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AN APPLICATION OF IWASAWA THEORY

TO CONSTRUCTING FIELDS Q(ζn + ζ−1
n ) WHICH

HAVE CLASS GROUP WITH LARGE p-RANK

MANABU OZAKI∗

Abstract. Let p be an odd prime number. By using Iwasawa theory, we shall
construct cyclotomic fields whose maximal real subfields have class group with
arbitrarily large p-rank and conductor with only four prime factors.

§1. Introduction

The class group of the n-th cyclotomic field Q(ζn) is a much studied

classical and fascinating object in algebraic number theory. The class group

of Q(ζn) can be divided into two “parts”: the relative class group (or the

minus part of the class group) and the real class group, the latter being

the class group of the maximal real subfield of Q(ζn). The relative class

group is easier to manage than the real class group. For example, the order

h−n of the relative class group has an “elementary” expression, namely, the

product of generalized Bernoulli numbers. In contrast to this, the real class

number h+
n is much harder to calculate since the formula for h+

n includes a

mysterious quantity related to units, namely, the regulator of the maximal

real subfield Q(ζn + ζ−1
n ). This gives a hint of the difficulty of the study

of the real class group. The number h+
n is so difficult to compute that we

only know the exact value of h+
n for small n (However, R. Schoof calculated

certain factors h̃+
p of h+

p for prime numbers p < 10000, which are very likely

the exact values (see [8, pp.420–423])), and h+
n is quite small compared to

h−n . Consequently one would like to find large h+
n , and refining this problem,

one would like to find real class groups with large p-rank for given prime p.

In [1] and [2], Cornell and Rosen studied the p-rank of the class group of

the maximal real subfield of cyclotomic fields. By using the genus theory,
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they gave methods to construct fields Q(ζn + ζ−1
n ) which have class group

with arbitrarily large p-rank. Specifically, they proved that if the number of

distinct prime factors l of n with l ≡ 1 (mod p) increases, then the p-rank

of the class group of Q(ζn + ζ−1
n ) also increases.

In the present paper, we shall construct cyclotomic fields whose maxi-

mal real subfields have class groups with arbitrarily large p-rank and con-

ductors with only four prime factors. Usually, one would try to apply the

genus theory to the construction of fields with the above properties. In

fact, Lemmermeyer [6] recently done such construction by using the genus

theory. However, interestingly, our method is based on Iwasawa theory of

cyclotomic Zp-extensions, specifically, Iwasawa’s main conjecture for totally

real number fields, which was proved by Wiles [9].

In section 2, by using Iwasawa theory we shall give a criterion for the

p-divisibility of the class number of a certain type of totally real number

fields. In section 3, we shall apply the result obtained in section 2 to the

construction of the maximal real subfield of a cyclotomic field with class

group whose p-rank is arbitrarily large and also whose conductor has only

four prime factors. In section 4, applying our construction, we shall give a

lower bound of the order of the p-rank of the class group of Q(ζn + ζ−1
n ) as

n→ ∞.

§2. Criterion for the p-divisibility of the class number of a certain

totally real number field

Let p be a fixed odd prime number, and let K be a totally real finite

abelian extension of a totally real number field k. We assume that p -

[K : k]. We denote by K∞ the cyclotomic Zp-extension of K, and let Kn

be its n-th layer. Put Γ = Gal(K∞/K), fixing a topological generator γ

of Γ. For any field F ⊆ Q, we denote by L(F ) and M(F ) the maximal

unramified pro-p abelian extension over F and the maximal pro-p abelian

extension over F which is unramified outside p, respectively, and by A(F )

the Sylow p-subgroup of the class group of F . Put ∆ = Gal(K/k) and

∆̂ = Hom(∆,Q
×
p ). For any Zp[∆]-module M and χ ∈ ∆̂, we define the

χ-part of M by Mχ = (#(∆)−1
∑

σ∈∆ TrQp(χ(∆))/Qp
(χ(σ))σ−1)M . Then

we have M =
⊕

χM
χ, where χ runs over χ ∈ ∆̂ modulo Gal(Qp/Qp)-

conjugacy, namely, representatives of one dimensional factors over Qp of

every irreducible Qp-character of ∆.

In this section, using Iwasawa’s main conjecture proved by Wiles [9]

and the idea given in [7], we shall give a criterion for the p-divisibility of
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the class number of Kn for n ≥ 1 under some assumption on K. Actually,

we shall give a criterion for non-triviality of the χ-part of A(Kn) by means

of estimating the value of p-adic L-function of k for n ≥ 1 and χ ∈ ∆̂, which

can be regarded as a totally real analogue of the theorems of Herbrand and

Ribet for the minus part of the class group of the p-th cyclotomic field (see

[8, Theorems 6.17 and 6.18]).

Our aim in this section is to prove the following theorem:

Theorem 1. Let notations be as above. We assume that the prime

p is completely decomposed in K. Then the following two statements are

equivalent for every χ ∈ ∆̂:

(i) A(Kn)
χ 6= 0 for all n ≥ 1,

(ii)

{
Lp(0, χ, k) ≡ 0 (mod p) (if χ 6= 1),
pζp(0, k) ≡ 0 (mod p) (if χ = 1),

where Lp(s, χ, k) and ζp(s, k) are the p-adic L-function of k and the p-adic
zeta function of k, respectively.

In order to prove Theorem 1, we need the following lemma:

Lemma 1. Let K be as in the statement of Theorem 1. Then M(K)/K
is the maximal abelian sub-extension of L(K∞)/K.

Proof. We denote by Ip ⊆ Gal(M(K)/K) the inertia group for a prime
p of K lying above p. It follows from the assumption on K that the pro-p
part of the local unit group of Kp is isomorphic to Zp, where Kp stands
for the completion of K at p. Hence class field theory shows that Ip is
isomorphic to a quotient group of Zp. Since p is infinitely ramified in
K∞ ⊆ M(K), we see that Ip ' Zp, and that Ip ∩ Gal(M(K)/K∞) = 0.
This equality implies that the primes of K∞ lying above p are unramified
in M(K). Therefore M(K)/K∞ is an unramified extension, and M(K) ⊆
L(K∞). Thus we obtain Lemma 1.

Let X = Gal(M(K∞)/K∞), X = Gal(L(K∞)/K∞), and Y = Gal(L(K∞)/

K∞L(K0)). Then these Galois groups are finitely generated torsion Λ-

modules, where Λ = Zp[∆][[Γ]] (see [4] or [8]).

We need the following theorem proved by Wiles [9].
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Theorem A (Iwasawa’s Main Conjecture). Let settings and no-

tations be as above. We put Λ = Zp[∆][[Γ]]. Let γ̃ ∈ Gal(K∞(ζp)/K(ζp))
be the image of γ ∈ Γ by the natural isomorphism Γ ' Gal(K∞(ζp)/K(ζp)).
We let κ ∈ 1+pZp be the number such that ζ γ̃ = ζκ for any p-power-th root

of unity ζ. Let Fχ(T ) ∈ Zp[∆]χ[[T ]] ' Zp[χ(∆)][[T ]] be the power series

such that

Lp(s, χ, k) =





Fχ(κ
1−s − 1) (if χ 6= 1),

Fχ(κ
1−s − 1)

κ1−s − 1
(if χ = 1)

for s ∈ Zp. Then

charΛχXχ = Fχ(γ − 1)Λχ,

where charΛχXχ denotes the characteristic ideal of the Λχ-module Xχ and

Fχ(γ − 1) is the image of Fχ(T ) by the isomorphism Zp[χ(∆)][[T ]] ' Λχ

sending T to γ − 1.

Proof of Theorem 1. Let νn = γpn
−1

γ−1 ∈ Λ = Zp[∆][[Γ]]. Then

A(Kn)
χ ' Xχ/νnY

χ

by [4, Theorem 6]. Since X is finitely generated over Λ, we have

A(Kn)
χ 6= 0 for all n ≥ 1 ⇐⇒ Xχ 6= 0(1)

by the above isomorphism and Nakayama’s lemma. We denote by
L(K∞)ab/K the maximal abelian sub-extension of L(K∞)/K. Then

Gal(L(K∞)ab/K∞) ' X/(γ − 1)X.

Since L(K∞)ab = M(K) by Lemma 1, and Gal(M(K)/K∞) ' X/(γ−1)X,
we have

Xχ/(γ − 1)Xχ ' Xχ/(γ − 1)Xχ.

Hence we see that

Xχ 6= 0 ⇐⇒ Xχ 6= 0(2)

by Nakayama’s lemma. Since Xχ has no non-trivial finite Λχ-submodules
(see [3]), Xχ 6= 0 is equivalent to charΛχ(X) 6= Λχ, which in turn is equivalent
to Fχ(T ) 6∈ Zp[χ(∆)][[T ]]× by Theorem A. This is also equivalent to Fχ(κ−
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1) ≡ 0 (mod p). We note that the number κ in Theorem A satisfies
κ 6∈ 1 + p2Zp by the assumption on K. It follows from

Fχ(κ− 1) =

{
Lp(0, χ, k) (if χ 6= 1),
(κ− 1)ζp(0, k) (if χ = 1)

that

Xχ 6= 0 ⇐⇒
{
Lp(0, χ, k) ≡ 0 (mod p) (if χ 6= 1),
pζp(0, k) ≡ 0 (mod p) (if χ = 1).

(3)

Combining (1), (2) and (3), we obtain Theorem 1.

§3. Construction of the maximal real subfield of a cyclotomic

field which has class group with large p-rank

In this section, by using Theorem 1 in the previous section, we shall

find n with four prime factors for which the class group of the maximal real

subfield of the n-th cyclotomic field has arbitrarily large p-rank.

Let p be a fixed odd prime, and let k and k ′ be a pair of real abelian

number fields satisfying the following three conditions:

(a) The conductor of k is a prime q which splits completely in k ′, and

[k : Q] = p.

(b) The prime p does not divide [k′ : Q].

(c) The prime p splits completely in kk ′.

We note that q ≡ 1 (mod p) from (a).

Lemma 2. Let k and k′ be real abelian number fields with properties

(a), (b) and (c). Then we have

B1,χψω−1 =
1

pqfχ

pqfχ∑

a=1

aχψω−1(a) ≡ 0 (mod (1 − ζp))

for any p-adic Dirichlet characters χ ∈ Gal(k ′/Q)̂ − {1} and ψ ∈
Gal(k/Q) ̂ − {1}, where fχ is the conductor of χ, ω is the Teichmüller

character for the prime p and ζp is a primitive p-th root of unity. If we

assume q ≡ 1 (mod p2), then the above congruence also holds for χ = 1 ∈
Gal(k′/Q)̂.
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Proof. We first note that p, q and fχ are pairwise coprime by conditions
(a) and (c).

B1,χψω−1 =
1

pqfχ

pqfχ∑

a=1
(a,pqfχ)=1

aω−1(a)χ(a)ψ(a)

=
1

pqfχ

pqfχ∑

a=1
(a,pqfχ)=1

aω−1(a)χ(a)(ψ(a) − 1)

+
1

pqfχ

pqfχ∑

a=1
(a,pqfχ)=1

aω−1(a)χ(a).

We write S for the latter term of the bottom row in the above expression.
Since ψ(a)p = 1 and aω−1(a) ≡ 1 (mod p), we have

B1,χψω−1 ≡ 1

pqfχ

pqfχ∑

a=1
(a,pqfχ)=1

χ(a)(ψ(a) − 1) + S (mod (1 − ζp)).(4)

We can easily see that

pqfχ∑

a=1
(a,pqfχ)=1

χ(a)ψ(a)(5)

=

pqfχ∑

a=1
(a,qfχ)=1

χ(a)ψ(a) − χ(p)ψ(p)

qfχ∑

b=1
(b,qfχ)=1

χ(b)ψ(b) = 0 − 0 = 0,

since χψ is a non-trivial character. Also we have

pqfχ∑

a=1
(a,pqfχ)=1

χ(a) =

{
0 (if χ 6= 1),

(p− 1)(q − 1) (if χ = 1).
(6)

Now we shall calculate S:

S =
1

pqfχ

pqfχ∑

a=1
(a,pqfχ)=1

aω−1(a)χ(a)
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=
1

pqfχ





pqfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a) − qω−1(q)χ(q)

pfχ∑

b=1
(b,pfχ)=1

bω−1(b)χ(b)




.

We see that

pqfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a) =

q−1∑

b=0

pfχ∑

a=1
(a,pfχ)=1

(a+ bpfχ)ω
−1(a)χ(a)

=

q−1∑

b=0

pfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a)

= q

pfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a),

since the conductor of the non-trivial character ω−1χ is pfχ. Hence we find
that

S =
1

pqfχ




q

pfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a) − qω−1(q)χ(q)

pfχ∑

a=1
(a,pfχ)=1

aω−1(a)χ(a)





= 0,

since ω−1(q)χ(q) = 1 from condition (a). Therefore it follows from (4), (5)
and (6) that

B1,ω−1χψ ≡





0 (if χ 6= 1),

− 1

pq
(p− 1)(q − 1) (if χ = 1),

(mod (1 − ζp))

which completes the proof of Lemma 2.

We shall give real abelian number fields k and k ′ satisfying conditions (a),

(b) and (c) in the following. Given an odd prime p, we choose a prime q

satisfying {
q ≡ 1 (mod p),

p
q−1

p ≡ 1 (mod q).
(7)
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Since (7) is equivalent to the statement that a prime q splits completely in

Q(ζp, p
√
p) (ζn denotes a primitive n-th root of unity for n ≥ 1), there exist

infinitely many primes q satisfying (7) by the Chebotarev density theorem.

If k denotes the unique subfield of Q(ζq) with [k : Q] = p, then p splits

completely in k by (7). Take a prime number r with (r, pq) = 1, and let

k′ be a subfield of Q(ζr + ζ−1
r ) with p - [k′ : Q] in which both primes p

and q split completely. Then the real abelian number fields k and k ′ satisfy

conditions (a), (b) and (c).

Theorem 2. Let q, r, and k′ be as above. Then we have

p-rank A(Q(ζp2qr + ζ−1
p2qr

)) ≥ [k′ : Q] − 1.

To prove Theorem 2, we need the following lemma:

Lemma 3. Let p be a prime and M a finite Zp-module on which a

finite abelian group G with p - #G acts. Then #{χσ|σ ∈ Gal(Qp/Qp)}
divides p-rankMχ for any χ ∈ Ĝ = Hom(G,Q

×
p ).

Proof. Put G = G/Kerχ. Then the cyclic group G acts on M χ = eχM
since heχ=eχ for h∈Kerχ, where eχ=(#G)−1

∑
g∈GTrQp(χ(G))/Qp

(χ(g))g−1.

We define NH =
∑

h∈H h for any non-trivial subgroup H of G. Then we
have

NH

∑

g∈G

χσ(g)g−1 =
∑

h∈H

χσ(h)
∑

g∈G

χσ(g)g−1 = 0

for every σ ∈ Gal(Qp/Qp) since χ is a faithful character of G. Hence

NH annihilates Mχ for any non-trivial subgroup H ⊆ G. Therefore a
similar argument to the proof of [8, Theorem 10.8] shows that the order
of pmod#G divides p-rankMχ. Since the order of pmod#G is equal to
#{χσ|σ ∈ Gal(Qp/Qp)}, we obtain the lemma.

Proof of Theorem 2. Let K = kk′. Then the prime p splits completely
in K by condition (c), and p - [K : k] = [k ′ : Q] by condition (b). Thus we
can apply Theorem 1 to K/k. For χ ∈ Gal(K/k)̂ − {1} we have

Lp(0, k, χ) =
∏

ψ∈Gal(k/Q) b

Lp(0,Q, χψ) =
∏

ψ∈Gal(k/Q) b

(−B1,χψω−1),
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where we identify Gal(K/k)̂ with Gal(k ′/Q)̂ by the natural isomor-
phism. Hence we find that

Lp(0, k, χ) ≡ 0 (mod p)

by Lemma 2. Therefore it follows from Theorem 1 that A(K1)
χ 6= 0 for

every χ ∈ Gal(K/k)̂ − {1}. This and Lemma 3 imply

p-rank A(K1)
χ ≥ #{χσ|σ ∈ Gal(Qp/Qp)}

for every χ ∈ Gal(K/k)̂ − {1}. Therefore

p-rank A(K1) ≥
∑

χ

′

#{χσ|σ ∈ Gal(Qp/Qp)}(8)

= [K : k] − 1 = [k′ : Q] − 1,

where χ runs over χ ∈ Gal(K/k)̂ − {1} modulo Gal(Qp/Qp)-conjugacy

in
∑

χ
′

. We consider the ascending chain of fields K1 ⊆ K(ζp2)
+ ⊆

K(ζp2r)
+ ⊆ Q(ζp2qr + ζ−1

p2qr
), where F+ denotes the maximal real sub-

field of F for any abelian number field F . Since p - [K(ζp2)
+ : K1] = p−1

2
and the primes of K(ζp2)

+ (resp. K(ζp2r)
+) lying above r (resp. q) are

totally ramified in K(ζp2r)
+ (resp. Q(ζp2qr + ζ−1

p2qr
)), the norm map from

A(Q(ζp2qr + ζ−1
p2qr

)) to A(K1) is surjective. Hence we obtain Theorem 2 by

(8).

Now we shall derive the following our main result from Theorem 2:

Theorem 3. Let p be an odd prime number. For any given positive

integer N , there exist prime numbers q and r such that p-rankA(Q(ζp2qr +

ζ−1
p2qr

)) ≥ N . More precisely, if primes q and r satisfy





q ≡ 1 (mod p),

p
q−1

p ≡ 1 (mod q),
r ≡ 1 (mod N)

p
r−1
N ≡ 1 (mod r),

q
r−1
N ≡ 1 (mod r),

(9)

for a positive integer N prime to 2p, then p-rankA(Q(ζp2qr+ζ
−1
p2qr

)) ≥ N−1.
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Proof. Assume that primes q and r satisfies condition (9). Let k ′ be
the subfield of Q(ζr + ζ−1

r ) with [k′ : Q] = N . Then the primes p and q
splits completely in k′ and p - [k′ : Q]. Hence we have

p-rankA(Q(ζp2qr + ζ−1
p2qr

)) ≥ [k′ : Q] − 1 = N − 1,

from Theorem 2. Since (9) is equivalent to the statement that the prime q
splits completely in Q(ζp, p

√
p) and the prime r splits completely in

Q(ζN , N
√
p, N

√
q), we can find primes q and r with condition (9) by the

Chebotarev density theorem. Thus we have the theorem.

§4. Behavior of the p-rank of the class group of the maximal real

subfield of cyclotomic fields

In this section, we shall give the following theorem concerning the be-

havior of the p-rank rp(n) of the class group of the maximal real subfield of

the n-th cyclotomic field as n→ ∞ by applying our construction in section

3:

Theorem 4. Let p be an odd prime. Denote by rp(n) the p-rank of

the class group of Q(ζn + ζ−1
n ). We assume that the generalized Riemann

hypothesis holds. Then we have

rp(n) 6= O(n1/6−ε)

for any ε > 0. Here O( ) stands for Landau’s symbol. In other words, for

any c > 0 and ε > 0, there exists n ≥ 1 such that

rp(n) ≥ cn1/6−ε.

To prove Theorem 4, we recall the following theorem from analytic number

theory:

Theorem B (Lagarias-Odlyzko [5]). There exists an absolute con-

stant c0 ≥ 0 with the following property :
Let L/K be a finite Galois extension of number fields. If the generalized

Riemann hypothesis holds for the Dedekind zeta function of L, then for ev-

ery conjugacy class C of Gal(L/K), there exists a prime ideal p of K such

that

[p, L/K] = C

and

N(p) ≤ c0(log dL)2(log log dL)4.
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Here [p, L/K] denotes the conjugacy class of Gal(L/K) which consists of

Frobenius automorphisms for primes of L lying above p, and dL is the ab-

solute value of the discriminant of L.

We also need the following lemma:

Lemma 4. Let K1 and K2 be number fields. Then we have

dK1K2 ≤ d
[K2:Q]
K1

d
[K1:Q]
K2

.

Proof. For any extension of number fields L/K, we denote by D(L/K)
the different of L/K. Then we have dLZ = NL/QD(L/Q). Also we write
for DL/K(α) the different of α ∈ L relative to L/K. Since D(K1K2/Q) =
D(K1K2/K1)D(K1/Q), we have by taking the norm NK1K2/Q

dK1K2Z = (NK1K2/QD(K1K2/K1))d
[K1K2:K1]
K1

⊇ (NK1K2/QD(K1K2/K1))d
[K2:Q]
K1

.

We shall show that d
[K1:Q]
K2

Z⊆NK1K2/QD(K1K2/K1),which implies Lemma
4. We recall that D(L/K) is the greatest common divisor of {DL/K(α)|α is
an integer in L} for any extension of number fields L/K. Hence it follows
from DK1K2/K1

(α)|DK2/Q(α) for every integer α ∈ K2 that D(K2/Q) ⊆
D(K1K2/K1). Taking the norm NK1K2/Q, we have

d
[K1:Q]
K2

Z ⊆ d
[K1K2:K2]
K2

Z ⊆ NK1K2/QD(K1K2/K1).

Thus we obtain Lemma 4.

Proof of Theorem 4. Let δ > 0 be fixed. In the following, ci > 0 de-
notes a constant depending only on δ and p. For the prime p, we choose a
prime q satisfying condition (7) in section 3, and fix q once for all. Next
we choose a prime r satisfying condition (9) for the above fixed prime q
and N > 0 prime to 2p. Since dQ(ζN ) ≤ NN , dQ( N

√
p) ≤ NNpN−1 and

dQ( N
√
q) ≤ NNqN−1, we can find that

dQ(ζN , N
√
p, N

√
q) ≤ (NN2

(NNpN−1)N )N (NNqN−1)N
2 ≤ N c1N3

by Lemma 4. Hence we can choose r with

r ≤ c2(N
3 logN)(2+δ/2) ≤ c3N

3(2+δ)(10)
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by Theorem B. Now we shall deal with Q(ζp2qr + ζ−1
p2qr

). By Theorem 3,

rp(p
2qr) ≥ N − 1.(11)

On the other hand, we have

p2qr ≤ c4N
3(2+δ)(12)

from (10). If we choose δ > 0 with 3(2 + δ)( 1
6 − ε) < 1 and let N go to

infinity, then we obtain Theorem 4 by (11) and (12).
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