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Abstract  

Cereal rye (Secale cereale L.) is grown as a cover crop due to its ability to enhance soil health 

and suppress weeds through allelopathy, but germination responses of different weed species to 

allelochemicals have not been studied for seeds varying in age and consequently vigor. This 

study investigated the allelopathic effects of cereal rye on the germination of Palmer amaranth 

(Amaranthus palmeri S. Watson), large crabgrass [Digitaria sanguinalis (L.) Scop.], giant foxtail  

(Setaria faberi Herrm.), and lettuce (Lactuca sativa L.). Seeds were germinated in vitro in media 

with allelochemicals secreted by roots of cereal rye lines varying in allelopathic activity. Seeds 

were subjected to an accelerated aging treatment to modify their vigor. Results showed that aged 

seeds exhibited 31% lower germination than non-aged seeds. The magnitude of the germination 

reduction due to the presence of allelochemicals was species dependent. In the absence of 

allelochemicals, L. sativa exhibited a 20% reduction in germination due to aging, while the 

reduction was greater than 60% when allelopathy and aging were combined. Non-aged S. faberi 

seeds increased germination under low allelopathy conditions, with 20% greater germination 

compared with the non-treated control. Digitaria sanguinalis did not respond to seed aging, and 

the high allelopathy treatment reduced germination less than 10%. Amaranthus palmeri exhibited 

the highest germination and was the only species that was not affected by the seed aging and 

allelopathy treatments. Germination rate was reduced by seed aging and to a lesser extent by 

allelochemicals.  Results suggest that incorporating allelopathic S. cereale varieties in cover crop 

rotations can reduce weed populations. However, the age structure of the seedbank might 

determine the importance of allelochemicals for emergence at the species level, likely causing 

weed community shifts. 
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Introduction 

Weeds have demonstrated potential for rapid evolution of traits that make them more resilient 

and challenging to control, such as herbicide resistance, resistance to environmental stress, 

changes in emergence patterns, and increased competitive ability (Clements et al. 2005; Ethridge 

et al. 2023a, 2023b; Harker 2013; Owen et al. 2015). The reliance on herbicides in conventional 

and reduced-tillage systems is changing to more diverse approaches because of their value to 

control weeds in a more robust and sustainable manner (Gage and Schwartz-Lazaro 2019; 

Riemens et al. 2022). These approaches frequently include the concerted use of herbicides; 

tillage and cultivation; and cultural practices such as crop rotation, seeding patterns, and cover 

cropping (Norsworthy et al. 2012). Among cover crops, cereal rye (Secale cereale L.) use has 

increased among farmers as part of their efforts to supplement soil organic matter, improve water 

infiltration, control erosion, and reduce nitrate leaching (Brandi-Dohrn et al. 1997; Mirsky et al. 

2013; Snapp and Surapur 2018; Teasdale and Mohler 1993). Cereal rye is also known to produce 

benzoxazinoids, which are allelopathic secondary metabolites that act as defenses against insect 

pests (Barnes and Putnam 1987; Wu et al. 2001) and suppress seedling emergence and growth of 

nearby plants (Carlsen et al. 2009; Hickman et al. 2021; Nikus and Jonsson 1999; Rebong et al. 

2024). 

The scientific literature has abundant information about the effect of allelochemicals on 

germination and seedling growth, but the specificity of allelopathic activity between genotypes 

of cereal rye and different weed species has not been studied. In fact, such specificity studies are 

rare, and they have been done only in a few species. For example, Bouhaouel et al. (2015) 

reported that root exudates of six barley (Hordeum vulgare L. vulgare) genotypes caused 

different levels of root and seedling growth inhibition on rigid ryegrass (Lolium rigidum Gaudin) 

and ripgut brome (Bromus diandrus Roth), and the sensitivity to each barley genotype was 

species dependent. This type of interaction between allelopathic activity and weed species 

sensitivity may impact management, because the suppression may not be uniform across the 

weed community. Therefore, characterizing those interactions is necessary to determine the 

value of allelopathy as a component of the suppressive ability of cereal rye. 

A factor that has been ignored in allelopathic studies is the fact that weed seedbanks are 

heterogenous not only in species composition but also in the age and vigor of seeds (Kalisz 

1991).  Most studies have evaluated the effect of allelopathy testing seeds recently produced and 
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exhibiting high vigor. However, this approach may result in underestimations of the importance 

of allelopathy for reductions in weed emergence. Considering that older seeds tend to exhibit 

lower viability and vigor (Reed et al. 2022), one can hypothesize that they would be more 

sensitive to allelochemicals than new seeds. Testing this hypothesis in situ is challenging, due to 

the multiple factors that affect seed viability in soil. However, a practical alternative is to 

artificially modify seed vigor with methods such as accelerated aging (Baker 1974; Reed et al. 

2022; Turner et al. 2014). In an accelerated aging procedure, seeds are subjected to controlled 

high temperature and humidity conditions for a short time (e.g., a few hours to less than a week, 

depending on the species), which simulates an aging process in which energy reserves, DNA and 

RNA stability, and cell membrane integrity are reduced (Fleming et al. 2017; Reed et al. 2022; 

Yi et al. 2025). After aging of seeds, germination tests are conducted to assess the impact of 

reductions in tissue integrity on germinability and vigor and thus provide insight into seed 

germination potential under less than optimal conditions (Fenollosa et al. 2020; Marcos-Filho 

1998; McDonald 1993; TeKrony 1983, 2005).  

In the present study, we hypothesized that older seeds (i.e., aged) are more sensitive to 

allelochemicals than newer seeds and that the effect of allelochemicals would depend on unique 

interactions between weed species and distinct cereal rye genotypes characterized by either high 

or low allelopathy. Thus, the objectives of the present research were (1) to characterize 

differences in germination of several weed species when exposed to allelochemicals of different 

cereal rye genotypes and (2) to determine whether weed seed age influences susceptibility to 

allelochemicals. 

Materials and Methods 

Plant Material 

Laboratory and field screenings quantifying allelopathy levels in various cereal rye genotypes 

have been performed successfully using different species such as lettuce (Lactuca sativa L.), L. 

rigidum, and white mustard (Sinapis alba L.) as bioindicators (Belz and Hurle 2004; Rebong et 

al. 2024; Wu et al. 2000). In the present study, Palmer amaranth (Amaranthus palmeri S. 

Watson), large crabgrass [Digitaria sanguinalis (L.) Scop.], and giant foxtail (Setaria faberi 

Herrm.), which are weeds of economic importance in many crops in the United States (Ethridge 

et al. 2023a; Oreja et al. 2022; Ward et al. 2013), and L. sativa (positive control) were used as 

bioindicators to compare the allelopathic activity of cereal rye genotypes and to quantify 
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variation in sensitivity across species. Weed seeds, derived from parental populations originally 

collected from an agricultural field in Ames, IA, and maintained in the Iowa State University 

Weed Science Program germplasm bank, were produced under greenhouse conditions, 

harvested, dried to 8% moisture content, and stored at 4 C under dry conditions for 

approximately a year when the present study was initiated (Ethridge et al. 2023a). ‘Salad Bowl’ 

lettuce seeds were purchased commercially (Wyatt-Quarles Seed Company, Garner, NC). 

Allelopathic Media 

Cereal rye seedlings (i.e., unique genotypes) were grown in water-agar to freely release 

allelochemicals for 17 d, and L. sativa seedlings were used as bioindicators of injury due to 

allelopathy. Agar media were chosen and classified with high or low allelopathic activity based 

on the injury caused to the bioindicator. Thus, the criteria were >70% injury and/or >50% root 

growth reduction for high allelopathy classification and 45% injury and/or 35% root growth 

reduction for low allelopathy. Agar media with cereal rye seedlings that caused injury between 

those thresholds were not included in the study to ensure having two distinct non-overlapping 

categories. 

Seed Accelerated Aging and Germination 

Seeds were artificially aged following the accelerated aging test for seeds outlined in Tekrony 

(2005) to change their vigor. Seeds were placed on a filter paper in a sealed, glass container with 

a paper towel saturated with water to maintain a high relative humidity environment. The 

containers were then maintained for 48 h in a germinator (Achieva Console Germinator, model 

A3920/B, Seedburo Equipment Company) set to provide 45 C with no light. 

 For the germination test, all seeds were surface sterilized using an ethanol and bleach 

protocol outlined in Wu et. al. (2000) and placed onto the surface of the allelopathic agar extracts 

in a 100 by 15 mm petri dish, with each species being in a separate petri dish. Twenty-five seeds 

that underwent the accelerated aging were placed on top of the agar in one-half of the petri dish, 

and 25 non-aged seeds were sown on the other half. Petri dishes were sealed with Parafilm
®
 and 

placed in the germinator set to provide 22  2/20  2 C and a light/dark cycle of 12/12 h. 

Germination counts were collected daily for 21 d. Seeds were considered germinated when 

protruded radicles were at least 2-mm long. 
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Experimental Design and Statistical Analysis 

The experiment was a completely randomized design with five replications per treatment, and it 

was conducted twice. The treatments were a factorial combination of three allelopathic levels 

(high, low, and control) and two accelerating aging conditions (aging [AA] and non-aging [NA]).  

Final germination was analyzed with an ANOVA model including allelopathy level, aging, 

species, and their interactions as fixed effects, while replication and experiment run were 

considered random effects. All statistical analyses were performed using the R software 4.4.1 (R 

Core Team 2024). The GGPLOT2 package was used for visualization of results (Wickham 2016). 

The EMMEANS and the AGRICOLAE packages were used for ANOVA and for mean separation 

using Tukey’s honestly significant difference (De Mendiburu 2006; Lenth 2016). The DRC 

package (Ritz et al. 2015) was used to describe cumulative germination over time using log-

logistic models. Estimated coefficients and model parameter confidence intervals were inferred 

with the coeftest function of the LMTEST package (Zeileis and Hothorn 2002). The coefficient 

matrix was determined with the SANDWICH package (Zeileis et al. 2020). The ED function was 

used to estimate the time needed to reach 50% of the total cumulative germination (GR50) 

observed for each treatment and species. 

Results and Discussion 

The statistical analysis revealed significant interactions among allelopathy level, seed aging, and 

weed species (P < 0.001; Table 1). Amaranthus palmeri was less affected by allelochemicals and 

aging, reaching 80% regardless of the treatments. Conversely, the germination rate of this weed 

was reduced by aging, and the time to reach 50% of the final cumulative germination (GR50) 

ranged between 7.53 to 8.33 d for the aged seeds and 2.48 to 3 d for the non-aged seeds (Figure 

1; Table 2). This result is likely due to the small seed size of A. palmeri not withstanding the 

high temperatures and humidity of the accelerated aging process (Walters et al. 2010). With A. 

palmeri being one of the more problematic weed species due to its rapid evolution and resistance 

to herbicides and current methods of weed management, this result indicates that cereal rye 

allelopathy alone might not be as effective in inhibiting seedling emergence and growth as other 

factors such as cover crop biomass (Roberts and Florentine 2022). 

 Seed aging and allelopathy had minor effects on the germination of D. sanguinalis 

(Figure 2), but both factors reduced the rate of germination (Figure 1), increasing GR50 3 to 6 d 

compared with Control_NA, which was the fastest treatment (GR50 = 4.15 d). Therefore, at least 
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under the conditions of the present study, it seems that cereal rye allelochemicals may not reduce 

the number of D. sanguinalis seeds germinating in a season, but the germination rate may be 

decreased by presence of allelochemicals. This negative effect on germination rate in addition to 

the substantial biomass and dense foliage that cereal rye produces may still create a synergism 

for the suppression of this species. However, the significance of such synergism for detectable 

changes in weed pressure under field conditions is yet to be determined. 

 Accelerated aging decreased germination of both L. sativa and S. faberi more than the 

other species, with reductions of approximately 50% to 70% when compared with the 

Control_NA treatment (Figure 2). Lactuca sativa was the only species for which there was a 

clear interaction between aging and allelopathy. Thus, aged seeds maintained in allelopathic 

media (high or low) suffered up to 70% reduction in germination and almost double GR50 

compared with germination in agar without allelochemicals (Table 2).  

Interestingly, when germinated in media with allelochemicals, non-aged seeds of S. 

faberi were stimulated, and final germination increased compared with Control_NA. This was 

more evident in the low allelopathy treatment. This positive response to allelochemicals may be 

due to a reduction in seed dormancy. Several researchers have documented reductions in 

dormancy when S. faberi seeds were exposed to abiotic stresses (Taylorson 1986; Yoshioka et al. 

1995). 

 In the case of final germination, the results of the present study confirmed only part of 

our original hypothesis. Thus, it was demonstrated that the magnitude of germination reduction 

in response to allelopathy was species dependent. Nevertheless, seed aging did not always make 

the seeds more susceptible to allelochemicals, as we originally proposed. The three-way 

interaction between allelopathy, aging, and species explained a substantial portion of the 

variation, indicating that the combined effects of allelopathy level and seed aging on germination 

varied among species. Regarding germination rate, except for A. palmeri, aged seeds were prone 

to germinate more slowly when exposed to allelochemicals than non-aged seeds, and the 

magnitude of that response was species dependent, as was hypothesized. 

 While most germination studies utilize fresh, vigorous seeds, the results of the present 

research indicated that the responses of weed seeds are contingent upon their specific age/vigor. 

Therefore, relying exclusively on fresh seeds in germination studies provides a major 

underestimation of the benefits allelochemicals may provide for weed suppression under field 
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conditions. This is not necessarily a problem, because researchers may want to consider a 

“worst-case scenario” in which allelopathy activity is tested against the most vigorous seed lots 

(i.e., minimum suppression). However, the reality is that weed seedbanks have considerable 

variation in age composition (Nunney 2002). This is the result of dormancy mechanisms that 

allow seeds to stay in the soil for several years without germinating. Meanwhile, compared with 

fresh seeds, aged seeds exhibit delayed germination; progressively declining viability, as 

indicated by an increasing proportion of ungerminated seeds; and a more pronounced dormancy 

over time (Graeber et al. 2012; Pirredda et al. 2023; Thompson et al. 2003). Consequently, the 

germinable seedbank can have differences in the number of seeds with high or low vigor, and 

this can determine how effectively allelochemicals will suppress weeds each year. In the case of 

the three weed species studied here, previous research demonstrated that the number of viable 

seeds in the soil decreases in more than 70% in less than 3 yr (Buhler et al. 2001; Masin et al. 

2006; Sosnoskie et al. 2013). This decrease is strongly influenced by loss of seed viability in 

addition to seed germination and mortality. 

A simple application of this information is that allelopathic suppression might not be 

evident or effective immediately following large weed escapes and seed rain, because a large 

portion of the seedbank will be viable and vigorous. In contrast, if seed production is consistently 

impeded, allelopathy will progressively become more effective by reducing weed emergence and 

establishment as seeds lose vigor over time. Additionally, our results documented the specificity 

in the response to allelochemicals depending on species and seed vigor. Thus, cereal rye may 

favor those weed species that are more tolerant to allelochemicals, potentially causing shifts in 

weed community composition. Nevertheless, the dynamics related to seed vigor loss would 

influence those shifts, likely also favoring species with more persistent seeds. 

The fact that allelopathic activity is detected in vitro does not provide much information 

about its real impact in the field. Laboratory studies allow us to characterize the mechanisms that 

could operate in the field, but as other studies have shown, allelopathic activity is highly 

dependent on soil properties determining allelochemical availability and residuality (Rice et al. 

2022; Teasdale et al. 2012). The selectivity and seed age effects observed in the present study are 

likely intrinsic to the seeds themselves and independent of soil-mediated influences. However, 

the concentration of allelochemicals in soil will certainly influence the likelihood of seed or 

seedling being injured to levels that prevent seedling emergence and establishment. 
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The most important limitation of this and most studies characterizing allelopathy in cover 

crops is that it has not been possible to determine how important allelopathy is for weed 

suppression in comparison to cover crop biomass. Distinguishing the relative importance of the 

physical barrier resulting from the large amounts of biomass produced by the cover crop from 

the allelopathic suppression has proven elusive. Nevertheless, a plausible application of the 

present results is that in cases in which allelopathic suppression is relatively low, such as for A. 

palmeri and D. sanguinalis (Figure 2), cover crop biomass production will likely be the driver of 

suppression. Conversely, for highly susceptible species, allelopathy might be sufficient to reduce 

the number of seedlings emerging and facing the challenge of growing through the cover crop 

before exhausting energy reserves. Many weed species persist in agricultural systems due to their 

extensive seed longevity in the seedbank, with dormancy and seed vigor allowing them to remain 

viable across multiple seasons (Bajwa et al. 2022). In such cases, cereal rye allelopathy could 

play a valuable role by weakening or disrupting the dormancy cycle and reducing vigor, making 

these persistent seeds more susceptible to suppression. In cases in which cover crop biomass is 

not high enough for adequate weed suppression, the interaction between seed age and allelopathy 

susceptibility may be valuable (Wiggins et al. 2017). For example, older weed seeds, which are 

less vigorous than younger ones, are more likely to reduce their germination rate when exposed 

to cereal rye allelochemicals (e.g., S. faberi and L. sativa; Figure 1). In this context, and 

considering such reduction a reflection on additional vigor loss, the seedlings that emerge 

through the soil surface will be weaker. Thus, the chances these seedlings have of successfully 

growing through the cover crop will be further reduced. The results of the present study provide 

an example of the value of considering the demographic structure of the seedbank to better 

assess weed suppression potential of cover crops. Cereal rye allelopathy may not control weeds 

with the high levels of efficacy provided by synthetic herbicides, but its contribution to reducing 

the emergence potential of older weed seeds can have important benefits from an integrated 

weed management perspective to reduce weed control variability over time. 
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Table 1. ANOVA final germination percent in response to three allelopathy treatments, two 

aging treatments, four species, and their interactions, with replication and experiment run as 

random effects 

  
Source DF SS MS F-value Pr(>F) 

Allelopathy (Al) 2 11.86 5.93 11.84 <0.001 

Aging (Ag) 1 0.05 0.05 0.05 0.83 

Species (Sp) 3 16.08 5.36 16.05 <0.01 

Al  Ag 2 11.14 5.57 11.12 <0.01 

Al  Sp 6 271.48 45.25 271.00 <0.001 

Ag  Sp 3 12.43 4.14 12.41 <0.01 

Al  Ag  Sp 6 181.33 30.22 181.01 <0.001 

Residuals 215 215.38 1.00   
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Table 2. Time to reach 50% of the final cumulative germination (GR50) for 21-d germination of 

Amaranthus palmeri, Digitaria sanguinalis, Setaria faberi, and Lactuca sativa, with (AA) and 

without (NA) accelerated aging of seeds, germinated in agar containing high and low levels of 

allelochemicals and an allelochemical-free agar (control) 

Species Seed aging Allelopathy GR50 SEM
a
 CV

b
 

     % 

Amaranthus palmeri NA Low 2.48 0.03 3.6 

  High 3.00 0.05 5.0 

  Control 2.81 0.03 3.2 

 AA Low 7.53 0.07 2.8 

  High 8.33 0.10 3.6 

  Control 7.65 0.06 2.4 

Digitaria 

sanguinalis 

NA Low 
13.01 0.30 6.9 

  High 11.40 1.92 50.5 

  Control 4.15 0.03 2.2 

 AA Low 7.05 0.09 3.8 

  High 7.76 0.15 5.8 

  Control 7.32 0.15 6.1 

Setaria faberi NA Low 6.68 0.11 4.9 

  High 9.01 0.16 5.3 

  Control 2.68 0.04 4.5 

 AA Low 6.81 0.35 15.4 

  High 6.67 0.30 13.5 

  Control 7.23 0.11 4.6 

Lactuca sativa NA Low 3.48 0.05 4.3 

  High 3.17 0.09 8.5 

  Control 1.79 0.02 3.4 

 AA Low 7.19 0.29 12.1 

  High 6.51 0.13 6.0 

   Control 7.80 0.09 3.5 
a
 SEM, standard error of the mean. 
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Figure 1.  Cumulative germination (GR50) over 21 d of Amaranthus palmeri, Digitaria 

sanguinalis, Setaria faberi, and Lactuca sativa, with (AA) and without (NA) accelerated aging of 

seeds, germinated in agar containing high and low levels of allelochemicals and an 

allelochemical-free agar (control).  Lines were fit using a log-logistic model. 
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Figure 2. Estimated marginal means ( standard error of the mean) of seed germination (%) 

across seed aging treatments and allelopathy levels, analyzed separately for each species: 

Amaranthus palmeri, Digitaria sanguinalis, Setaria faberi, and Lactuca sativa. Bars with the 

same letter were not significantly different within species based on Tukey’s honestly significant 

difference  = 0.05. 
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