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THE RANK THEOREM FOR LOCALLY LIPSCHITZ 
CONTINUOUS FUNCTIONS 

BY 

G. J. BUTLER, J. G. TIMOURIAN AND C. VIGER 

ABSTRACT. The Rank Theorem is proved for locally Lipschitz 
continuous functions f:Rn —> Rp with generalized derivative of 
constant rank. 

1. Introduction. Let f:Rn —> Rp be a locally Lipschitz continuous function. 
The properties of such functions are of interest in a wide variety of applications, 
many of which are described in Frank Clarke's monograph [6]. 

According to Rademacher's Theorem [7; p. 216, 3.1.6] a locally Lipschitz 
continuous function is differentiable almost everywhere. In [6; p. 70, 2.6.1] a 
generalized derivative is defined for such functions in the following manner: 
the generalized Jacobian or derivative of / at x, denoted df(x), is the convex 
hull of all p X n matrices obtained as the limit of a sequence of the form Jf(xt), 
where xt —> x, xt is a point at which / is differentiable, and Jf(xt) is the usual 
p X n matrix of partial derivatives of f(x) at xt. 

Many properties of derivatives for differentiable functions can be extended to 
generalized derivatives of locally Lipschitz maps. For example, there are gener­
alized versions of chain rules, the Mean Value Theorem, the Inverse Function 
Theorem, and the Implicit Function Theorem. 

A version of the Rank Theorem is given by A. Auslender in [1]. 
In this work we present (3.1) a (somewhat) more general Rank Theorem. A 

key proposition, (2.1), allows us to drop the hypothesis in [1] that the same 
submatrix of each element A of df(x) has the rank of A. 

We use the Rank Theorem to describe the local structure of certain Lipschitz 
continuous functions with singularities. The results can be regarded as 
generalizations of some of the results in [11] for the case n = p. 

Our notation will follow that in [6]. 

2. Convex sets of matrices of constant rank. Let £2 be a compact, convex set 
of/? X « matrices, all of rank k, and let Qj be the compact, convex subset of Rn 
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formed by the first rows of the elements of Î2. Let 9t(A ) be the row vector space 
of A e £2. The following proposition will be used to prove the Rank Theorem 
in Section 3. 

2.1. PROPOSITION. There is an (n — k)-dimensional subspace Hn~k of Rn 

transverse at 0 to the row vector space of any element of Î2, and a (p — k)-
dimensional subspace Lp~ of B? which is transverse at 0 to the column vector 
space of any element ofQ. 

The proof (2.4) will be preceded by two lemmas. The existence of Lp~ will 
follow from the existence of Hp~ for the set Q, consisting of the transposes of 
the matrices in Q,. 

2.2. LEMMA. NO open neighborhood of 0 e Rn is contained in S2j. 

PROOF. Suppose an open neighborhood of 0 were contained in Q1# Choose 
matrices A0, Au . . . ,An e 12 so that for A = \/{n + 1) SJLo^/» a\(A) = ^ r s t 

row of A = 0, and {ax(Aj) }j=0 are the vertices of an «-dimensional simplex 
in Rn. 

Let at{A ), j = 1, 2 , . . . , / : be rows of A which span its row vector space 3ft(A ). 
Without loss of generality we may assume that 

at(A) = ejf = ( 0 , . . . , 1 , 0 , . . . , 0 ) 

Î 
yth position 

and relabel so that i- = j , j = 1, 2 , . . . , k and old row 1 becomes row 
k + 1. 

Since ak^l(A) = 0 € int co{ak+x{Aj) }j=0 we can find an arbitrarily small 
perturbation A€ of A such that A€ e £2, distance (A, A€) < X(c), and ak^x(A€) = 
€ • ek+h where X(c) —» 0 as € —> 0. 

If c ¥* 0 is sufficiently small, then ak+x(A^) is linearly independent of 
«iC4€),. . . , ak(A€). For otherwise there exist xl9 x2, . . . , xk with 

k 
ah+MÙ = 2 xflLjiAJ = € • ek+x. 

Now at{A€) = e,. + «,.(€), where «,(€> = ( 8 n , . . . , 6,.„) and fi^c) -> 0 as c -> 0. 
Thus we have the system of equations 

' l + «11 Ô21 

8 U + 1 : 

1 + «** 

If € is chosen small enough, the first k rows of the coefficient matrix still has 
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rank /:, SO Xj — Xy — . . . — Xu = 0. But that contradicts e ¥= 0; thus ock+i(A€) is 
independent of {at(A^\ i = 1 ,2 , . . . , / :} and ̂ 4€ has rank /: + 1, which also is a 
contradiction and we have shown no open neighborhood of 0 e Rn is contained 
in S2j. 

2.3. LEMMA. 7/* S2J ^ 0, /Ae« 0t{A) n ^ contains nonzero vectors for all 
A e £2. 

PROOF. It is trivial if 0^04) =̂ 0, so suppose there exists ^40 e £2 with 
a ^ o ) = 0 and &(A0) n 2X = 0. Then &(A0) is a /c-dimensional subspace of i£" 
which is transverse to span{aj(v4) } for all A e £2 for which 0^04) ^ 0. 

Without loss of generality we may assume that &(A0) is generated by 
aÉ(A0) = ei9 i = 2, 3 , . . . , k + 1, and that there exists B e £2 with ^( i?) = e^ 
Then by an argument similar to that used in (2.2) we can show that if € > 0 is 
sufficiently small, then 

{«,(€5 + (1 - e)A0) }*+' 

is an independent set, which contradicts the fact that dim 0t{A ) = k for all 
A e £2. 

2.4. PROOF OF (2.1). It follows from (2.2) that there exists an (n — 1)-
dimensional hyperplane H for which H n £2x = 0. Let <%(A) = @(A) n # . 

If yl G £2 with a ^ ) =̂  0, then since ax(A ) is transverse to 7/, ̂ ( ^ ) must have 
dimension (k — 1). 

If A e £2 with a ^ ) = 0, then by (2.3) there is a vector v e ^ 4 ) , v ^ 0 and 
v transverse to H. Since <%(A ) is spanned by @l(A ) U {v }, &(A ) must again have 
dimension k — 1. 

Recoordinatize and identify i7 with i?" _ 1 . This induces a set 12 of matrices 
which is again a compact convex set: a nonsingular affine transformation of £2. 
The corresponding set of first rows £2j has H as a support (or separating) plane 
and ^ ( J ) = ^ ( 2 ) n H is (/: - l)-dimensional for all A e fi. Also, J ( 2 ) is 
generated by the last p — 1 rows of ^4, and the rank of the lower left (p — 1) X 
(n — 1) submatrix ^ of 4̂ = A: — 1 = rank of the last ^ — 1 rows. 

The rest of the proof is by induction. Suppose that we have proved the row 
vector space portion of (2.1) for (p — 1) X (n — 1) matrices of rank k — 1. By 
this inductive hypothesis there exists a subspace Hn~k of H = Rn~l with 
dimension n — k such that 

9t{A) n Hn~k = &(A) n Hn~k = gi(Â) n H n Hn~k 

= £(A) O Hn~k = 0 for all I G B . 

We claim that 9t{A) n i / " "* = 0 for all A e £2. 
For suppose that J^ G ^ ( ^ ) n Hn~k. Then w = JC • ax(A) + y • a for 

some vector 5 G ^(^4) = ^ 4 ) and scalars x, y. If ^ 0 4 ) ¥= 0, then since 
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w G &(A) n Hn~k
9 w G H so x = 0 since the first row is transverse to H. 

Thus w = y • 5 G ^ ( 2 ) n J^2"^ = 0, and ^ = 0 also. If a^vî) = 0, then 
w = y • a too, which is as before. 

To complete the induction, setn — p = q^Q9p — k = s^09 and start the 
induction with (1 -f- s) X (1 4- q 4- s) matrices of rank 1. Denote 1 4- s by M, 
1 4- q 4- s by JV. The result for this case will be a consequence of the proposition 
(2.5), below. 

The result is immediate if 2.5 (a) applies (see below). If 2.5 (b) applies, then 
without loss of generality we may suppose that all columns of A are multiples of 
e[ = (1, 0 , . . . , 0 ) r for each A G Q. 

A separating hyperplane HN~1 in RN for the set fij = {ax(A ), A G Î2} can be 
found as a consequence of (2.2), and this hyperplane is the required (N — 1)-
dimensional subspace which is transverse to &(A) for each A G £2. 

2.5. PROPOSITION. Let £2 be a compact convex set of M X N matrices of rank 1. 
Then either (a) the rows of every matrix A G £2 are multiples of some fixed vector, 
or (b) the columns of every matrix A G S2 are multiples of some fixed vector. 

PROOF. By [8], if A, B and (l/2)(A 4- 2?) are matrices of rank 1, then either (a) 
or (b) applies to A and B (and hence the segment joining them). On account of 
this result we see that the set of ordered pairs Q, X 0 is the union of two 
equivalence classes £% and % where (A, B) G & if the rows of A and B are all 
multiples of a fixed vector; likewise <& is defined in terms of columns. 

Now suppose there exist A, B, C, G £2 such that (A, B) e <% — <tf 
and (.4, C) G # - # . If (£, C) G # , then (A, C) G # ; if (B9 C) G #, then 
(A, B) G #. Both of these are a contradiction. Thus for any A G 12, and 
for any 5 , C G Î2, either (̂ 4, B\ (A, C) belong to ^ or to #, so S X £2 = â? 
or %> and the assertion is proved. (We wish to thank E. Leonard for referring us 
to [8] ). 

3. The Rank Theorem. 

3.1. THEOREM. Suppose thatf.Rn —» Rp is Lipschitz in an open set W c Rn
9 and 

that each element of (3/(JC); X G W} has rank k. 
Then there exist neighborhoods U of x G W9 V of f(x)9 and Lipschitz homeo-

morphisms (with Lipschitz inverses) a:U —> Rn
9 /?:V —» Rp such that 

fifa~\xl9 x2, . . . , xn) = (xl9 x2,...,xk909...9 0). 

PROOF. We may as well assume x = 0, f(x) = 0, since otherwise the map / 
may be replaced b y / ( z ) = f(x + z) — f(x). Then according to the chain rule 
[6; p. 75, Corollary] df(z) • v c CO{8/(JC 4- z) • In • v} = df(x 4- z) • v for any 
v G Rn, In the n X «-identity map. Thus every element of 3/(z) in a neighbor­
hood of z = 0 has rank k. 
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By Lemma (2.1), there is an (n — &)-dimensional subspace Hn~k of Rn trans­
verse at 0 to the row vector space of each element of 3/(0), and a (p — k)-
dimensional subspace Lp~k of Rp which is transverse at 0 to the range of each 
element of 9/(0). 

In fact, it follows from the upper-semicontinuity property of the derivative 
that there exists an open set X c W about 0 so that Hn~k and Lp~k are 
transverse to the row and column vector spaces, respectively, of each element of 
3/(JC), x G X. 

Let Hh Lk be the orthogonal complements of Hn~k and Lp~k. Choose 
orthonormal bases {vj, v 2 , . . . , vn) for Rn and {wj, w2,.. •, wp} for Rp so that 
{vb v 2 , . . . , v*} spans Hk and {w„ w2,...,wk} spans L*. 

Define 

g:*» = Hk X # " " * ->Rn = Rk X Rn~k and 

P:** = L* X I / " * ->RP = Rk X Rp~k 

to be the orthogonal transformations generated by Q(vt) = et and P(wz) = ei9 

where ei is the z'th member of the canonical bases for RP and Rp. 
Define g:!** X Rn~k -> Rk X Rp~k by g = P / g " 1 . Then in some 

neighborhood of 0 each element of dg(y) = Pdf(Q~l(y) )Q~l has rank k. In 
addition, there is a neighborhood y of 0 so that 0 X Rn~k is transverse to the 
row vector space and.O X Rp~ is transverse to the range of every element of 
dg(y), y e Y. 

Letw:Rk X Rp~k^>Rk = Rk X {0} be projection. If y e y and M G dg(y), 
then the rows of *nM are the first fc rows of M. The set {irMei9 i ^ k} spans 
#* X {0}. This is so since if 

k k k 

0 = 2 apMe; = TTM 2 fl#, then M 2 * # c ker ir = {0} X Rp~k. 
i = i- i = i 1 = 1 

The range of M is transverse to {0} X Rp~k
9 so 2 f = i #,£; ^ ker M. Since the 

row vector space of M is transverse to {0} X Rn~k, the kernel of M is transverse 
to Rk X {0} and 2f= 1 a # = 0. Thus at = 0 for all i and {irMe,-, I ^ jfc} is a 
linearly independent set. 

Let y = (.y!, j>2,. . . , j j and define G:Rk X Rn~k -* Rk X Rn~k by 

G(y) = (tfgOO, Jfc+i,...,.)',,). 

If -SG c /£" is the set of points at which G is not differentiable and JG(y) is 
the Jacobian matrix of G at y & SG, then 

JOM - (^> ffl 
where (A(y)B(y) ) is the k X «-matrix /(vrg) = irJg(y). 
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By definition, 3G(0) = co{lim ^ 0 JG(qt), qt & SG}, so that each element of 
3G(0) has the form 

I A B\ 
\0 I„-J 

where (A B) e 3(7rg)(0) = ir'dgiO) = first &-rows of an element of 3g(0), and A 
is invertible. Thus each element of 3G(0) has rank n, and by the Inverse 
Function Theorem [6; p. 253, 7.1.1] there exists a neighborhood Z c Rn of 0 
and a Lipschitz function F:Z -> Rk X i*" -^ such that GF(x) = x. 

We may as well assume that Z is the open unit ball centered at 0, since for 
some r > 0 the ball of radius r about 0 is contained in Z and we could replace G 
by G(y) = (l/r)G(y). 

If x = (xl9 x2, . . . , x„), then x = GF(x) = (7rg(F(x) ), xk+x,. . . , *„), so 
that 7TgF(x) = (jtj, x 2 , . . . , xk). Thus gF(x) = (xj, x2, . . . , xk, h(x) ) where 

If x £ 5 g F U S f = S , then G is differentiate at F(x) = y and gFG(^) = 
g(y) is differentiable. Define 

*s(gFKx) = collim /(gFXft), ft- * s ) 

= co lim JgipJJFiq;), qt £ S , where # = F(qt). 

At each qi9 JF(qt) is the inverse of JG(pt), so JF(qt) has the form 

0 /„ 
( • 

•A~l -A~XB 
Ln-k 

Jg(Pi) = (c B
D 

where 

and D = CA lB. Thus 

/ 4 ° 
Jg(Pi)JF(qi) = 

\CA~X 0 
which implies that the elements of 3;Ç(gi7)(x) have their last n — k columns 
zero. 

Since 

dsigFXx) = U£-
\dsh(x) 

it must be the case that the last n — k columns of elements of dsh(x) are 
zero. 
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Let x = (xh x2,. • . , xh xk+l9..., xn). According to the Mean Value 
Theorem [6; p. 72, 2.6.5] and [6; p. 71, 2.6.4] 

h(x) — h(x) e co dsh[x, x](x — x) 

where the right hand side is the convex hull of the set of all points of the form 
dsh(q) • (x — x), q a point on the line joining x and x. Since x — x e {0} X 
Rn~ and the last n — k columns of dsh(q) are zero, h(x) = h(x). As a conse­
quence we may consider A to be a function of the first k variables alone. 

If z = (zl9 z 2 , . . . , zp\ define y : ^ X i ^ - / c -> Rk X i ^ _ / c by 

y(z) = (z1? z2, . . . , z*, /z(zl5 z2 , . . . , zk) ) - (0,. . . , 0, Zfc+1,. . . , zp). 

Then each element of 9y(z) has the form 

h o \ 
* -Ip-kl 

so y is a Lipschitz homeomorphism of a neighborhood of 0 in Rp to a neighbor­
hood of 0 in Rp with a Lipschitz inverse. 

For some ball Zr of radius r about 0 in Z, ygFis defined and ygi^.*!, . . . , xn) = 
(xj, x2, •. . , xk, 0 , . . . , 0). 

Let <pk be a diffeomorphism of the open ball of radius r in Rk to all of 
Rk X {0}, and let q>n be a diffeomorphism extending <pk from the open ball 
of radius r in Rn to all of Rn. Let ç> be a diffeomorphism of the open ball of 
radius r in RP that extends yk. 

Now define 

U = QTXF(Zr\ V = P~xy-\;\RP) 

and a:U -> #" by a = <p„G(), j 6 : F ^ ^ by £ = V/7yP. 
Then $fa~ has the properties desired. 

3.2. EXAMPLE. Let h:R2 —> i£ be defined by /*(>,>>) = 0 if x < 0, and 
h(x, y) = x if x ^ 0. Define F:# 2 -> # 2 by F(JC, ^) = ( |JC|, h(x, y) ). 

If x > 0, 

w^) = (i J); 
if JC < 0, 

3F(x,^)-(-J )̂; 

at any point (0, y), 

mo,y)-U\ °) + (l-')("J J). OS, S]}. 
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In particular, rank of dF(x, y) is 1 at all points (JC, y), so (3.1) applies. However, 
F does not satisfy the hypothesis stated in Theorem 2 of [1] on the y axis. 

4. Some consequences of the Rank Theorem. The map f:Rn —> Rp at x is 
locally topologically equivalent (resp., locally Lipschitz equivalent) to g:K —> L if 
there are open neighborhoods U of x, and v of f(x), and homeomorphisms 
(resp., locally Lipschitz homeomorphisms with locally Lipschitz inverses) a and 
/? such that the following diagram commutes: 

f\u u- >v 

r 

K >L 

4.1. EXAMPLE. Consider / :^ 2 —> Rx defined by /(JC, y) = \x\ + y. Then if 
x * 0, 3/(JC, j ) = (1, 1) or ( - 1 , 1). If x = 0, then 3/(JC, ^ ) = ( [ - 1 , 1], 1). Thus 
in a neighborhood of any point, / satisfies the hypothesis of the Rank Theorem 
(3.1) and f is locally Lipschitz equivalent to the projection map p i i ^ - ^ . T h e 
level curves for / are illustrated in the figure. 

A map / is proper if / ~ (K) is compact for all compact sets K. This is 
equivalent to requiring that if \x\ —> oo so does \f(x) |. 

We will say a locally Lipschitz continuous function / is nonsingular if every 
element of 3/(JC), X G Rn, has maximal rank. It is singular if df(x) contains 
a singular matrix for at least one x; the set of points at which df(x) con­
tains a singular matrix is the critical set of / . 

4.2. PROPOSITION. A proper locally Lipschitz map f:Rn —> Rp, n > p, must be 
singular. 
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Example (4.1) shows that (4.2) is not true if the condition "proper" is 
removed. 

PROOF. Suppose / is nonsingular. According to the Rank Theorem (3.1), 
at each JC e Rn, f is locally topologically equivalent to the projection map 
p:Rn —» Rp. S ince / i s proper, it is a fiber bundle map ( [2; p. 151]: they assume 
/ is monotone, but the hypothesis is not used in the proof) with a compact 
manifold for fiber and base space Rp. (The map / must be onto since it is both 
an open and closed map.) Thus Rn would be homeomorphic to the product of 
Rp and a compact manifold, which is a contradiction unless n = p. 

The following two theorems are a consequence of (3.1) and the results in [3], 
[4], [5], and [12]. 

4.3. THEOREM. Let f:Rn —» Rp be a locally Lipschitz continuous function with 
n — p = 0, 1, or 2, p ¥" 1, and(n, p) ^ (4, 2). Suppose the set of critical points is 
discrete. Then at each x e Rn, f is locally topologically equivalent to one of the 
following maps: 

(a) the projection map p:R" —> Rp\ 
(b) o:C —> C defined by o(z) = z (d = 2, 3, . . .) where C is the complex 

plane; 
(c) T:C X C -» C X R defined by T(z, w) = (2z • vv, \w\2 - \z\2), where w is 

the complex conjugate of w. 

In case (n, p) = (4, 2), there are many (distinct) examples of maps / with a 
single point in the critical set at which / is not locally topologically equivalent 
to p. For example, complex polynomial maps i\ defined by T/(Z, W) = zJ' + wk, 
j > k ^ 2 . 

In case (1, 1) and (2, 1), / at JC is locally topologically equivalent to p, 
f:Rl -> Rl defined by/(jc) = x2J:C -> R by f(z) = \z\2 or b y / ( z ) = Re zd 

([10] and [13]). 

4.4. THEOREM. Let f.Rn —» Rp be a locally Lipschitz continuous function with 
n = p. Suppose that the critical set is discrete and that each critical point x is a 
component off~l(f(x) ). Then at each x e Rn, f is locally topologically equiv­
alent to 

(a) the projection map p:Rn —> Rp, or 
(b) (n, p) = («, 1) and fat x is locally topologically equivalent to o(x) = \x\ = 

(x] + x\ + ... + x2
n)

U2, or 
(c) (n, p) = (2, 2) and f at x is locally topologically equivalent to o:C —> C 

defined by o(z) = z , d = 2, 3, . . . where C is the complex plane, or 
(d) (n, p) = (4, 3), (8, 5) or (16, 9) and f at x is locally topologically equiv­

alent to 
T:A X A-^A X R defined by 
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T(x, y) = (2xy, \y\ — |JC| ), where A is the complex numbers, the quaternions or 
the Cayley numbers. (See [9; p. 102] for a discussion of the map T). 
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