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DISTRIBUTION OF POLYNOMIALS WITH CYCLES OF
A GIVEN MULTIPLIER

GIOVANNI BASSANELLI and FRANÇOIS BERTELOOT

Abstract. In the space of degree d polynomials, the hypersurfaces defined by
the existence of a cycle of period n and multiplier eiθ are known to be contained

in the bifurcation locus. We prove that these hypersurfaces equidistribute the

bifurcation current. This is a new result, even for the space of quadratic poly-
nomials.

§1. Introduction

In a holomorphic family (fλ)λ∈M of rational maps, the sets Pern(w) of
parameters for which fλ has a cycle of exact period n and multiplier w turn
out to be hypersurfaces. One knows, since the fundamental work of Mañé,
Sad, and Sullivan [15], that the closure of the union of the hypersurfaces
Pern(eiθ) coincides with the bifurcation locus Bif(M), that is, the set of
parameters λ0 for which the dynamics of fλ0 drastically change under small
perturbation. Our aim here is to describe precisely, from a measure-theoretic
point of view, the asymptotic behavior of Pern(eiθ) as the period n grows.

Our main tool is the bifurcation current Tbif introduced by DeMarco [8].
It is a positive, closed (1,1)-current supported by Bif(M) which admits both
the Lyapunov function L(λ) and the sum of values of the Green function
on critical points as potentials (see [9] or [1]):

Tbif = ddcL(λ) = ddc
∑

Gλ(cλ).

The bifurcation current and its powers T k
bif (k ≤ dimC M ) have been used

in several recent works (see [1], [12], [11], [6], [2]) devoted to the study of
measurable or complex analytic properties of the bifurcation locus. In par-
ticular, Dujardin and Favre ([12, Theorems 1 and 4.2]) have used the Green-
like potentials to get equidistribution results concerning the hypersurfaces
of M defined by the preperiodicity of a critical point.
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24 G. BASSANELLI AND F. BERTELOOT

In order to study the asymptotic distribution of the hypersurfaces Pern(w),
it is more convenient to use the Lyapunov function since L(λ) is well related
to the multipliers of n-periodic repelling cycles (see Theorem 2.3). This
dynamical property allows us to compare L(λ) with d−n ln |pn(λ,w)|, where
the functions pn(·,w) canonically define the hypersurfaces Pern(w). Setting
[Pern(w)] := ddc ln |pn(λ,w)| and using basic potential-theoretic tools, we
get the following general equidistribution statements.

Theorem 1.1. Let Tbif be the bifurcation current of some holomorphic
family of rational maps (fλ)λ∈M . Then

d−n[Pern(w)] → Tbif , when |w| < 1,

d−n

2π

∫ 2π

0
[Pern(reiθ)]dθ → Tbif , when r ≥ 0, and

d−nddc
(λ,w) ln |pn(λ,w)| → ddcL(λ),

where the convergence is weak, occurs in M and, for the last statement, in
M × C.

The first two assertions are quite easily obtained and were actually essen-
tially given in [2] (the case w = 0 is also covered by Dujardin and Favre’s
result).

When |w| = 1, the convergence of d−n[n(w)] would easily follow from
our arguments if the density of hyperbolic parameters were known. Our
basic observation is that the same conclusion occurs when M is a Riemann
surface, in which the set of nonhyperbolic parameters is compact and the
bifurcation locus is contained in the closure of hyperbolic parameters (see
Proposition 3.4). This already covers the case of the family of quadratic
polynomials. To go further, our strategy is therefore to slice M with hyper-
surfaces which are chosen for the good repartition of hyperbolic parameters.
The existence of such slices is intimately related to the behavior at infinity
of the bifurcation locus, and for this reason we work in the family of degree
d polynomials. In this family, the control we need actually follows from the
work of Branner and Hubbard [5] on the compactness of the connectedness
locus (see Theorem 4.2). Our main result is the following.

Theorem 1.2. Let d ≥ 2, and let {Pc,a}(c,a)∈Cd−1 be the holomorphic fam-
ily of degree d polynomials parameterized by defining Pc,a as the polynomial
of degree d whose critical points are (0, c1, . . . , cd−2) and such that Pc,a(0) = ad.
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Let Tbif be the bifurcation current of this family. Then limn d−n[Pern(w)] =
Tbif for any w such that |w| ≤ 1.

§2. Some tools

2.1. Hypersurfaces Pern(w)
For any holomorphic family of rational maps, the following result describes

precisely the set of maps having a cycle of given period and multiplier.

Theorem 2.1. Let f : M × P1 → P1 be a holomorphic family of degree
d ≥ 2 rational maps. Then for every integer n ∈ N∗, there exists a holomor-
phic function pn on M × C which is polynomial on C and such that
(1) for any w ∈ C \ {1}, the function pn(λ,w) vanishes if and only if fλ has

a cycle of exact period n and multiplier w;
(2) pn(λ,1) = 0 if and only if fλ has a cycle of exact period n and multiplier

1 or a cycle of exact period m whose multiplier is a primitive rth root
of unity with r ≥ 2 and n = mr;

(3) for every λ ∈ M , the degree Nd(n) of pn(λ, ·) satisfies d−nNd(n) ∼ 1/n.

This leads to the following definitions. For any integer n and any w ∈ C,
the subset Pern(w) of M is the hypersurface given by

Pern(w) :=
{
λ ∈ M/pn(λ,w) = 0

}
and, taking into account the possible multiplicities, we consider the following
integration currents:

[Pern(w)] := ddc
λ ln |pn(λ,w)|.

Let us briefly recall the construction of the functions pn. (For more details,
we refer the reader to Milnor [16] or Silverman [17, Chapter 4].)

One first constructs the dynatomic polynomials Φ∗
ϕ,n associated to a ratio-

nal map ϕ of degree d ≥ 2. Let us denote by Fn = (Fn
1 , F n

2 ) the iterates of
some lift F of ϕ to C2, and let us define homogeneous polynomials Φϕ,n on
C2 by setting

Φϕ,n(X,Y ) := Y Fn
1 (X,Y ) − XFn

2 (X,Y ).

The divisor Div(Φϕ,n) induced by Φϕ,n(X,Y ) on P1 is precisely the set of
periodic points of ϕ with exact period dividing n. Denoting μ the classical
Möbius function, one then sets

Φ∗
ϕ,n(X,Y ) :=

∏
k|n

(
Φϕ,n(X,Y )

)μ(n/k)
.
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Using the fact that the sum
∑

k|n μ(k/n) vanishes if n > 1 and that it
is equal to 1 if n = 1, one may show that Φ∗

ϕ,n is a polynomial whose
degree νd(n) depends only on n and d. The divisor Div(Φ∗

ϕ,n) induced by
Φ∗

ϕ,n(X,Y ) on P1 clearly contains the periodic points of ϕ with exact period
equal to n. The other points contained in Div(Φ∗

ϕ,n) are precisely the peri-
odic points of ϕ whose exact period m divides n (m = nr, r ≥ 2) and whose
multiplier is a primitive rth root of unity (see [17, Theorem 4.5, p. 151]).

If z ∈ Div(Φ∗
ϕ,n) has exact period m with n = mr, then we will denote by

wn(z) the rth power of the multiplier of z (i.e., (ϕn)′(z) in good coordinates).
One sees in particular that the following fact occurs: a point z is periodic
of exact period n and wn(z) �= 1 if and only if z ∈ Div(Φ∗

ϕ,n) and wn(z) �= 1.
Let us now consider the sets

Λ∗
n(ϕ) :=

{
wn(z);z ∈ Div(Φ∗

ϕ,n)
}
,

where the points in Div(Φ∗
ϕ,n) are counted with multiplicity, and let us

denote by σ
∗(n)
i (ϕ), 1 ≤ i ≤ νd(n) the associated symmetric functions. We

define the polynomials pn(ϕ,w) by

(
pn(ϕ,w)

)n :=
νd(n)∏
i=0

σ
∗(n)
i (ϕ)(−w)νd(n)−i,

and therefore pn(ϕ,w) = 0 if and only if w ∈ Λ∗
n(ϕ). The properties of pn

follow easily from this construction. The degree Nd(n) of pn(λ, ·) is equal to
(1/n)νd(n) = (1/n)

∑
k|n μ(n/k)dk. In particular, d−nNd(n) ∼ 1/n.

2.2. Lyapunov exponent and bifurcation current
Every rational map of degree d ≥ 2 on the Riemann sphere admits a

maximal entropy measure μf . The Lyapunov exponent of f with respect
to the measure μf is given by L(f) =

∫
P1 log |f ′ |μf (see [10] for a general

exposition in any dimension).
When f : M × P1 → P1 is a holomorphic family of degree d rational

maps, the Lyapunov function L on the parameter space M is defined by

L(λ) =
∫
P1

log |f ′
λ|μλ,

where μλ is the maximal entropy measure of fλ. The function L is plurisub-
harmonic (PSH) on M , and the bifurcation current Tbif of the family is a
closed, positive (1,1)-current on M which may be defined by

Tbif := ddcL(λ).
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As it has been shown by DeMarco [9], the support of Tbif coincides with the
bifurcation locus of the family in the sense of Mañé, Sad, and Sullivan [15]
(see also [1, Theorem 5.2]).

Let us recall that Mañé, Sad, and Sullivan have shown that the comple-
ment of the bifurcation locus is a dense open subset of the parameter space
M whose connected components are called stable components. They have
also shown that any neutral cycle is persistent on the stable components.
In the language of Theorem 2.1, this property may be expressed as follows.

Remark 2.2. For |w0| = 1, a function pn(λ,w0) either does not vanish
on any stable component or vanishes identically on M .

In our study, we combine classical potential-theoretic methods with the
following dynamical property (see [3] or [4], where this has been proved for
endomorphisms of Pk).

Theorem 2.3. Let f : P1 → P1 be a degree d ≥ 2 rational map, let μ be
its maximal entropy measure, and let L be the Lyapunov exponent of f with
respect to μ. Then

L = lim
n

d−n

n

∑
p∈R∗

n

ln |(fn)′(p)|,

where R∗
n := {p ∈ P1/p has exact period n and |(fn)′(p)| > 1}.

The continuity of the Lyapunov function will also play a crucial role.
This was proved by Mañé [14], but a simple argument based on DeMarco’s
formula shows that this function is actually Hölder-continuous (see [1, Corol-
lary 3.4]).

Theorem 2.4. Let f : M × P1 → P1 be a holomorphic family of degree
d ≥ 2 rational maps. Let L(λ) be the Lyapunov exponent of (P1, fλ, μλ),
where μλ is the maximal entropy measure of fλ. Then the function L(λ) is
Hölder-continuous on M .

We end this section by recalling a well-known compactness principle for
subharmonic functions which will be used frequently in the paper.

Theorem 2.5. Let (ϕj) be a sequence of subharmonic functions which is
locally uniformly bounded from above on some domain Ω ⊂ Rn. If (ϕj) does
not converge to −∞, then a subsequence (ϕjk

) converges in L1
loc(Ω) to some

subharmonic function ϕ. In particular, (ϕj) converges in L1
loc(Ω) to some

subharmonic function ϕ if it converges pointwise to ϕ.
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28 G. BASSANELLI AND F. BERTELOOT

§3. Distribution of Pern(w) in general families

In this section, we consider an arbitrary holomorphic family f : M ×P1 →
P1 of degree d ≥ 2 rational maps. We investigate the convergence of the cur-
rents (1/dn)[Pern(w)] towards the bifurcation current Tbif by considering the
sequences of their potentials, and therefore compare the Lyapunov function
L with the limits of (1/dn) ln |pn(λ,w)|, where pn(λ,w) are the polynomials
given by Theorem 2.1.

This leads us to consider the following sequences of PSH functions

Lr
n(λ) :=

d−n

2π

∫ 2π

0
ln |pn(λ, reiθ)| dθ,

L+
n (λ,w) := d−n

Nd(n)∑
j=1

ln+ |w − wn,j(λ)|,

Ln(λ,w) := d−n ln |pn(λ,w)|,

where pn(λ,w) =:
∏Nd(n)

j=1 (w − wn,j(λ)) are the polynomials associated to
the family f by Theorem 2.1.

The pointwise convergence of Ln(λ,w) to L for |w| < 1 is quite a straight-
forward consequence of Theorem 2.3 and immediately implies that
d−n[Pern(w)] converges to Tbif when |w| < 1. However, when |w| ≥ 1 and λ is
a nonhyperbolic parameter, the control of Ln(λ,w) = d−n

∑
ln |w − wn,j(λ)|

is very delicate because fλ may have many cycles whose multipliers are close
to w. This is why we introduce the PSH functions L+

n , which both coincide
with Ln on the hyperbolic components and are quite easily seen to converge
nicely.

3.1. A basic result
We present here what is obtained by combining the dynamical Theo-

rem 2.3 with basic potential-theoretic facts. Our main result is the follow-
ing.

Theorem 3.1. Let f : M × P1 → P1 be a holomorphic family of degree
d ≥ 2 rational maps. Let L(λ) be the Lyapunov exponent of (P1, fλ, μλ),
where μλ is the maximal entropy measure of fλ. Let (Ln)n, (Lr

n)n, and
(L+

n )n be the sequences of PSH functions defined as above. Then

(1) the sequence Ln converges pointwise to L on M × Δ and, for any w ∈ Δ,
the sequence Ln(·,w) converges in L1

loc to L on M ;
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(2) the sequence Lr
n converges pointwise and in L1

loc to L on M for r ≥ 0;
(3) the sequence L+

n converges pointwise and in L1
loc to L on M × C and,

for every w ∈ C, the sequence L+
n (·,w) converges in L1

loc to L on M ;
(4) the sequence Ln converges in L1

loc to L on M × C.

Let us stress that Theorem 1.1 follows immediately from the first, second,
and last statements of Theorem 3.1 by taking ddc.

Proof. All the statements are local, and therefore, taking charts, we may
assume that M = Ck. We write the polynomials pn as follows:

pn(λ,w) =:
Nd(n)∏
i=1

(
w − wn,j(λ)

)
.

Throughout the proof, we shall use the fact that d−nNd(n) ∼ 1/n (see The-
orem 2.1). In particular, this implies that the sequences Ln and L+

n are
locally uniformly bounded from above.

• We first establish the convergence of Ln(λ,w) when |w| < 1. According
to Theorem 2.1, the set {wn,j(λ)/wn,j(λ) �= 1} coincides with the set of
multipliers of cycles of exact period n (counted with multiplicity) from which
the cycles of multiplier 1 are deleted. Using the notation R∗

n(λ) := {p ∈
P1/p has exact period n and |(fn

λ )′(p)| > 1}, we thus have

Nd(n)∑
j=1

ln+ |wn,j(λ)| =
1
n

∑
p∈R∗

n(λ)

ln |(fn)′(p)|.(3.1)

Since fλ has a finite number of nonrepelling cycles (Fatou’s theorem), one
sees that there exists n(λ) ∈ N such that

n ≥ n(λ) ⇒ |wn,j(λ)| > 1, for any 1 ≤ j ≤ Nd(n).(3.2)

By (3.1) and (3.2), one gets

Ln(λ,0) = d−n

Nd(n)∑
j=1

ln |wn,j(λ)|

= d−n

Nd(n)∑
j=1

ln+ |wn,j(λ)| =
d−n

n

∑
R∗

n(λ)

ln |(fn)′(p)|

https://doi.org/10.1215/00277630-2010-016 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-016


30 G. BASSANELLI AND F. BERTELOOT

for n ≥ n(λ) which, by Theorem 2.3, yields

lim
n

Ln(λ,0) = L(λ), ∀λ ∈ M.(3.3)

Let us now pick w ∈ Δ. By (3.2), we have Ln(λ,w) − Ln(λ,0) = d−n ×∑
j ln(|wn,j(λ) − w|)/(|wn,j(λ)|) and ln(1 − |w|) ≤ ln(|wn,j(λ) − w|)/

(|wn,j(λ)|) ≤ ln(1 + |w|) for 1 ≤ j ≤ Nd(n) and n ≥ n(λ). We thus get

d−nNd(n) ln(1 − |w|) ≤ |Ln(λ,w) − Ln(λ,0)| ≤ d−nNd(n) ln(1 + |w|)

for n ≥ n(λ) and, using (3.3), we get limn Ln(λ,w) = L(λ) for any (λ,w) ∈
M × Δ.

The L1
loc convergence of Ln(·,w) now follows immediately from Theo-

rem 2.5.
• Let us show that the convergence of Ln(λ,0) = L0

n implies the convergence
of Lr

n for any r > 0. We essentially show that limn |Lr
n(λ) − Ln(λ,0)| = 0

by using the formula lnmax(|a|, r) = (1/2π)
∫ 2π
0 ln |a − reiθ | dθ. Indeed, this

formula yields

Lr
n(λ) =

1
2πdn

∫ 2π

0
ln

∏
j

|reiθ − wn,j(λ)| dθ = d−n
∑

j

lnmax
(

|wn,j(λ)|, r
)
.

Since |wn,j(λ)| ≥ 1 for n ≥ n(λ) (see (3.2)), we deduce from the above
identity that

Lr
n(λ) = d−n

∑
j

ln |wn,j(λ)| + d−n
∑

1≤ |wn,j(λ)|<r

ln
r

|wn,j(λ)|

= Ln(λ,0) + d−n
∑

1≤ |wn,j(λ)|<r

ln
r

|wn,j(λ)| ,

and thus

0 ≤ Lr
n(λ) − Ln(λ,0) = d−n

∑
1≤ |wn,j(λ)|<r

ln
r

|wn,j(λ)| ≤ d−nNd(n) ln+ r.

By (3.3), this implies that Lr
n converges pointwise to L. It also shows

that (Lr
n)n is locally uniformly bounded from above which, by Theorem 2.5,

implies that (Lr
n)n converges to L in L1

loc(M).
• Let us now deal with the convergence of L+

n . We will show that L+
n (·,w)

converges pointwise to L on M for every w ∈ C. As (L+
n )n is locally uni-

formly bounded, this implies the convergence of L+
n (·,w) in L1

loc(M) (see
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Theorem 2.5), and the convergence of L+
n in L1

loc(M × C) then follows by
Lebesgue’s theorem.

We have to estimate L+
n (λ,w) − Ln(λ,0) =: εn(λ,w) on M . Let us fix

λ ∈ M , w ∈ C and pick R > |w|. We may assume that n ≥ n(λ) so that
|wn,j(λ)| ≥ 1 for all 1 ≤ j ≤ Nd(n) (see (3.2)), and we then decompose
εn(λ,w) in the following way:

εn(λ,w) = d−n
∑

1≤ |wn,j(λ)|<R+1

ln+ |wn,j(λ) − w|

+ d−n
∑

|wn,j(λ)| ≥R+1

ln
|wn,j(λ) − w|

|wn,j(λ)|

− d−n
∑

1≤ |wn,j(λ)|<R+1

ln |wn,j(λ)|.

We may write this decomposition as εn(λ,w) =: εn,1(λ,w) + εn,2(λ,w) −
εn,1(λ,0). As Ln(λ,0) converges to L, we simply have to check that εn,1(λ,w)
and εn,2(λ,w) tend to 0 when n tends to ∞. One clearly has 0 ≤ εn,1(λ,w) ≤
d−nNd(n) ln(2R + 1), and thus limn εn,1(λ,w) = 0. Similarly, limn εn,2(λ,

w) = 0 follows from the fact that, for |wn,j(λ)| > R + 1 > |w| + 1, one has

ln
(
1 − R

R + 1

)
≤ ln

|wn,j(λ)| − R

|wn,j(λ)| ≤ ln
|wn,j(λ) − w|

|wn,j(λ)|

≤ ln
|wn,j(λ)| + R

|wn,j(λ)| ≤ ln
(
1 +

R

R + 1

)
.

• We are finally ready to prove the L1
loc convergence of (Ln)n. As the func-

tions Ln are PSH and the sequence (Ln)n is locally uniformly bounded from
above, we shall again use the compacity properties of PSH functions given
by Theorem 2.5. Since Ln(λ,0) converges to L(λ), the sequence (Ln)n does
not converge to −∞, and it therefore suffices to show that, among PSH
functions on M × C, the function L is the only possible limit for (Ln)n in
L1

loc(M × C).
Let ϕ be a PSH function on M × C, and let (Lnj )j be a subsequence

of (Ln)n which converges to ϕ in L1
loc(M × C). Pick (λ0,w0) ∈ M × C. We

have to prove that ϕ(λ0,w0) = L(λ0).
Let us first observe that ϕ(λ0,w0) ≤ L(λ0). Take a ball Bε of radius ε

and centered at (λ0,w0) ∈ M × C. By the submean value property and the
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32 G. BASSANELLI AND F. BERTELOOT

L1
loc-convergence of L+

n , we have

ϕ(λ0,w0) ≤ 1
|Bε|

∫
Bε

ϕdm = lim
j

1
|Bε|

∫
Bε

Lnj dm

≤ lim
j

1
|Bε|

∫
Bε

L+
nj

dm =
1

|Bε|

∫
Bε

Ldm,

and then, making ε → 0, one obtains ϕ(λ0,w0) ≤ L(λ0).
Let us now check that limsupj Lnj (λ0,w0e

iθ) = L(λ0) for almost all θ ∈
[0,2π]. Let r0 := |w0|. As we saw, L+

n converges pointwise to L, and therefore

limsup
j

Lnj (λ0,w0e
iθ) ≤ limsup

j
L+

nj
(λ0,w0e

iθ) = L(λ0).

On the other hand, by pointwise convergence of Lr0
n to L and Fatou’s

lemma, we have

L(λ0) = lim
n

Lr0
n (λ0) = limsup

j

1
2π

∫ 2π

0
Lnj (λ0, r0e

iθ)dθ

≤ 1
2π

∫ 2π

0
limsup

j
Lnj (λ0, r0e

iθ)dθ,

and the desired property follows immediately.
To end the proof, we argue by contradiction and assume that ϕ(λ0,w0) <

L(λ0). As ϕ is upper semicontinuous and L-continuous (see Theorem 2.4),
there exists a neighborhood V0 of (λ0,w0) and ε > 0 such that

ϕ − L ≤ −ε on V0.

Pick a small ball Bλ0 centered at λ0 and a small disc Δw0 centered at w0

such that B0 := Bλ0 × Δw0 is relatively compact in V0. Then, according to
Hartogs’s lemma (see [13, page 94]), we have

limsup
j

(
sup
B0

(Lnj − L)
)

≤ sup
B0

(ϕ − L) ≤ −ε.

This is impossible since, as we have seen before, we may find (λ0, r0e
iθ0) ∈ B0

such that limsupj(Lnj (λ0, r0e
iθ0) − L(λ0)) = 0.

Remark 3.2. Using standard techniques, one may deduce from the fourth
assertion of Theorem 3.1 that the set of multipliers w for which the bifur-
cation current Tbif is not a limit of the sequence d−n[Pern(w)] is contained
in a polar subset of the complex plane.
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3.2. Further results
The fact that the functions L+

n and Ln coincide on hyperbolic components
would easily yield the convergence of d−n[Pern(w)] towards Tbif for any
w ∈ C if the density of hyperbolic parameters in M were known.

One may, however, overcome this difficulty when the hyperbolic parame-
ters are sufficiently nicely distributed. Here we establish a few facts of this
nature which we use in our study of polynomial families in Section 4.

The following proposition summarizes some useful remarks.

Proposition 3.3. Let us make the same assumptions and adopt the same
notations as in Theorem 3.1. Let w0 ∈ C. Then the following hold.

(1) Any PSH limit value of Ln(λ,w0) in L1
loc(M) is smaller than L.

(2) If a subsequence Lnk
(λ,w0) converges pointwise to L on the stable set,

then it also converges to L in L1
loc(M).

(3) Assume that |w0| = 1 and that the family has no persistent neutral cycle.
If a subsequence Lnk

(λ,w0) converges to ϕ in L1
loc(M), then ϕ is pluri-

harmonic on any stable component Ω and the convergence is locally
uniform on Ω.

(4) For any hyperbolic component Ω ⊂ M , the sequence Ln(λ,w0) converges
locally uniformly to L on Ω.

Proof. (1) Let us set ϕn(λ) := Ln(λ,w0) and assume that a subsequence
ϕnj converges in L1

loc(M) to some PSH function ϕ. Since L+
n (λ,w0) con-

verges to L in L1
loc(M) and since ϕnj (λ) ≤ �L+

nj
(λ,w0), we get ϕ(λ0) ≤

(1/|Bε|)
∫
Bε

ϕdm ≤ (1/|Bε|)
∫
Bε

Ldm for any small ball Bε centered at λ0.
The desired inequality then follows by making ε → 0.

(2) Recall that the stable set is an open dense subset of M . Let ϕ be any
PSH limit of Lnk

(λ,w0) in L1
loc(M). We have to show that ϕ = L. By the

first assertion, ϕ ≤ L. As ϕ = L on a dense subset, the semicontinuity of ϕ

and the continuity of L (see Theorem 2.4) imply that ϕ ≥ L.
(3) Using Remark 2.2, one sees that the functions Lnk

(λ,w0) are pluri-
harmonic on Ω. This implies that ϕ itself is pluriharmonic on Ω and that
Lnk

(λ,w0) converges actually locally uniformly on Ω to ϕ.
(4) If λ is a hyperbolic parameter, then fλ has only attracting or repelling

cycles and is expansive on its Julia set. Thus, as fλ has at most a finite
number of attracting cycles, one sees that |wn,j(λ)| ≥ |w0| + 1 for all 1 ≤
j ≤ Nd(n) and n big enough. In other words, Ln(λ,w0) = L+

n (λ,w0) for n

big enough, and therefore, according to Theorem 3.1, Ln(λ,w0) converges
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to L(λ). By Theorem 2.5, Ln(λ,w0) converges to L in L1
loc(Ω). The local

uniform convergence then follows from the previous assertion.

In the last section of the paper, we will focus on the case |w0| = 1 and work
with polynomial families. Slicing the parameter space in different ways, we
will obtain 1-dimensional holomorphic families where the hyperbolic para-
meters are well distributed. Here is a typical example which, in particular,
covers the case of the quadratic polynomial family.

Proposition 3.4. Let M be a Riemann surface, and let f : M × P1 → P1

be a holomorphic family of degree d ≥ 2 rational maps which satisfies the
following two conditions:
(1) the bifurcation locus is contained in the closure of hyperbolic parameters;
(2) the set of nonhyperbolic parameters is compact in M .
Let L(λ) and Ln(λ,w) be the subharmonic functions defined in Theorem 3.1.
Then, if |w0| = 1, the sequence Ln(λ,w0) converges to L in L1

loc(M).

The proof of this proposition is based on the following technical lemma.
This lemma actually deals with more general situations which we will
encounter in Section 4.

Lemma 3.5. Let M be a Riemann surface, and let f : M × P1 → P1 be a
holomorphic family of degree d ≥ 2 rational maps. Let L(λ) and Ln(λ,w) be
the subharmonic functions defined in Theorem 3.1. Let w0 ∈ C with |w0| = 1,
and let ϕ be a subharmonic limit value of Ln(λ,w0) in L1

loc(M) such that
(1) the bifurcation locus is contained in the closure of the set of parameters

where ϕ = L;
(2) ϕ = L on the stable component which is not relatively compact in M .
Then ϕ = L.

Proof. We start by proving the lemma. On several occasions we shall use
the fact that the function L is continuous (see Theorem 2.4). Assume that
ϕnj := Ln(·,w0) converges to ϕ. Then the holomorphic functions pnj (λ,w0)
cannot vanish identically for j big enough. According to Remark 2.2, this
implies that the functions ϕnj are harmonic on all stable components of M .
This leads to the simple but crucial observation that ϕ is harmonic on any
stable component, or in other words, that the Laplacian Δϕ is supported
in the bifurcation locus.

According to the first assertion of Proposition 3.3, we have ϕ ≤ L. We
may now see that ϕ = L on the bifurcation locus. Indeed, if λ0 belongs to
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the bifurcation locus, then, by assumption, there exists a sequence λk which
converges to λ0 such that ϕ(λk) = L(λk). Then, using the upper semicon-
tinuity of ϕ and the continuity of L, we get ϕ(λ0) = limsupλ→λ0

ϕ(λ) ≥
limsupϕ(λk) = limL(λk) = L(λ0).

By the first observation and the fact that L is continuous, we see that ϕ is
continuous on the support of its Laplacian. According to some well-known
continuity principle, this implies that ϕ is continuous on M . We may now
prove that ϕ ≡ L. If this were not the case, then ϕ(λ0) < L(λ0) for some
λ0 ∈ M . As L and ϕ coincide on the bifurcation locus and (by assumption)
on nonrelatively compact stable components, λ0 would belong to some sta-
ble component Ω which is relatively compact in M . This contradicts the
maximum principle since (ϕ − L) is continuous on Ω, harmonic on Ω, and
vanishes on bΩ.

Let us now establish the proposition. By the fourth assertion of Propo-
sition 3.3, the sequence Ln(λ,w0) does not converge to −∞. According to
Theorem 2.5, it thus suffices to show that any subharmonic limit value ϕ

of Ln(λ,w0) in L1
loc(M) coincides with L. This follows immediately from

Lemma 3.5 since, once again by the fourth assertion of Proposition 3.3,
ϕ = L on the nonrelatively compact stable components.

Remark 3.6. The first assumption of Proposition 3.4 is a well-known
open question in the space of polynomials of degree d ≥ 3. This explains
why a slicing argument will be used in the proof of Theorem 1.2.

§4. Distribution of Pern(w) in polynomial families

4.1. The space of degree d polynomials
Let Pd be the space of polynomials of degree d ≥ 2 with d − 1 marked

critical points up to conjugacy by affine transformations. Although this
space has a natural structure of affine variety of dimension d − 1, we shall
actually work with a specific parameterization of Pd which was introduced
by Dujardin and Favre in [12]. We refer to their paper and to the seminal
paper of Branner and Hubbard [5] for a better description of Pd.

For every (c, a) := (c1, c2, . . . , cd−2, a) ∈ Cd−1, we denote by Pc,a the poly-
nomial of degree d whose critical points are (0, c1, . . . , cd−2) and such that
Pc,a(0) = ad. This polynomial is explicitly given by

Pc,a :=
1
d
zd +

d−1∑
2

(−1)d−j

j
σd−j(c)zj + ad,
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where σi(c) is the symmetric polynomial of degree i in (c1, . . . , cd−2). For
convenience, we shall set c0 := 0.

We shall thus work within the holomorphic family (Pc,a)(c,a)∈M , where
the parameter space M is simply Cd−1. As explained by Milnor [16], it is
convenient to consider the projective compactification Pd−1 of Cd−1 = M

and see the sets Pern(w) as algebraic hypersurfaces of Pd−1. We shall denote
the projective space at infinity {[c : a : 0]; (c, a) ∈ Cd−1 \ {0}} by P∞.

4.2. The behavior of the bifurcation locus at infinity
We aim to show that the bifurcation locus of the family {Pc,a}(c,a)∈Cd−1

can only cluster on certain hypersurfaces of P∞. The ideas here are essen-
tially those used by Branner and Hubbard for proving the compactness of
the connectedness locus (see [5, Chapter 1, Section 3]), but we also borrow
from Dujardin and Favre [12].

For every 0 ≤ i ≤ d − 2, we will denote by αi the homogeneous polynomial
defined by

αi(c, a) := Pc,a(ci) =
1
d
cd
i +

d−1∑
j=2

(−1)d−j

j
σd−j(c)c

j
i + ad,

and we will consider the hypersurface Γi of P∞ defined by

Γi :=
{
[c : a : 0]/αi(c, a) = 0

}
.

By a simple degree argument, one sees that Pc,a(0) = Pc,a(c1) = · · · =
Pc,a(cd−2) = 0 implies that c1 = · · · = cd−2 = a = 0. This observation and
Bezout’s theorem lead to the following.

Lemma 4.1. The intersection Γ0 ∩ Γ1 ∩ · · · ∩ Γd−2 is empty, and Γi1 ∩
· · · ∩ Γik has codimension k in P∞ if 0 ≤ i1 < · · · < ik ≤ d − 2.

We shall denote by Pi the set of parameters (c, a) for which the criti-
cal point ci of Pc,a has a bounded forward orbit (recall that c0 = 0). The
announced result can now be stated as follows.

Theorem 4.2. For every 0 ≤ i ≤ d − 2, the cluster set of Pi in P∞ is
contained in Γi and, in particular, the connectedness locus is compact in
Cd−1.

Since any cycle of attracting basins captures a critical orbit, the above
theorem implies that the intersection of P∞ with an algebraic subset of the
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form Perm1(η1) ∩ · · · ∩ Permk
(ηk) is contained in some Γi1 ∩ · · · ∩ Γik as soon

as the mi are mutually distinct and the |ηi| strictly smaller than 1. Then,
using Bezout’s theorem, one gets the following.

Corollary 4.3. If 1 ≤ k ≤ d − 1, m1 < m2 < · · · < mk, and sup1≤i≤k |ηi| <

1, then Perm1(η1) ∩ · · · ∩ Permk
(ηk) is an algebraic subset of codimension k

whose intersection with Cd−1 is not empty.

The proof of Theorem 4.2 relies on estimates on the Green function and,
more precisely, on the following result which is proved in [12, Section 6.1].

Proposition 4.4. Let gc,a(z) := limn d−n ln+ |Pn
c,a(z)| be the Green func-

tion of Pc,a, and let G be the function defined on Cd−1 by: G(c, a) :=
max{gc,a(ck); 0 ≤ k ≤ d − 2}. Let δ :=

(∑d−2
k=0 ck

)
/(d − 1). Then the following

estimates occur:
(1) max{gc,a(z),G(c, a)} ≥ ln |z − δ| − ln 4;
(2) G(c, a) = ln+ max{|a|, |ck |} + O(1).

Proof of Theorem 4.2. Let ‖(c, a)‖ := max(|a|, |ck |). We simply have to
check that αi((c, a)/‖(c, a)‖) tends to 0 when ‖(c, a)‖ tends to +∞ and
that gc,a(ci) stays equal to 0. As Pc,a(ci) = αi(c, a) and gc,a(ci) = 0, the
estimates given by Proposition 4.4 yield

ln+ ‖(c, a)‖ + O(1) = max
(
dgc,a(ci),G(c, a)

)
= max

(
gc,a ◦ Pc,a(ci),G(c, a)

)
≥ ln

1
4

|αi(c, a) − δ|.

Since αi is d-homogeneous, we then get for ‖(c, a)‖ > 1

(1 − d) ln ‖(c, a)‖ + O(1) ≥ ln
1
4

∣∣∣αi

( (c, a)
‖(c, a)‖

)
− δ

‖(c, a)‖d

∣∣∣,
and the conclusion follows since δ/‖(c, a)‖d tends to 0 when ‖(c, a)‖ tends
to +∞.

4.3. Proof of the main result
We shall denote by λ the parameter in Cd−1 (i.e., λ := (c, a)), and we will

then set
ϕn(λ) := d−n ln |pn(λ,w)|,

where the polynomials pn(λ,w) are those given by Theorem 2.1. We have
to show that the sequence (ϕn)n converges to L in L1

loc. When |w| < 1, this
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has been shown to be true for any holomorphic family of rational maps (see
the first assertion of Theorem 3.1), so we assume that |w| = 1.

As it has been previously observed, the case d = 2 is covered by Proposi-
tion 3.4. To give a flavor of the proof when d ≥ 2, we will first sketch it for
d = 3.

Sketch of proof for degree 3 polynomials. Let us first treat the problem
on a curve Perk0(η0) for |η0| < 1. We will show that the sequence ϕn(λ)
converges uniformly to L near any stable (in Perk0(η0)) parameter λ0. For
this purpose, one desingularizes an irreducible component of Perk0(η0) con-
taining λ0 and thus obtains a 1-dimensional holomorphic family (Pπ(u))u∈M .
Keeping in mind that the elements of this family are degree 3 polynomi-
als which do admit an attracting basin of period k0 and using the fact
that the connectedness locus in C2 is compact, one sees that the fam-
ily (Pπ(u))u∈M satisfies the assumptions of Proposition 3.4. The associated
sequence Ln(u,w) = ϕn(π(u)) converges therefore in L1

loc to L, and this
convergence is locally uniform on stable components by Proposition 3.3.

Let us now consider the problem on the full parameter space C2. Since the
family {Pc,a}(c,a)∈C2 contains hyperbolic parameters, the fourth assertion of
Proposition 3.3 shows that the sequence ϕn(λ) does not converge to −∞.
According to Theorem 2.5, it thus suffices to show that any PSH limit value
ϕ of ϕn(λ) in L1

loc(C
2) coincides with L. Let us therefore assume that ϕnk

tends to ϕ in L1
loc(C

2).
We first show that ϕ = L on any open subset of the type

Ak0 :=
⋃

|η|<1

Perk0(η).

According to the second assertion of Proposition 3.3, it suffices to show
that ϕ = L on any stable component Ω of Ak0 . By the third assertion of
Proposition 3.3, ϕnk

actually converges pointwise to ϕ on Ω. As (by the
previous step) ϕn(λ) converges locally uniformly on the stable components
of Perk0(η), one thus obtains that ϕ = L on Ω.

According to Theorem 4.2, the set of nonhyperbolic parameters in C2 can
only cluster on a finite subset of P∞. We may therefore foliate C2 by par-
allel complex lines (Tt)t∈C whose intersection with the set of nonhyperbolic
parameters is compact. After taking a subsequence, we may assume that ϕnk

converges to ϕ in L1
loc(Tt) for almost every t ∈ C. To conclude, it remains to
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see that ϕ|Tt ≡ L|Tt for these t. For this, one uses Lemma 3.5. The assump-
tions of the lemma are satisfied since, by construction, the unbounded stable
component of Tt is hyperbolic, and the bifurcation locus in Tt is accumulated
by sets of the form Tt ∩ Ak0 where, as we have previously shown, ϕ = L.

Proof of Theorem 1.2. For 1 ≤ q ≤ d − 2, the notation Wq will refer to
any irreducible component of a q-codimensional analytic subspace of Cd−1

of the form Pern1(η1) ∩ · · · ∩ Pernq(ηq), where (η1, . . . , ηq) ∈ Δq and where the
integers nj ≥ 2 are mutually distinct (by Corollary 4.3, such sets do exist).
Let us stress that if λ ∈ Wq, then the polynomial Pλ admits q distinct
attracting basins besides the basin at infinity. Analogously, we shall set
W0 := Cd−1. By W reg

q we shall denote the regular part of Wq. The proof
will consist in showing by decreasing induction on 0 ≤ q ≤ d − 2 that

(∗q) : the sequence ϕn|Wq tends to L in L1
loc(W

reg
q ) for any Wq.

Let us first establish (∗d−2). The analytic set Wd−2 is a curve in Cd−1.
Desingularizing, we get a proper holomorphic map π : M → Wd−2, where
M is a Riemann surface. We claim that the 1-dimensional holomorphic
family (Pπ(u))u∈M satisfies the assumptions of Proposition 3.4. To see this,
we observe that there exists at most one critical point of the polynomial
Pπ(u) whose orbit is not captured by one of the d − 2 distinct attracting
basins of Pπ(u). Let us denote by c(u) this critical point. Assume that u0

lies in the bifurcation locus of (Pπ(u))u∈M . Since all critical points of Pπ(u),
except a priori c(u), stay in some attracting basin for u close to u0, the
orbit of c(u) cannot be uniformly bounded on a small neighborhood of u0.
This implies that c(u) must belong to the basin of infinity for a convenient
small perturbation of u0, and shows that Pπ(u0) becomes hyperbolic after
a convenient small perturbation. In other words, the bifurcation locus of
(Pπ(u))u∈M is accumulated by hyperbolic parameters.

The above argument also shows that if Pπ(u) is nonhyperbolic, then c(u)
cannot belong to the basin at infinity, and therefore Pπ(u) belongs to the
connectedness locus. Using the compactness of the connectedness locus and
the properness of the map π, one sees that the set of nonhyperbolic para-
meters of M is compact.

By Proposition 3.4, ϕn(π(u)) converges in L1
loc(M) to L ◦ π. By the third

assertion of Proposition 3.3, the convergence is actually pointwise on the
stable components of M , and thus ϕn converges pointwise to L on the stable
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set of W reg
q . By the second assertion of Proposition 3.3, ϕn|Wq converges to

L in L1
loc(W

reg
q ). We have proved (∗d−2).

Assuming now that (∗q+1) is satisfied, we shall prove that (∗q) is true.
Let us fix an irreducible q-codimensional analytic set Wq ⊂ Pern1(η1) ∩ · · · ∩
Pernq(ηq).

One easily deduces from Corollary 4.3 that Wq contains hyperbolic para-
meters and that this fact prevents ϕn|W reg

q
from converging to −∞ (see

Proposition 3.3). According to Theorem 2.5, we thus have to show that
for any subsequence ϕnk

|W reg
q

which converges to some PSH function ϕ in
L1

loc(W
reg
q ), one actually has ϕ = L|W reg

q
.

We shall use the following two facts which will be proved later.

Fact 1. Let Am be an open subset of Cd−1 defined by

Am :=
⋃

|η|<1

Perm(η),

where m > max(n1, . . . , nq). If W reg
q ∩ Am is not empty, then ϕ = L on

W reg
q ∩ Am.

Fact 2. There exists a foliation
⋃

t∈A Tt of Cd−1 by (q + 1)-dimensional
parallel affine subspaces such that, for almost every t ∈ A, the slices Tt ∩
Wq are curves on which the set of nonhyperbolic parameters is relatively
compact.

Let us consider the curves Tt ∩ Wq which are given by Fact 2. By standard
arguments, ϕnk

converges to ϕ in L1
loc on almost all these curves and it

thus remains to show that ϕ = L on them. For this purpose, we consider
an irreducible component Γ of Tt ∩ Wq and desingularize it. This yields a
proper holomorphic map π : M → Γ, where M is a Riemann surface. We
shall reach the conclusion by applying Lemma 3.5 to the family (Pπ(u))u∈M .

By the properness of π and Fact 2, the set of nonhyperbolic parameters in
M is compact, and therefore any nonrelatively compact stable component
in M is hyperbolic. Then, by the fourth assertion of Proposition 3.3, ϕ ◦ π =
L ◦ π on such components.

Using Fact 1, we shall now prove that the bifurcation locus of (Pπ(u))u∈M

is accumulated by parameters, where ϕ ◦ π = L ◦ π. Let u0 be a point in
the bifurcation locus. We may assume that π is locally biholomorphic at
u0, and it thus suffices to accumulate π(u0) by points where ϕ = L. As
it is well known, u0 is accumulated by parameters uk such that Pπ(uk) ∈

https://doi.org/10.1215/00277630-2010-016 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-016


DISTRIBUTION OF POLYNOMIALS WITH CYCLES OF A GIVEN MULTIPLIER 41

Permk
(0) and mk → +∞ (this follows also from the general fact that Tbif =

limm d−m[Perm(0)]). This implies that π(u0) is accumulated by open sets of
the form Wq ∩ Amk

. It then follows from Fact 1 that π(u0) is accumulated
by points λk for which ϕ(λk) = L(λk). This ends the proof.

Let us finally establish the facts.
Fact 1. Let Ω be a stable component of W reg

q ∩ Am. According to the
first and third assertions of Proposition 3.3, the sequence ϕnk

− L converges
locally uniformly to the pluriharmonic negative function ϕ − L on Ω (as
previously observed, Wq contains hyperbolic parameters and therefore has
no persistent neutral cycles). For all but a finite number of η ∈ Δ, the
analytic set Wq ∩ Perm(η) is of codimension q + 1 (otherwise Wq would
be contained in infinitely many hypersurfaces Perm(η) and Pλ would have
an infinite number of attracting basins when λ ∈ Wq). Let us thus pick
η0 ∈ Δ and λ0 ∈ Ω ∩ Perm(η0) such that Wq ∩ Perm(η0) has codimension
q +1 and is regular at λ0. Let us denote by Wq+1 the irreducible component
of Wq ∩ Perm(η0) to which belongs λ0. Then by construction, λ0 belongs
to some stable component ω of W reg

q+1. Combining the induction assumption
(∗q+1) with the third assertion of Proposition 3.3, one sees that ϕ − L = 0
on ω. In particular, ϕ(λ0) − L(λ0) = 0 and, by the maximum principle,
ϕ − L = 0 on Ω.

It now follows from the second assertion of Proposition 3.3 that ϕ = L on
W reg

q ∩ Am. Fact 1 is proved.

Fact 2. Let W̃q be the algebraic subset of Pd−1 such that W̃q ∩ Cd−1 = Wq.
When q > 0 and λ ∈ Wq, then Pλ has q distinct attracting basins, and
therefore at least q of its critical points have a bounded orbit. According to
Theorem 4.2, we thus have

W̃q ∩ P∞ ⊂
⋃

0≤i1<· · ·<iq ≤d−2

Γi1 ∩ · · · ∩ Γiq ,

and moreover,
⋃

0≤i1<· · ·<iq+1≤d−2 Γi1 ∩ · · · ∩ Γiq+1 is a (d − 3 − q)-dimensional
algebraic subset of P∞. Thus, as it is classical (see [7, subchapter 7.3]), we
may pick a q-dimensional complex plane C∞ in P∞ (a point when q = 0)
such that

C∞ ∩
( ⋃

0≤i1<· · ·<iq+1≤d−2

Γi1 ∩ · · · ∩ Γiq+1

)
= ∅.
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We now slice Cd−1 by (q +1)-dimensional parallel affine subspaces Tt which
cluster on C∞ in Pd−1, and we write Cd−1 =

⋃
t∈A Tt, where A is a (d − q − 2)-

dimensional complex plane which is transverse to the foliation.
If λ ∈ Wq, then at least q of the critical points of Pλ belong to some attract-

ing basin. This implies that the set of nonhyperbolic parameters in Wq ∩ Tt

may only cluster on the intersection of C∞ with
⋃

0≤i1<· · ·<iq+1≤d−2 Γi1 ∩
· · · ∩ Γiq+1 . The choice of C∞ guarantees therefore that, for all t ∈ A, the
set of nonhyperbolic parameters in Wq ∩ Tt is compact.

It remains to show that, for almost all t ∈ A, the analytic set Wq ∩ Tt

is a curve. For this purpose, let us denote by σ : Wq → A the canonical
projection from Wq onto A. The fiber of σ−1(a) has dimension greater than
(d − 1) − dimA − q = 1. Then, the set of points a ∈ A for which the fiber
σ−1{a} is of dimension strictly greater than 1 is contained in a countable
union of analytic subsets of A whose dimensions are smaller than dimWq −
2 = (d − 1) − q − 2 = dimA − 1 (see [7, subchapter 3.8]). It is therefore
Lebesgue negligible. In other words, Wq ∩ Tt is a curve for almost all t, and
Fact 2 is proved.
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