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A NOTE ON THE 2(S)-INJECTIVITY OF R(S) 
BY 

JOHN K. LUEDEMAN 

1. Let R be a ring with 1. All modules considered are to be unital left i?-modules 
unless otherwise noted. 

DEFINITION. A a-set for R is a nonempty set 2 of left ideals of R satisfying the 
following conditions: 

OO: If / G 2, J is a left ideal of /, and J ^ I, then J e S . 
(<J2): If 7 e S and reR, then Ir'1^ eR\sreI}eZ. 
(<T3) : If / is a left ideal of R, J e E, and //"* G 2 for each te J, then J G S. 

Sanderson [4] defined an i^-module M to be ^-injective iff each/G Hom^ (/, M) 
can be extended to a n / G Homfî (i?, M) whenever 7 G 2 . 

A submodule iV of a module M is ^-essential in M (BM is a ^-essential extension 
of jjiV) if for each 0 ^ x e M, 

Nx-1 = {r G i? | rx G TV} G S and (Nx'^x ^ 0. 

In [3] it was shown that RM is H-injective iff given RA and a 2-essential extension 

RB of E^4, each/G Hom^ (̂ 4, Af) has an extension fe HomB (B, M). 
Let S be a semigroup. If S has a two-sided zero, denote it by z; otherwise adjoin 

a two-sided zero z to S. Let M be an i^-module and define 

M(S) = {f:S->M\f(z) = 0 and /(*) = 0 
for all but a finite number of s e S}. 

M(S) is an abelian group under pointwise addition. A scalar multiplication 
R(S)xM(S)-+M(S) is defined for reR(S) and meM{S) by (rm)(s) = 2th=s 

r(t)m(h) ifs^z, and (rm)(z) = 0. If M=R, R(S) with the above defined multiplica­
tion and addition is a ring called the (contracted) semigroup ring of S. When M 
is an i^-module, M(S) is an i?(S)-module under the above defined operations. If 
S has an identity 1, M can be embedded in M(S) by mapping m\->m' where 
ra'(V) = 0 if s^ 1, and m'(\) = m. Where 1 G *S, we identify M with its image under 
the map m^->m'. An element meM(S) is often denoted by m — ̂ m(s)s (s^z). 
Scalar multiplication may then be written as (£r(s)s)(£m(s)s)==%Ç>tth=8 r(t)m(h))s. 
Define 

2(5) = {T | T is a left ideal of R(S) and r => /(S) for some / G S}. 

It will be shown that S(*S) is a or-set for R(S) if S is a monoid (semigroup with 1) 
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or if S is finite and regular. If S is a monoid and R(S) is 2(S)-injective, then R 
is 2-injective. If S is a finite group and R is 2-injective, then R(S) is 2(S)-injective. 
This generalizes Theorem 4.1 of Connell [2]. Finally, if S is a finite inverse semi­
group, and ZE(S)(*0S)) = O, then fiE(S)(2*GS)) « Qz(R)(S) (ring iso.). 

In the course of proving several of our results, we require the following facts 
from [3]: 

(1) Let R be a ring and 2 be a or-set for R, then 2 is closed under finite intersec­
tions. 

(2) Let R be a ring and 21 a nonempty collection of left ideals of R satisfying 
(cji) and (cr2), then 2 satisfies property (a3) if and only if 2 satisfies property (0-3) : 

(a3) : If for some / e 2 there is associated to each b e / a Kb e 2 , then %Kb bel,. 

2. LEMMA. Let S be a semigroup, Rbe a ring with 1, and 2 be a a-setfor R. If S 
is a monoid or a finite regular semigroup, then 2(S) is a o-setfor R(S). 

Proof, (o^) is clearly satisfied. 
(a2): Let 2r(s)seR(S) and /0S ,)e2(S) where J G 2 . We must show that 

/ ( 5 ) ( 2 K ^ ) " 1 e S ( S ) . I f 

T = C]{Ms)-1\r(s)^0}, 

then T E 2 since i?(S) consists of elements of finite support and 2 is closed under 
finite intersections. Thus T(S)eIl(S) and T(S)(2 r(s)s)^J(S), so / ( S ^ K ^ ) " 1 

G 2 ( S ) . 

(o-3): Let Z b e a left ideal of R(S) and suppose J&r 1 G 2 ( S ) for all a eJ(S) 
where /G 2 . 

If S is a monoid, then J^J(S); thus ifûT1 G 2(5) for all aeJ. Hence, for each 
a G / , there is Ia e 2 with Ia(S)a^K. By (a3), 2aG/ 4 « G 2 and (2 Iad)(S)^K. Thus 
# G 2 ( S ) . 

If S is regular, fix s G S. For each aeJ, ase J(S) so there is Ja G 2 with 

Ia(S)as = 7a*(S> s * . 
Hence 

2ae//atfe2 and (2/ f la)(S><=tf. 

Since 2 ^ depends on s, let J4Iaa=Kse
y£l. Since we can find, for each se S, a 

i^s G 2 with i ^ S > ç i T , 

Since S is finite, 

Since S is regular, for each se S, there is an a e S for which m? = .y, then 

Ts ç ^ = £&<*> ç J£(S> Ç # 
so 

T(S) = ZseSTs^K and i feS(S) . 
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3. THEOREM. Let S be a monoid, Rbe a ring with 1,2 be a o-setfor R, and M be 
an R-module. Then M is I*-injective if M(S) is ?*(S)-injective. 

Proof. Let / G 2 and/G Horn* (/, M), then/: J(S) -> M(S) defined by 

f(Irm = IAKs))s 

is an i?(»S')-homomorphism. Since M(S) is 2(S)-injective, there is a t=2 t(s)s G M(S) 
with/(2 r(s)s) = (Z r(s)s)(l t(s)s) for all 2 r(s)s eJ(S). Thus for re J, 

/(/)• 1 = /(r. 1) = (r-1)(2 /(*» = 2 rt{s)s e M-1, 

and rt(s) = 0 for «ŝ  1. Since t(l) e M and/(r) = r/(l) for r eJ, M is 2-injective. 

4. PROPOSITION. Le/ M be a H-injective R-module and G be a finite group. Then 
M(G) is a It(G)-injective R(G)-module. 

Proof. Let K be a 2(G)-essential left ideal of R{G) and /e Homfl(G)(£, M(G)). 
Define ifs;K-> M by t(k)=f(k)(l), then </* e Horn* (AT, M). By Zorn's lemma, there 
is an i?-module N, K^N^R(G), and a 0' e HomB (JV, M) extending ̂  and maximal 
with respect to the extension of $. N is a 2-essential submodule of î (G) for if 
0 ^ 2 r(g)geR(G), Then 

#Œ K ^ ) " 1 n * 2 tf(2 r(g)g)"1 nR^J(G)nR =>/ 

for some / G 2 since iT is a 2(G)-essential left ideal of i^(G). Moreover, 

(N(2r(g)gyinR)(Zr(g)g)*0 

by the maximality of N. Hence we have the commutative diagram. 

R(G) 

where the TMiomomorphism ^ : i?(G) -> M exists since M is 2-injective and N is 
a 2-essential submodule of R(G). Define 77: R(G) -> Af(G) by r)(r)(g) = $(g-1r) for 
all r G i?(G), g G G. Then 77 is an i?(G )-homomorphism and for k e K, 

nWg) = ft*"1*) =/(^-^)(i) = (rVWXi) = /(*Xs) 
for all g G G. Thus rj(k)=f(k) for all fc G # and so M(G) is 2(G)-injective. 

REMARKS. The proof of this proposition depends on the fact that when G is a 
finite group, each fe HomB (R(G), M) yields an fe HomB((?) (R(G), M(G)) by 
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defining/(r)(g)=/(g-V). If G is infinite, then fe HomE (R(G), R) defined by 
f(g) = 1 yields/(l)(g)=/(g-1) = 1 ^ 0 for all g e G, and s o / * H o m ^ (R(G), M{G)). 
If G is not a group, then/(r)(g) is not necessarily defined for each g e G. Hence, 
this proof depends strongly on the fact that G is a finite group. 

THEOREM. Let R be a ring with 1, S be a a-set for R, and G be a finite group. 
Then R{G) is I{G)-injective iff R is I*-injective. 

Proof. Let R=M in Proposition 4 and Theorem 3. 

5. The proof of Proposition 4 would have been shortened if the following were 
true: 

If T is a 2(5')-essential left ideal of R(S), then RT is a 2-essential sub-
module of RR(S) where S is a monoid. 

Unfortunately, this is not true as shown by the following example. 

EXAMPLE. Let JR be a field of characteristic/?^0, G a finite/?-group, 

Z = {0,R} and T=ar(g)g\2r(g) = 0}, 

the augmented ideal of R. Then 2(G) is the lattice of all left ideals of R(G), and T 
is 2(G)-essential in R(G). (For any 2 Kg)g G R(G), 0 ̂  T(2 r(g)g)^T and T e 2(G).) 
However let 1 e G, then 

r i " 1 = {reR\r-leT} = (0) and (71 " ^ l = 0. 

Therefore, RT is not a E-essential submodule of RR(G). 
The above example also shows that if T is a 2(S)-essential left ideal of R(S), 

T n R need not be a S-essential left ideal of R. 

PROPOSITION. Let S be a monoid, R a ring with 1, and! be a a-set for R. For each 
R-module M, N is a It-essential submodule of M if and only ifN(S) is a I(S)-essential 
R{S)-submodule of M{S). Moreover, in this case N(S) is a I-essential R-submodule 
ofM(S). 

Proof. (=>) LetRN^RMand0^meM.IfR i S )N(S) isZ^-essential inR ( S )M(S), 
then N(S)(m-1)-1 e2(S) and for some Te l l , T(S)(m-l)^N(S). Thus Tm^N and 
Nm'1 G 2 . Moreover, there is 2 Ks)s E N(S)(m-1)"1 with 

0 Ï (2 t(s)s)(Tn-l) = 2 (t(s)m)s e N(S). 

Since Af(5) is a free .R-module, there is an s e S for which 0^t(s)m e N. Hence 
(Nm'^m^O and fîN is 2-essential in RM. 

(<=) Let RN be S-essential in BM and 0 ^ 2 m(s)s G M(S). Then if 

T = p | {ATm^)-1 | w(» ^ 0}, 

T7 G S since 2 m(s)s has finite support. Thus 

T(S)(2 m(s)s) s JV(S) and N(S)(2 m(s)s) ' 1 G Z(S). 

https://doi.org/10.4153/CMB-1970-088-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-088-0


1970] THE 2(5)-INJECTIVITY OF R(S) 485 

Let {su...,sn} be the support of Jtm(s)s. There is yieNmfa)'1 such that 
y1m{s^) 7̂  0, since RN is 2-essential in RM. If j iwfe )=0 , let y2 = 1 ; otherwise choose 
^ e i V C j i ^ f e ) ) - 1 such that y2yi*n(s2)

:fi0. Continuing in this way we obtain 
j 1 ? . . . , j n G ^ w i t h 

Oï(yn.--yi)Œm(s)s)eN(S). 

Since R^R(S), R^)N(S) is 2(S)-essential in RiS)M(S). Moreover, since yn.. .y± e R, 

RN(S) is 2-essential in RM(S). 
Given a ring R and a a-set 2 for i?, in [3] we defined the 2-singular ideal of R as 

Z^R) = {r e R \ Sr = 0 for some 2-essential left ideal S of R}. 

A Johnson maximal left 2-quotient ring of R, J^R), was constructed as 

Jx(R) = lim {Hoirie (/, R) \ J is a 2-essential left ideal of R}. 

When ZIi(R)=0, J%(R) was shown to be the 2-injective hull of RR, and to be unique 
up to isomorphism over R. 

LEMMA. Let R be a ring with 1, 21 be a v-set for R, and S be a monoid. Then 

Zx(R) = 0ifZxMS)) = 0-

Proof. Suppose r eZ^(R), and let / be a 2-essential left ideal of R with Jr = 0. 
Fix s(^z) E S. Then J(S)(r-s) = 0 and J(S) is a 2(S)-essential left ideal of R(S). 
Hence 

r^eZS(S)TO) = 0 

so that r -s=0. Thus r = 0 and ZE(.#) = 0. 

THEOREM. Le/ Rbe a ring with 1,1* be a a-setfor R, and G be a finite group. If 
Z^G)(R(G)) = 0, then 

JzMG)) ~ G W X G ) (ring iso.). 

Proof. Since ZYt{G){R{G))=0, ZE(i?) = 0 and so /s(i£) is 2-injective. By Proposition 
4, (Jx(R))(G) is 2(G)-injective, and by Proposition 5, (Jx(R))(G) is a 2((7)-essential 
extension of R(G) since i? is 2-essential in JZ(R). Thus (/s(i?))(G) is the 2(G)-
injective hull of R(G) and so is ring isomorphic to /S(G)(i?(G)). 

6. Let i ^ b e a ring with 1 and S be a cr-set for i?. For any subset T of R and 
positive integer n, let Tn denote the set of nxn matrices with entries from T. As 
usual, Rn denotes the n x n matrix ring with entries from R. In [3], we defined 2 n 

as 

Sn = {K | K is a left ideal of i?n and K^. Jn for some / e 2} 

and showed that Sn is a a-set for jRn. A maximal Utumi left 2-quotient ring of 
R, Qx(R), was constructed and (Q^(R))n was shown to be ring isomorphic with 
Qxn(Rn)- It was also proved that Jx(R)xQx(R) (ring iso.) whenever Zs(i?)=0. 
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Let S be a finite Brandt semigroup. Then S=M°(G; m;m;A), an mxm Rees 
matrix semigroup over a group with zero G° and with the m x m identity matrix A 
as sandwich matrix [1, Theorem 3.9, p. 102]. Then R(S)x(R(G))m9 the ring of 
mxm matrices over the ring R(G). Recall that 2(G) is a a-set for R(G), 2(G)m is 
a a-set for (R(G))m, and Z(S) is a a-set for R(S) (since S is regular). 

LEMMA. 2(G)n=2(S). 

Proof. 

£ e S ( G ) f t < > K ^ T n for some TG2(G) 
o £ 2 (/(G))» for some / G S 
o X 2 /(S) for some / e S since /(S) = (/(G))» 

THEOREM. Le/ S be a finite Brandt semigroup, R a ring with 1, tf«d2 be a o-set 
for R. IfZns)(R(S)) = 0, then QxMS))x(Qz(R))(S). 

Proof. First we show that ZS(G)(i?(G))=0. To this end let r e R(G) and Z>=0 
for some S(G)-essential left ideal L of R(G). Then L» is a 2(G)»-essential left ideal 
of 

(R(G))n = R(S) and LB( J ret) = 0. 

Since Z(G)»=Z(S), 

2 ^ i y G Z 2 ( S ) ( ^ ) ) = 0 

so that 

r = 0 and Z ^ C ^ G ) ) = 0. 

To finish the proof of the theorem, we note that 

(QlPMS) » (&(W)) n 
« (gs(G)CR(G)))n by the first part of the proof 

» &(G)n((*(G))n) 
a gS(S)(jR(5)) by the lemma. 

Now let S be a finite inverse semigroup (i.e. a regular semigroup in which 
idempotents commute). The semigroup ring R(S) has an identity e [6, Theorem 2]. 
Let S=S0^>S1=> • • • =>5n+i be a principal series for S with *S'n+i={0} if S has a 
zero and Sn + 1 empty otherwise. Then SilSi + 1 is a Brandt semigroup for each 
i = 0 , 1 , . . . , n [1, Exercise 3, p. 103]. If «=0 , then SXSQ/SX is a Brandt semigroup 
and (Qx(Ry)(S)x Qx(S)(R(S)) by the previous theorem. 

Proceeding by induction, suppose that (Q^(R))(T)^Q^(T)(R(T)) for all finite 
inverse semigroups having a principal series of length less than n and which satisfy 
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Z2(r)(i?(T))=0. Now Sn is a Brandt semigroup so R(Sn)(^R(S)) has an identity, 
say/. If x e R(S)9 then both xf, fx e R(Sn) so 

xf = f(xf) = (fx)f = fx 

so that/is central in R(S). Thus 

*(S) = *(S)(e-/)©*0S)/, 

a ring direct sum. Now R(S)f^R(Sn) by the maps 

2K^nK^->(2K^K)/ and 2 r(s>/h^ 2 r(s>/ 

for 2 Ksn)sn e R(Sn) and 2 r(s)s e R(S). Also R(S/Sn)xR(S)(e-f) by the maps 

2K4*^2r(4?Xe-/) and (2K^»(^-/)f-> 2 K̂ > 
seSISn 

for 2 K4* e R(S). 
Recall that a a-set 2 for a ring i? is the neighborhood system of zero for a ring 

topology on R. Therefore we may consider bases for 2. 
LEMMA 1. {T(S)f\ Tel,} is a base for 2(Sn). 

Proof. Let T(S)f^R(S)f where TeS. If 

* = 2 ' f e X e n S n ) , 
then 

*eJ?(Sn)xi*(S)/ 

Since/is the identity of R(Sn), tf=t so 

T(Sn) = T(Sn)f^T(S)f. 

Now choose Te 2 so that T ^ ) e S ^ ) and let ^=2 t(s)s e T(S). Then 

f=If(sn)sneR(Sn) and */ = 2(^) / fe))^n. 

For each sn e Sn with/(yn)^0, let r ^ T / f e ) " 1 G 2. Then L =p | ^n ^S since/has 
finite support and L(S)f^T(Sn). 

LEMMA 2. {r(S)(e-/) | TeE} to a toe/or S(S/5n). 

Proof. For # e 2 , K(S/Sn)xK(S)(e-f) using the isomorphism 

i ? ( 5 / ^ ) ^ i ? ( ^ - / ) . 

REMARK. In Lemma 2, we have actually shown that the image of 
{T(S)(e-f) | TeS} under the isomorphism R(S)(e-f)xR(S/Sn) is a base for 
2(S/Sn). We identify R(S)(e-f) with i*(S/Sn). 

LEMMA 3. 2(5)=2(Sn)02OS/Sn). 

Proof. L e t # , / e 2 . Then 

* ( S ) / 0 J(S)(e-f) e S(Sn) 0 2(S/Sn). 
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Letting T=Kc\J, we see that 

T(S) £ T(S)f® T(S)(e-f) S K(S)f@J(S)(e-f). 

ThusS(5n)02(5/5„)£2(5). 
Now let TeS . Then 

K(S) £ 7XS)/-1 and J(S) ^ T(S)(e-f)-\ 

where K,JeI,. Hence 

*OS)/e/(s)(e-/)£nOS) 
so S(1S

,)çS(5,
n)©2(S'/5„) and the lemma follows. 

LEMMA 4. ZS(S)(*(S))=0 =>• ZS(Sri)(i?/Sn))=0 <mrfZS(S/Sn)CR(S/Sn))=0. 

Proof. We prove the result for Zz(Sn)(R(Sn)) ; the result for S/Sn follows similarly. 
Recall that R(Sn)xR(S)fandi:(Sn) has {T(S)f[ Tel,} as a base. Let r=rfe R(Sn) 
be such that Lrf=0 where I is a S^J-essential left ideal of R(Sn). Then 
L@R(S)(e-f) is a 2(S,)(=S(Sn)©(5,/S,

7l))-essential left ideal of R(S), and 
(L@R(S)(e-f))(rf) = 0. Hence r/eZS(S)(i?(S))=0 so that rf=r=0 and ZS(Sn)0R(Sn)) 
=0. 

We may now complete the proof of the following: 

THEOREM. Let S be a finite inverse semigroup, Rbe a ring with 1, andT> be a a-set 
for R. Then ifZns){R{S))={), ÔS(S)(i?(S)) *(&(*))(£) {over R{S)). 

Proof. Recall that S= S0 =>Ŝ  => • • • '='Sn^Sn+1 is a principal series for £ where 
« > 0. Then S/S,, is a finite inverse semigroup having a principal series of length 
n—l, and S,, is a Brandt semigroup. By Lemma 4, 

ZS(Sn)(*(Sn)) = ZmisAXtSISj) = 0 

so that 

& ( * ) ) ( « » ÔE(Sl,,CR(Sn)) and (QX(R))(S/Sn) « &««w(*CTO) 

by the induction hypothesis. Then 

&(S)(tf(S)) « ôS(Sn)(iî(5n)) © QnsisjWSISJ). (by [3, Theorem 5.3]) 
* (es(#))(s„) © (<MR)XS/sj 
~ (QdWS)f ®(Qz(R))(S)(e-f) 
= (&CR))(S) 

since/and (e —/) are central idempotents of i?(S). A simple calculation shows that 
the composition of these isomorphisms is the identity when restricted to R(S) ; 
hence the result follows. 

REMARK. If RnRn is £n-injective iff RR is S-injective, then the above method of 
proof would show that R(S) is S(5')-injective iff R is S-injective whenever S is a 
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finite inverse semigroup. I suspect that both results are true; however, I have no 
proof. (The proof of Utumi [5, Theorem 8.3] does not seem to generalize to this 
situation.) 
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