THEOREM 3. Let p be an odd prime number. For any given positive integer N, there exist prime numbers q and r such that p-rank $A(\mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1})) \geq N$. More precisely, if primes q and r satisfy

(9)
$$\begin{cases} q \equiv 1 & \pmod{p}, \\ p^{\frac{q-1}{p}} \equiv 1 & \pmod{q}, \\ r \equiv 1 & \pmod{N} \\ p^{\frac{r-1}{N}} \equiv 1 & \pmod{r}, \\ q^{\frac{r-1}{N}} \equiv 1 & \pmod{r}, \end{cases}$$

for a positive integer N prime to 2p, then p-rank $A(\mathbf{Q}(\zeta_{p^2qr}+\zeta_{p^2qr}^{-1})) \geq N-1$.

Proof. Assume that primes q and r satisfies condition (9). Let k' be the subfield of $\mathbf{Q}(\zeta_r + \zeta_r^{-1})$ with $[k' : \mathbf{Q}] = N$. Then the primes p and q splits completely in k' and $p \nmid [k' : \mathbf{Q}]$. Hence we have

$$p$$
-rank $A(\mathbf{Q}(\zeta_{p^2qr} + \zeta_{n^2qr}^{-1})) \ge [k': \mathbf{Q}] - 1 = N - 1,$

from Theorem 2. Since (9) is equivalent to the statement that the prime q splits completely in $\mathbf{Q}(\zeta_p, \sqrt[p]{p})$ and the prime r splits completely in $\mathbf{Q}(\zeta_N, \sqrt[N]{p}, \sqrt[N]{q})$, we can find primes q and r with condition (9) by the Chebotarev density theorem. Thus we have the theorem.

§4. Behavior of the *p*-rank of the class group of the maximal real subfield of cyclotomic fields

In this section, we shall give the following theorem concerning the behavior of the p-rank $r_p(n)$ of the class group of the maximal real subfield of the n-th cyclotomic field as $n \to \infty$ by applying our construction in section 3:

THEOREM 4. Let p be an odd prime. Denote by $r_p(n)$ the p-rank of the class group of $\mathbf{Q}(\zeta_n + \zeta_n^{-1})$. We assume that the generalized Riemann hypothesis holds. Then we have

$$r_p(n) \neq O(n^{1/6-\varepsilon})$$

for any $\varepsilon > 0$. Here O() stands for Landau's symbol. In other words, for any c > 0 and $\varepsilon > 0$, there exists $n \ge 1$ such that

$$r_p(n) \ge cn^{1/6-\varepsilon}$$
.

To prove Theorem 4, we recall the following theorem from analytic number theory:

Theorem B (Lagarias-Odlyzko [5]). There exists an absolute constant $c_0 \ge 0$ with the following property:

Let L/K be a finite Galois extension of number fields. If the generalized Riemann hypothesis holds for the Dedekind zeta function of L, then for every conjugacy class C of $\mathrm{Gal}(L/K)$, there exists a prime ideal $\mathfrak p$ of K such that

$$[\mathfrak{p}, L/K] = C$$

and

$$N(\mathfrak{p}) \le c_0 (\log d_L)^2 (\log \log d_L)^4.$$

Here $[\mathfrak{p}, L/K]$ denotes the conjugacy class of $\operatorname{Gal}(L/K)$ which consists of Frobenius automorphisms for primes of L lying above \mathfrak{p} , and d_L is the absolute value of the discriminant of L.

We also need the following lemma:

LEMMA 4. Let K_1 and K_2 be number fields. Then we have

$$d_{K_1K_2} \le d_{K_1}^{[K_2:\mathbf{Q}]} d_{K_2}^{[K_1:\mathbf{Q}]}.$$

Proof. For any extension of number fields L/K, we denote by $\mathfrak{D}(L/K)$ the different of L/K. Then we have $d_L \mathbf{Z} = \mathrm{N}_{L/\mathbf{Q}} \mathfrak{D}(L/\mathbf{Q})$. Also we write for $\mathfrak{D}_{L/K}(\alpha)$ the different of $\alpha \in L$ relative to L/K. Since $\mathfrak{D}(K_1K_2/\mathbf{Q}) = \mathfrak{D}(K_1K_2/K_1)\mathfrak{D}(K_1/\mathbf{Q})$, we have by taking the norm $\mathrm{N}_{K_1K_2/\mathbf{Q}}$

$$\begin{split} d_{K_1K_2}\mathbf{Z} &= (\mathrm{N}_{K_1K_2/\mathbf{Q}}\mathfrak{D}(K_1K_2/K_1))d_{K_1}^{[K_1K_2:K_1]} \\ & \supseteq (\mathrm{N}_{K_1K_2/\mathbf{Q}}\mathfrak{D}(K_1K_2/K_1))d_{K_1}^{[K_2:\mathbf{Q}]}. \end{split}$$

We shall show that $d_{K_2}^{[K_1:\mathbf{Q}]}\mathbf{Z} \subseteq N_{K_1K_2/\mathbf{Q}}\mathfrak{D}(K_1K_2/K_1)$, which implies Lemma 4. We recall that $\mathfrak{D}(L/K)$ is the greatest common divisor of $\{\mathfrak{D}_{L/K}(\alpha)|\alpha$ is an integer in $L\}$ for any extension of number fields L/K. Hence it follows from $\mathfrak{D}_{K_1K_2/K_1}(\alpha)|\mathfrak{D}_{K_2/\mathbf{Q}}(\alpha)$ for every integer $\alpha\in K_2$ that $\mathfrak{D}(K_2/\mathbf{Q})\subseteq\mathfrak{D}(K_1K_2/K_1)$. Taking the norm $N_{K_1K_2/\mathbf{Q}}$, we have

$$d_{K_2}^{[K_1:\mathbf{Q}]}\mathbf{Z} \subseteq d_{K_2}^{[K_1K_2:K_2]}\mathbf{Z} \subseteq N_{K_1K_2/\mathbf{Q}}\mathfrak{D}(K_1K_2/K_1).$$

Thus we obtain Lemma 4.

Proof of Theorem 4. Let $\delta > 0$ be fixed. In the following, $c_i > 0$ denotes a constant depending only on δ and p. For the prime p, we choose a prime q satisfying condition (7) in section 3, and fix q once for all. Next we choose a prime r satisfying condition (9) for the above fixed prime q and N > 0 prime to 2p. Since $d_{\mathbf{Q}(\zeta_N)} \leq N^N$, $d_{\mathbf{Q}(\sqrt[N]{p})} \leq N^N p^{N-1}$ and $d_{\mathbf{Q}(\sqrt[N]{q})} \leq N^N q^{N-1}$, we can find that

$$d_{\mathbf{Q}(\zeta_N, \sqrt[N]{p}, \sqrt[N]{q})} \le (N^{N^2} (N^N p^{N-1})^N)^N (N^N q^{N-1})^{N^2} \le N^{c_1 N^3}$$

by Lemma 4. Hence we can choose r with

(10)
$$r \le c_2 (N^3 \log N)^{(2+\delta/2)} \le c_3 N^{3(2+\delta)}$$

by Theorem B. Now we shall deal with $\mathbf{Q}(\zeta_{p^2qr} + \zeta_{p^2qr}^{-1})$. By Theorem 3,

$$(11) r_p(p^2qr) \ge N - 1.$$

On the other hand, we have

$$(12) p^2 qr \le c_4 N^{3(2+\delta)}$$

from (10). If we choose $\delta > 0$ with $3(2 + \delta)(\frac{1}{6} - \varepsilon) < 1$ and let N go to infinity, then we obtain Theorem 4 by (11) and (12).

Acknowledgements. The author wishes to thank Prof. Franz Lemmermeyer for his valuable advice.

References

- [1] G. Cornell, Exponential growth of the l-rank of the class group of the maximal real subfield of cyclotomic fields, Bull. Amer. Math. Soc., 8 (1983), 55–58.
- [2] G. Cornell and M. Rosen, The l-rank of the real class group of cyclotomic fields, Compositio Math., 53 (1984), 133-141.
- [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math., 47 (1978), 85–99.
- [4] K. Iwasawa, On Z_l-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246–326.
- [5] J.C. Lagarias and A.M. Odlyzko, Effective version of the Chebotarev density theorem, Algebraic number fields, (Durham Symposium, 1975; ed. by A.Fröhlich), Academic Press, London, 1977, 409–464.
- [6] F. Lemmermeyer, Ideal class groups of cyclotomic number fields II, Acta. Arith., 84 (1998), 59–70.
- [7] M. Ozaki, The class group of \mathbf{Z}_p -extensions over totally real number fields, Tôhoku Math. J., **49** (1997), 431-435.
- [8] L.C. Washington, Introduction to Cyclotomic Fields (2nd. edition), Graduate Texts in Math. 83, Springer-Verlag, New York, 1997.
- [9] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math., 131 (1990), 493-540.

Department of Mathematics
Faculty of Science and Engineering
Shimane University
1060, Nishikawatsu-cho, Matsue 690-8504 Japan
ozaki@math.shimane-u.ac.jp