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Introduction. In this note we consider a relatively ancient
stability problem: the behaviour of solutions of the second order
differential equation %X + f(s) x = 0, where {(s) tends to plus
infinity as s tends to plus infinity. An extensive survey of the
literature concerning this problem and a resume of results may
be found in [1]. More recently McShane et al. [2] have shown
that the additional assumption f(s) > 0 is not sufficient to guaran-
tee that all solutions tend to zero as s tends to infinity. Our
aim is to demonstrate a new criterion for which all solutions do
have the above property. This criterion overlaps many of the
cases heretofore considered.

1. Consider the system
(1) X +1f(s)x=0
where we assume

ASSUMPTION 1. f(s)=> 0 as s-> o, and Sis exists and

is continuous on [s , w) for some s >0 .
o o=

We define a new variable

(2) t = f: ew]’? au .

o
Under this change of variable (1) transforms into the system

% . df(t) 1

(3) *+5 1750 T

]+x =0, where f(t) = f(s(t))

(now . =-). For simplicity we write
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Let

x(t) = r(t) cos [-¢(t) ],

(5) %(t) = r(t) sin [- ¢(t) ]

i.e., we write x and X in terms of polar coordinates.

The polar form of the equations in (5) can now be written

2
(a) dr7]

CF(t) £° sin® (-¢) ,

1

dt
(6)
d F
(b) —th =1+—é—t) sin (-2¢) .
An integral representation for [r(t)]2 is given by:
(7) [r(t)]2 = rcz) exp [ - ftt F(u) sin2 [- ¢(u)] du ] .
o

Our objective is to state conditions for which the integral
on the right side of (7) diverges as t tends to infintity. This
leads to our second assumption.

ASSUMPTION 2. F(t)= 0 as t—- o.

As can be seen from the form of F(t), this is a very weak

-3
assumption since it merely implies that % [£(s)] /2 - 0 as

s = .
Because of assumption 2 and equation 6(b) we may replace
t in equation (7) by ¢ , since these imply, for to sufficiently

large and t > t o that

-9

=t-t +A (t),
o o 1

A ()

where - 0 as t—= . With this change of variable we can

rewrite (7) as
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8)  [x(e)]° = ri exp [- f¢¢ F(s(a)) sin>(-a)[4 +5(—ffﬂl sin(-2a)]” lde].
(o]

The term in the integrand in (8) can be rewritten as

[F(s(a)) sin® (-a)] = (-1)
i=0

i F(s(a))sin(-2a) 1
[ 4 ]

(9) )
= [F(s(a)) sin (-a)] [1 + F(s(a)) V(a, s(a))] ,

where V is a function which tends to zero as s(a) tends to
infinity.

Again applying assumption 2 to equation 6(b), we see that
for t sufficiently large s(a) = o + Ai(a/) , where s(¢0) =t

Az(oz) °

and lim
a=>o0
integrand in (8) may be written

=0 . Thus, for to sufficiently large, the
o

2
(10) F(a +A2(a)) sin (-a) [1 + F(a + Az(oz)) V1(a)] ,
where now V1(a/) tends to zero as « tends to infinity.

A sufficient condition for the divergence of the integral in
(8) now becomes:

2
ASSUMPTION 3.  The integral [ sin”(-a) F(a+A(e)) da

is divergent when the perturbation A(a) satisfies the condition

AM-»O as a—>ow .
a

We are now in a position to state the following results.

THEOREM 1. If the F(t) , induced by the f(s) of
equation (1) by means of equations (2) and (4), satisfies assump-
tions 2 and 3, and f(s) satisfies assumption 1, then all solutions
x(s) of equation (1) tend to zero as s tends to infinity.

Example 1. Let f(s) = exp as (> 0) . Assumption 1 is

2a

satisfied for s > 0 . The induced function is F(t) = ——
- a(t+1)
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which is easily seen to satisfy assumptions 2 and 3.

Example 2. Let f(s) = s (n>0 an integer). Again {(s)
satisfies assumption 1, and the function F(t) induced by £(s) is
2n 1 . .o .
F(t) = 2t which satisfies assumptions 2 and 3.
These two examples are special cases of a condition which
we state as a corollary to the above theorem.

COROLLARY. If f(s) satisfies assumption 1 and
lim t F(t) = B, a positive constant, then all solutions x(s) of
t—>

(1) tend to zero as s tends to infinity.

Proof. The condition on F in the statement of the
corollary is a special case of assumption two. Hence to prove
the corollary we need only show that assumption three holds.

Ale)
o
Let ¢ and h be any two positive constants subject only to the
restrictions 0<e <B and 0<h< 1. By the hypotheses of the
corollary we can find an ozo(h, ¢) > 0 such that IA(Q/)I < ho and

Suppose A(x) is a function such that -0 as g—> .

F(a) > for o> o . Hence
o
2 B-¢ 2 o)
F(o + in(- in“(- - .
(o + Ae)) sin (-a) > A1 +h) sin (-a) for a> n
o B-e¢

2
Since the integral f sin (-«)do is divergent

a(1+h)

assumption three holds and the corollary is proved.

Example 3. We now consider an example which is not
covered by any results known to us. In this example the deriva-
tive of f(s) assumes non-positive values on an infinite subset

+
of R . Let f be defined such that, under the change of vari-
ables (2), f(t) assumes the form

f(t) =t +a sin t+k
where o> 1 and k is a constant which insures f(t) is positive

for all t> 0 . It follows that

g—ts- = [f(t)]_i/z = [t +« sin t+k]—1

/2
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and

_df dt _ . 1/2
ds " dt ds = (1+acost)(t+a sint +k) .

df . e
Thus 3 2Ssumes non-positive values on a set of infinite
s

measure if o>1 and f(s) satisfies assumption 1. The induced
function is:

F(t) =(1 + cost) (t+k + sin t)

Hence F(t) satisfies assumption 2. That it also satisfies
assumption 3 is an exercise in inequalities which we bypass.
Thus we see that all solutions of (1) with f(s) defined as above
tend to zero as s tends to infinity.

I f(s) and F(t) satisfy respectively assumption 1 and
assumptions 2 and 3 then every integral of (1) tends to zero as
s tends to infinity. On the other hand, since the Wronskian
associated with any pair of linearly independent solutions of (1)
is constant, this implies that all non-trivial solutions of (1) have
derivatives whose lim sup is infinite.

If (xi,ki) and (x ,>'<2) are independent solutions of (1)

2
then the Wronskian is constant and can be written in the form
_ 1/2 -1/2 . 1/2 -1/2 .
W= f(s) xi(s) f(s) XZ(S) - f(s) XZ(S) f(s) x1(s) .
1/2 dx, (t)
By what we have shown already f(s) )'ci(s) = di (i=1,2)

which tends to zero as s tends to infinity. Since each xi(s)
. P . +
vanishes an infinite number of times on R we conclude that

1/2
=

lim sup Ixi(s)lf(s) This result can also be found in [3].
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