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Abstract

Let F (x) denote a distribution function in R? and let F*"(x) denote the nth convolution
power of F(x). In this paper we discuss the asymptotic behaviour of 1 — F**(x) as x
tends to oo in a certain prescribed way. It turns out that in many cases 1 — F*(x) ~
n(1—F(x)). To obtain results of this type, we introduce and use a form of subexponential
behaviour, thereby extending the notion of multivariate regular variation. We also discuss
subordination, in which situation the index # is replaced by a random index N.
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1. Introduction

Let F(x) denote a distribution function (DF) in R? with F(0+) = 0 and F(x) < 1 for all
xR Let X, X1, Xo, ..., X, denote independent random vectors with common DF F'(x).
Let S(0) = 0 and, forn > 1, let S(n) = S(n — 1) + X,,. The marginal partial sums will be
denoted by S'(n), i.e. S(n) = (S'(n), S2(n), ..., S4n)).

Let N denote an integer-valued random variable independent of X with probability distri-
bution P(N = n) = p,,. The new random variable S(N) has DF

W) =P(S(N) <x) =) p,P(S() <x) =) p, F*"(x),
n=0 n=0

where F**(x) denotes the n-fold convolution of F(x), F*0(x) denoting the unit mass at 0.
The DF W (x) is said to be subordinate to F(x) with subordinator {p,}. In the special case
where P(N = n) = 1, we have W(x) = P(S(n) < x) = F*(x).

In a more general approach, let N = (N, Na, ..., Ng) denote a vector of integer-valued
random variables independent of X. A new random variable S(NV) is defined as follows:

S(N) = (S'(Ny), S2(N2), ..., S4(Na)).

The DF of S(V) will be denoted by K (x) = P(S(N) < x).
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In this paper we discuss the relation between the asymptotic behaviour of the tails of the
distributions introduced above. From now on we use the shorthand notation F = 1 — F. It
turns out that, as in the univariate case, there are many cases in which F*(x) asymptotically
behaves like nf(x) and W(x) behaves like E(N )f(x). It also turns out that the asymptotic
behaviour of K (x) is determined by that of F(x) and its marginals. To specify these relations,
we present a form of multivariate subexponentiality.

The paper is organized as follows. In Section 2 we briefly recall some basic properties and
definitions concerning univariate subexponential DFs and introduce multivariate subexponen-
tial DFs. In Section 3 we state our main results concerning the asymptotic behaviour of F*(x),
W (x), and K (x). In Section 4 we briefly discuss the relation with regular variation, and finish
the paper with some applications and final remarks.

2. Subexponential distributions

2.1. Univariate subexponential distributions

In the one-dimensional case, let F'(x) denote the DF of a positive random variable X such that
F(0+) =0and F(x) < 1forallx € R. We say that F(x) is subexponential (written ' € S) if
it satisfies lim, _, oo F*2(x)/F(x) = 2. Itis well known that F € Simplies that F € L, where L
denotes the class of positive, measurable functions u(x) such that limy_, oo u(x — y)/u(x) =1
forall y € R. The converse statement (F € L implies F € ) is false. Further basic properties
can be found in, for example, [7], [8], [37], and [12]-[16]. A survey of results was given by
Goldie and Kliippelberg in [18].

Extending the class §, Chistyakov [4] and Chover et al. [5], [6] introduced the class S,
y > 0. We say that F belongs to the class S, if it satisfies the following properties.

e f(s) =E(exp(—sX)) <oofors > —y.

e Fc L, where L,, denotes the class of positive, measurable functions u(x) such that, as
x — oo, u(x —y)/u(x) - exp(yy) forall y € R.

e F satisfies ﬁ(x)/?(x) — 2f(—y)asx — oo.

The class S is large and contains, for example, all DFs with regularly varying tails. For a
review of regular variation, we refer the reader to the books of Bingham et al. [3], Geluk and
de Haan [17], and Seneta [35].

Note that Sy = S and that Lo = L. The next result illustrates the use of subexponential
distributions in the context of subordinated DFs in the univariate case.

Lemma 1. ([8], [16].) Let P(z) = E(z") and y > 0.

(i) Suppose that P(z) is analytic at z = 1. Then F € S if and only if W (x)/F (x) — E(N) as
x — 00, and both statements imply that W € S.

(ii) Suppose that P(z) is analytic at z = f(—y). If F € S, then W(x)/f(x) — P'(f(=y))
asx — ocoand W € §,,.

Lemma 1(i) shows that, for F € §, we have P(S(n) > x) ~ nP(X > x), i.e. the tail
distribution of the partial sums S(n) = Y 7_; X; asymptotically behaves like n times the tail
distribution of X. To prove a multivariate analogue of this result, we shall frequently use the
following result concerning the classes S and S),. The result is well known if y = 0 and easily
extends to cases where y > 0.
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Lemma 2. ([8], [14].) Let F, G, and H denote the DFs of positive random variables and
assume that F € S,,. Let h(s) and g(s) denote the Laplace—Stieltjes transforms of H and G,
respectively. Ifa(x)/f(x) — «a and ﬁ(x)/?(x) — B as x — oo, then

1. Gx Hx)/F(x) — ah(—y) + Bg(—y) as x — 09,
2. [P G —u)dHw)/F(x) = ah(—y) as x — oo,
3. G(x/2)H(x/2)/F(x) = 0as x — oo.

2.2. Multivariate subexponential distributions

To generalize the one-dimensional results we introduce several types of multivariate subex-
ponential behaviour. For x = (x1,x2,...,xq9) € RY, we set xpmin = min(xy, x2, . .., Xg).
In [28] the following classes of DF were defined.

Definition 1. F € S(RY) if and only if

. F*2(tx)
lim —
t—00 F(tx)

=2 forall x > 0 with xpj, < o0. €))]

Definition 2. F € L(RY) if and only if

F(ix —a)

im — 1 forall x > 0 with xpi, < ooandalla > 0. 2)
t—0o0 F(tx)

Note that in (1) and (2) we assume that the marginals are subexponential and that the
marginals are in class L, respectively. In [28] it was proved that F € S(R?) implies that
F e L(Rd). Moreover, these statements are almost equivalent, and the multivariate analogue
of Lemma 1 holds.

Theorem 1. ([28].) (i) We have F € S(RY) if and only if F € L(R?) and the marginals, F;,
of F are subexponential in R.

(i) If F € S(RY) and if P(z) = E(zV) is analytic at z = 1, then

. Wix —a) .
lim ——= =E(N) forallx > 0 with xmin < coand alla > 0.
—>o0 F([x)

By replacing the limits in (1) and (2), we extend the classes S (R?) and L(R?) in an obvious
way.

Definition 3. F € S(R?, o) if and only if
F*2(tx)

lim — =a(x) forall x > 0 with xpjp < 00.
t—0o0 F(tx)

Definition 4. F € L(R?, v) if and only if

F(tx —a)

im — =v(x,a) forallx > 0 with xpj, < coandalla > 0.
t—>00 F(tx)
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Definition 5. F € L*(R?, v) if and only if

F(tx —b—a)

im — =v(x,a) forallx > 0 with xi, <ooandalla,b > 0.
t—oo  F(tx — b)

Note that in Definitions 3—5 we assume that the marginals satisfy the same type of relation.

For example, for the ith marginal (i = 1, 2, ..., d), Definition 3 reads as follows: forall x; > 0
we have o
F*Z tx;i
lim 0 _ o).
=00 F(1x;)

In a similar way, we will denote the limits for the marginals in Definitions 4 and 5 by v; (x;, a;).
‘We use similar conventions in the definitions below.

2.3. Other normalizations

In our definitions, we consider limits along lines of the form ¢x. Alternatively, we can
discuss limits along curves of the form ¢(¢) * x = (c1(#)x1, c2(t)x2, ..., cq(t)xq), where for
each i we have ¢;(t) — oo ast — oo.

Definition 6. F € S¢(R?, v) if and only if

F*2(c(t
i M =v(x) forallx > 0 with xp;j; < oo.
=00 F(c(t) *x)

The class L (R, v) can be defined in a similar way. In most parts of our paper, this definition
brings nothing new; however, when we need more precise information related to the marginal
distributions, Definition 6 may be useful (see Section 3.3, below).

Consider, for example, a DF of the form F (x, y) &~ F}(x) + F>(y), where Fy(x) ~ 1/x and
F>(y) ~ 1/y2. In this case, we have t F(tx —a, /Iy —b) — 1/x +1/y?>and F € L¢(R?, v)
with (¢1(t), c2(1)) = (¢, /1) and v = 1. We also have F(tx)/F(tx, \/ty) — y2/(x + y?).

For this example we also have t F(tx —a,ty —b) — 1/x and F € L(R?), in which case
Fi(tx)/F(tx,ty) — 1.

Remark 1. In [9] Cline and Resnick introduced and studied a form of multivariate subexpo-
nential distribution. Their approach is formulated in terms of vague convergence and uses
point process arguments. Slightly adapted to our notation, in their definition of a class L
Cline and Resnick assumed that lim;_,« tF(r(r) + a) = v(a) for all @, where r(r) =
(ri@®),rm@),...,rq@)) and r;(t) — oo, i = 1,2,...,d, ast — o0. The definition
automatically implies that, for each marginal, we have

lim ¢F;(ri(t) + a) = vi(a) for almost all a,
11— 00

and this relation determines the normalizing functions r; (). Moreover, if v;(a) # 0 then

im M =v*(a) foralla,
=00 Fi(ri(t) +a)

and this relation determines a relationship between the joint DF and one (or more) of the
marginals. In our definition we do not make such an assumption at first. Only in the discussion
of S(V) (see Section 3.3) do we have to make a similar assumption.
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3. Main results

In this section we start to obtain some useful information about the limit function in
Definitions 4 and 5. In Section 3.2 we determine the limit function in Definition 3. In Section 3.3
we discuss the multivariate analogues of Lemmas 1 and 2. In Section 3.4 we discuss random
vectors of the form (S1(N}), S2(Na)).

3.1. The limit function v(x, a)

In general it is hard to calculate v(x, a) explicitly. In the following lemma we obtain some

characteristics of this limit function.
Lemma 3. (i) If F € L(R?, v) then E(v(x, X)) < oo.
(i1) Iff e L*(R4, V) then v(x, a) = exp(Zle A; (x)a;) for some functions A;(x).

@i) Suppose that F e L*(R4, v) and that, foralla > 0,b >0, and x > 0 with xpj, < 00,
H satisfies

. H@x—a—b)
1 -_— =
Lo T

for some real function B(x, b). Then 8(x, a) = B(x)v(x, a) for some function B(x).
Proof. () If F € L(R?, v) then, for each marginal F;, we have
Fi(tx —a)
m —— =V (xs Cl)
=00 Fi(rx)

for some limit function v;. Replacing ¢x by ¢, we find that

Fi(t —a)
im ——— =v;(x, a),
t—00 Fl(t)

and we see that v; (x, a) = v;(a) is independent of x. From

Fi(x—a—b)—
— Fi(-x_a)a
Fi(x —a)

it follows that v; (@ +b) = vj(a)v; (b) and, consequently, that v; (a) = exp(A(i)a) for some real
number A(i) > 0. Therefore, we find that F; € L,;) for each marginal. For v(x, a) we have
the following information. Using f(x) < Zle Fi(x;) and F,-(x,-) < f(x), we have

Fi(x —a—b) =

F(tx —a) - Xd: Fi(tx; — a;)
Fax) ~ i Filx)

and it follows that

d d
vx,a) < Y vi(a) =Y exp(h(i)ai).

i=1 i=1

If F e S(RY, o) and F € L(RY, v) then we find that F; € S ;) for each of the marginals, and
the previous analysis shows that

d
Ev(x,X) < Zﬁ(—k(i)) < 00, where fi(s) = E(exp(—sX;)).

i=1
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(i) If F € L*(R?, v), we use

F(tx —a —b)

F(ix —a—b) = Fir—a

F(tx —a)

to find that v(x,a + b) = v(x, a)v(x, b). By takinga = (a,0,0,...,0) and b = (b, 0,
0,...,0), it follows that

v(x, (@ +b,0,0,...,0) = v(x, (@0,0,...,0)v(x, (b,0,0,...,0)

and, consequently, that v(x, (a,0,0,...,0)) = exp(Aj(x)a) for some function A;(x). In a
similar way we find, for the ith component, that

v(x,0,....a,...,0) =exp(Ai(x)a), 1<i<d.

Finally, by using @ = (a1, 0,0, ...,0) + (0,a2,0,...,0) +---+ (0,0, ..., ay), we find that

d
vix,a) = exp(z Ai(x)ai).
i=1

(iii) We write
H(tx —a—b) . H(tx —a —b) F(tx — a)
F(tx) ~ FGx—a) F(x)
to see that 8(x, a + b) = B(x, b)v(x, a). To complete the proof, now take b = 0.

3.2. Closure property

To prove a multidimensional analogue of Lemma 2, we need the following lemma, which
extends [28, Proposition 3.8].

Lemmad. (i) LetU,V € R? denote independent, nonnegative random vectors with DFs G (-)
and H (-), respectively. Then, for all x > 0, we have

1—-GxHx)—J(1)—J2) <G(x/2)H(x/2),
where

x/2 x/2
J() =/ Hx —uw)dGw) and J(2) =/ G(x —u)dH ).
0 0

(ii) Let m < d and suppose that U € R™ and V € RY are nonnegative, independent random
vectors with DFs G(-) and H (-), respectively. Let U° = (U,0) € RY and let G°(-) denote
its DF. Then, for all x € RY with x > 0, we have

1 -G+« H(x)—J(1) = J(Q2) < Gxm/2)H(x/2),

where X () = (X1, X2, ..., Xm),

x/2 x/2
J() = f H(x —u)dG°(w), and J(Q2) = / Go(x —u)dH (u).
0 0

https://doi.org/10.1017/50001867800001439 Published online by Cambridge University Press


https://doi.org/10.1017/S0001867800001439

1034 E. OMEY ET AL.

Proof. (1) Observe that

J)=PWU <x/2)—PU+V <x,U <x/2),
JQ2)=P(V <x/2)—PWU+V <x,V <x/2),

andGx*H(x)=PWU+V <x)= P, + P+ P; + P4, where

Pi=PU+V <x,U<x/2,V <x/2),
P,=PWU+V <x, {U<x/2)° V <x/2),
Ps=PWU+V =<x,{V=<x/2)°U=<x/2),
Py =PWU +V <x, {V <x/2)°{U < x/2}.

UsingPU+V <x,V <x/2)—P,=PandPU+V <x,U <x/2) — P3 = P, we
find that

I=1-G+xHx)—-J(1)—-J2)=1—P(V <x/2)—P(WU <x/2)+ P, — P4.
Since Py =P(U <x/2,V <x/2) =P(U <x/2)P(V < x/2), it follows that
1 =G(x/2)H(x/2) — Py,

using 0 < Py < PV < x/2)°,{U < x/2)°) = G(x/2)H (x/2).
(ii) The proof follows from part (i).

Remark 2. In part (ii) we can rewrite J (1) and J(2) as, respectively,

x1/2 x2/2 Xm/z_
J(1) :/ / / H(x(m) _u(m)7xm+l»~--axd)dG(u)
0 0 0

x1/2 px2/2 xa/2
J(2) 2/0 /0 /(‘) G(x(n) — umy) dH (u).

Now we come to the main result of this section. Let X € R denote a nonnegative random
vector with DF F(x), and let U and V denote nonnegative random vectors with respective DFs
G and H as in Lemma 3. We impose the following conditions.

and

(C1) For some real function v, we have F(x) € L(R?, v).
(C2) The marginals, F;, of F satisfy F;(x) € S)().
(C3) Foralla > 0, all x > 0 with xpj, < 00, and some real function o, we have

Gux—a) _ | Gltxem —am)

im — — =alx,am)).
>0 F(tx) =00 F(tx) (x, @m)

(C4) Foralla > 0, all x > 0 with xyij, < 00, and some real function 8, we have

. H(@x —a)
1 —_— = .
A B(x,a)
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Note that (C3) and (C4) imply that, for the marginals of H and G, we have

. Gi(tx —a) . .
lim ——— = C;exp(A(i)a) = ¢;(a), 1<i<m,
t=oo Fi(tx)
and
H;(tx —a)

im — = C!exp(r(i)a) = Bi(a), 1<i<d,
—00 F,l(tx) 1 p ﬁl
where C; and C; are nonnegative constants.
In the next theorem we provide conditions under which (C3) and (C4) imply that G * H
satisfies a relation of the same form. First we consider the case where U, V € R (meaning
that G = G°).

Theorem 2. (i) Suppose that m = d and that (C2)—(C4) hold. Then, for all a > 0 and all
x > 0 with xmin < 00, we have

. GxH(tx —a)
lim ———— =E(a(x,a+ V))+E(B(x,a+U)).
t—00 F(tx)
(ii) For vectors of different dimensions, we find that if (C2)—(C4) hold then, for all a > 0 and
all x > 0 with xpin < 00, we have
. G°xH(tx —a)
lim —————— =E(x(x, a) + Vim))) + E(B(x,a + (U, 0))).
t—00 F(tx)

Proof. (i) The proof is based on Lemma 3. Let z = rx — a with 7 large. We start with the
term G(z/2)H(z/2) We have G(z/2) < Zl 1 Gi(zi/2). Using (C3), we obtaln G(z/2)
o) Z lF (tx;/2). Ina similar way, using (C4), we have H(z/2) = O(1) Z 1F (txi/2).
From (C2) and Lemma 2, we also have F(_tx /2) = o(1)y/ Fi(tx;). Using F;(tx;) < F(tx)
we readily find that G(z/2)H (z/2) = o(1) F (tx). Then, applying Lemma 3, we obtain

<G*H(tx—a) _J JO )_
F(tx) F(x) F@x))

lim
11— o0

Now we deal with the term

2 H
ry=2O _ [TTHE-U o,
F(tx) 0 F(tx)

We note the following facts.
1. Using (C4), we have lim,_, oo H(z — u)/F(tx) = B(x,a + u).
2. Using H(z —u) < Z?:l H;(z; — u;) and F; (tx;) < F(tx), we have

7 d
H(z —u)
—1 O<u<z/2) = A
Fix) {0<u<z/2} ; i
where .
_ Hi(Zi—ui)lo )
-_— T = <u;<z; .
Fi(t.xl') {0<u;<z;/2}
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3. Using (C4) for the marginals, as t — oo we have
Ai = Bi(ai +ui) = Bi(ai) exp(A()u;i) 1{o<u; <oo)-
4. For the integral T;(1) = [#* A; dG (u), we have
/2 (7 — u;
n = [ P 4G,
0 Fi(tx;)
whence

(1) =

F@m—m)/wzﬂcl )dG()

Fi(tx;) Fi(zi)
Using F; € S(A;) and Lemma 2, we obtain
Ti (1) — exp(A(i)a;)Bi(0)gi (—A () = Bi(ai)gi (—1 (),
where g; (s) = E(exp(sU;)). Now note that

ﬂi(ai)gi(—/\(i))Z/O Bi(a;) exp(A([@D)u;) dG; (u;).

From Pratt’s extension of Lebesgue’s theorem on dominated convergence (see [31] or [20]),
we conclude that

T(1) — / B(x,a+u)dGu) = E(B(x,a + U)).
0

We can treat the term corresponding to J(2) in a similar way. The result follows.
(i1) The proof is similar to that of part (i).
3.3. The asymptotic behaviour of W and F*"

In the special case where G = H, Theorem 2 gives

. HxH(x —a)
lim ———— =2E(B(x,a+V)) = p(x, a).
t—00 F(tx)
Now note that H x H is the DF of V| 4+ V,, where V| and V, are independent copies of V.
Using Theorem 2 again, but now with G = H * H, we find that

. H¥@tx —a)
lim —————— =E(f(x,V +a)) +EBx,a+ Vi + V1)) = B3(x,a).
1—>o0 F(tx)
By continuing in this way, we obtain the following corollary.
Corollary 1. Suppose that (C2) and (C4) hold. Then, for all n > 2, we have
. H"(x —a)
lim —
t—0o0 F([x)
where B1(x,a) = B(x,a), B(x,a) =2E(B(x,a + V1)), and

= Bu(x, a),

Pn+1(x,a) =E(Bu(x,V +a)) +EBx,a+Vi+Vo+---+ V).
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Lemma 3 can be used to simplify this result. We replace (C4) by the following condition.

(C5) Assume that F e L*(Rd, v) and that, foralla > 0, b > 0, and x > 0 with xj, < o0,

we have -
H(ix —a—-b
lim M = B(x, b) for some real function B.
>0 F(tx —a)

According to Lemma 3, we have S(x, b) = B(x)v(x, b).
For the limit functions B,, appearing in Corollary 1, we find that

p1(x,a) = B(x)v(x, a), Ba(x,a) =2B(x)v(x,a) E(v(x, V)),

BB(x,a+Vi+ Vot +V,) = B(x)E(]"[ e V,-)), n>2.
i=1

Because of independency,
EBx,a+Vi+Vo+---4+V,)) =Bx)E'"(v(x,V)), n>2.
It follows that
Bn+1(x,a) =E(B,(x,V +a)) + B(x)v(x,a)E"(v(x, V)).
By induction on n we find that
Bu(x,a) =nBx)v(x,a)E" '(v(x, V)), n>1.
We summarize our findings in the following result.

Corollary 2. Suppose that F € L*(R?, v) and that (C2) and (C5) hold. Then, for all n > 1,
we have
. HY(tx —a)
lim —
t—00 F(tx)
In the next result we generalize Theorem 1. We use the notation v, (x, a), similar to 8, (x, a)
in Corollary 1. As in the introduction, N denotes an integer-valued random variable with
probability distribution p, = P(N = n).

Theorem 3. (i) If (C1) and (C2) hold then, for all x > 0 with xpmin < 00 and all a > 0, we
have

=nBx)v(x,a)E" ' (v(x, V)).

F(tx —

fim 20X D @), n=2

=0 F(tx)
@) If, foralli =1,2,...,d, P(z) = E(ZN) is analytic at f;(—\(i)), then, for all x > 0 with
Xmin < 00 and all a > 0, we have

W(tx —a) ad
t_l)rgow = anvn(x,a).

n=1
(iii) If also F € L*(R?, v) then, for all x > 0 with xmin < 00 and all a > 0, we have

. W(x —a) /
tlingo W =v(x,a)P (E(v(x, x))).
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Proof. Only (ii) needs an explicit proof. First observe that

W(x —a) = Z pnF*(tx — a).

n=1
To apply Lebesgue’s theorem on dominated convergence, note that

d
F(ix —a) < Y F/"(tx; — ap).
i=1
It is well known that, since F; € S, for each ¢ > 0, we can find constants u;, v; > 0 such
that .
F(txi — a;) < ui (fi(—=A(0)) + &)" Fi(tx;), t > v;.

Using F;(tx;) < F(tx), we have F;/™(tx; — a;) < u;(fi(=Ar(i)) + &)"F(tx) for all t > v;.
It follows that we can find constants u#, v > 0 such that

d
F(tx —a) <u Yy (fi(=1() +&)"F(tx), r>v.

i=1
Part (ii) now follows from Lebesgue’s theorem on dominated convergence.

3.4. Two-dimensional subordination

In the previous sections we investigated F** and W under a variety of conditions. In this
section we consider random vectors of the form

S(N) = (S"(Ny), S2(N2), ..., S4(Ny))

and study the asymptotic behaviour of K, where K (x) = P(S(N) < x).

For simplicity, we restrict our attention to the two-dimensional case. To start our analysis,
consider independent, identically distributed copies, Z; = (X1, Y1), Z2 = (X2, Y2), ...,
Z, = (Xn, Yp), of Z = (X, Y). Taking partial sums, we define

m

n
Fon(x,y) = P(Z Xi<x, ) ¥ < y).

i=1 i=1

Forn = 0andm > 1, we define Fy, (x, y) = PQ_[L, Y; < y) = F;™(y) and Fp0(x, y) =
P(}'L, Xi < x) = F™(x). Finally, we set Fy o(x, y) = 1. Notethat F*" (x, y) = F, ,(x, y).
Theorem 4 shows that if (C1) and (C2) hold, then

Fun(tx —a,ty —b)
Fltx, ty)

— vn((x, ), (@, b)).

In the nextresult we consider F, , (x, y). To prove the result we need the following additional
assumption.

(C6) Fori = 1,2, there exist real functions D;(x, y) such that, for all (x, y) > (0, 0) with
min(x, y) < oo, we have .
Fi(tx)

_——>D'(x, )
Fax,oy) 07
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Proposition 1. Suppose that F € L*(R?, v) and that (C2) and (C6) hold. Then

. 1—=Fyu,(tx —a,ty —b)
lim —
=0 F([x’ ty)

= L(m,n), m,n>1,

where L(m, n) will be determined in the proof of the result.
Proof. Suppose that m > n and set
n n m
V= (in,zyl) and (U,0) = ( > Xl-,O)
i=1 i=1 i=n+1

with DFs H = F*"(x,y) and G(x, y), respectively. Clearly fm,,,(tx —a,ty —b) =
G*xH(tx —a,ty —b).
For the vector V, conditions (C1) and (C2) show that

H(tx —a, ty —b)
F(tx, ty)

— vn((x, ), (@, b)).

To treat G(-, -), note that

m
G,y = P< D Xisx 0= y) = ;")

i=n+1
and that G (x, y)=F fk (m _n)(x). Using (C2), the univariate results show that

i G(x,y)
m —
X—>00 F1 (X)

where 81 = f1(—A(1)). It follows that

“n—1
— (m—n)8"""",

. Glix —a, ty —b)
lim

— — (m—n)8" " ei(a),
Jim o) ( )81 1(a)

where c1(a) = exp(A(1)a). Using (C6), we find that

. E(tx —a,ty —b)
lim

— — (m—n)8"" (@) Dy (x, y).
Jim Frty) ( )8} 1(@Di(x, y)

Theorem 2 now yields

1 — Fpn(tx —a,ty —b)
F(tx, ty)

— Li(m, n), m>n,

where

Li(m,n) = (m— n)6T7”7]D1(x, y) E<c1 (a + Z Xl>>

i=1

(e (o 35 %))

i=n+1
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In a similar way, for n > m we find that

1 - Fm,n(tx —a,ty — b)
Fltx,ty)

— Ly(m, n), n>m,

where

La(m,n) = (n —m)8" "~ Dy (x, y) E(Cz (b +y Y,))
i=1

IS ))!

i=m+1

In order to simplify the complicated expressions for L{(m, n) and L (m, n), first observe
that c1(a) = exp(A(1)a). It follows that

E<c1 (a + ZX,-)) = c1(a) E" (exp(A(1) X)) = c1(a)d].
i=1

m

In a similar way we find that E(c2 (b + Zi:l Y;)) = c2(b)35'. To simplify the second term in the
formula for L we use the factthat F € L*(R?, v) and the relation v(x, a+b) = v(x, a)v(x, b).
Earlier (see Corollary 2) we found that

va((x, ¥), (@, b)) = nv((x, y), (@, b)) E" ' (w((x, y), (X, Y))), n>1.
Using this relation, we find that

ol o0 5 0)

i=n+1
= nv((x, ). (@, D) E" " (v((x, y). (X, V) E" " (v((x, y). (X, 0))).
In a similar way we find that

E(vm ((x, ) (a, b+ Xn: Y")))

i=m+1
= mv((x,y). (a, b)) E" ' (v((x, ). (X, Y))) E" " (((x, y). (0, Y))).

If F € L(R?) we can simplify even more, to obtain
Li(m,n) = m —n)Di(x,y)+n and Ly(m,n) = n—m)Dy(x,y)+m.

Corollary 3. If F € L(R?) and satisfies (C2) and (C6), then

. 1—=Fyu,(tx —a,ty —b)
lim

= = L(m,n), m,n>1,
=00 F(tx, ty)

where
(m—n)Di(x,y)+n, m>n,

L(m,n) =
(n—=m)Da(x,y)+m, n>m.
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We now use this result in the context of random sums of random vectors. Let (N, N2)
denote a pair of integer-valued random variables independent of (X, Y). The DF of the random
vector (S'(N1), S2(N>)) is given by

G(x,y) =) Y P(Ni=m, Ny =n)Fpn(x,y).

m=0 n=0
We have
oo o
K, )= Y PN =m, Ny =n)(1 = Fpulx, ).
m=0 n=0

Following the proof of Theorem 3(ii), we obtain the following result.
Theorem 4. Suppose that F € L*(R?, v) and satisfies (C2) and (C6). Suppose that E(zVi) is
analyticat z = f(—A(@{)) fori = 1,2. Then
. K@x —a, ty—>b)
lim —
1—00 F(tx,ty)

= E(L(Ny, N2)).

As a special case we have the following result.

Corollary 4. Suppose that F € L(R?) and satisfies (C2) and (C6). Suppose that E(z™) is
analyticatz = 1 fori = 1, 2. Then

K(tx —a,ty —b
lim K= =0 g v Ny
1—00 F(tx,ty)

with
E(L(Ni, N2)) = Di(x, y) E((N1 — N2)T) + Da(x, y) E(N2 — N))™) + E(min(Ny, N2)),
where Nt = max(0, N).

4. Relation with multivariate regular variation

In the univariate case, we can prove that regular variation of F implies that F € S and that
F € L. In the multivariate case, a similar result holds. The following classes of functions
have been introduced and studied by Stam [36], Resnick [32], Omey [25], [26], and de Haan
etal. [10], [11].

In what follows, fori = 1,2,...,d we assume that ¢;(t) € RV («;), «; > 0, and we let
h(t) denote a positive, measurable function. Let u: RY — R and, as before, let ¢ *x x =
(c1(®)x1, c2(t)x2, ..., cqa(t)xqg). Recall that f(x) € RV(x), the class of functions that are
regularly varying with index «, if and only if lim;—, » f(tx)/f(t) = x® forall x > 0.

Definition 7. Let x denote a positive, d-dimensional random vector with DF F(x) and let
h(t)f RV(—p) for some 8 > 0. If 8 = 0, also assume that ~(¢) — 0. In this case, we say
that F(x) € RVF (¢, h) if, for all x > 0 with xui, < 00, we have

iy Fle@xx) _
t~1>nolo T = ,u(x) < Q.
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Since F (x) is monotone, the limit function w(x) is continuous and the convergence is locally
uniform in x (see [26, p. 17]). It follows that

F(c(t)*xx —a)

Par h(t) = nix) <00

for all x > 0 with xpin < oo and all @ > 0. If u(x) > O then F(x) € L°(R?, v = 1). If
ci(ty=t,i=1,2,...,d, then the following result, proved by Omey [27], holds. If (x) > 0
then the result follows from Theorem 5.

Theorem 5. Suppose that h(t) € RV(—p) for some B > 0 and suppose that F(x) €
RVF (c, h) with limit function (x).

(1) foralln > 1 and all x > 0 with xpin < 00, we have

F(c(t) * x)
m —F—— =

t—>00 h(t) n(x).

(ii) If P(z) is analytic at 7 = 1 then, for all x > 0 with Xy < 00, we have

W(e(t) * x)

Jim 0 =E(N)u(x).

Remarks 3. (i) As an alternative, we can work with the ‘tail’ P(X > x) and define regular
variation by assuming that

. P(X >1tx) )
lim ——— = A(x) < oo forall x > 0 with max(x;) > 0.
t—00 h(t)
Again convergence is locally uniform and if A(x) > O then P(X > x) € LR, v = 1). In this
case, Omey [27] showed that P(S(n) > tx)/h(t) — ni(x).

(ii) Recently, Basrak et al. [2] proved that if F(x) € RVF(c, h), where h(t) € RV(—p) with
B>0,ci(t)y=tforl <i <d,and u(x) > 0, then
P((x,X) >u)

lim ———— =w(x) <oco forallx € Rd,
Uu— 00 h(u)

w(y) >0 foratleastone y € RY.

Here (a, b) = Zle a;b;. Conversely, if

P((x,X) >u)

lim =w(x) <oo forallx > 0 (butx # 0)

U— 00 h(u)

with 8 > 0 a noninteger, then F(x) € RVF(c, h) with¢;(t) =t, 1 <i < d. In the case where
B is an integer, the converse is in general false [19].

(iii) The class RVF has proved to be useful in limit theory in probability theory and in number
theory, having applications in, for example, extreme value theory, domains of attraction for
sums of independent, identically distributed random vectors, renewal theory, and generalized
renewal theory. For a survey of properties and applications in probability theory, we refer
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the reader to [10], [11], [32], and [33]. In [30] several Abelian and Tauberian theorems were
obtained, and the results applied in summability theory (see also [1]). Basrak ef al. [2] used
RVF functions to obtain new results for linear stochastic recurrence relations and for generalized
autoregressive conditionally heteroscedastic processes. Here we use such functions to obtain
some new results in multivariate shock models (see [21] and [23]).

5. Applications and concluding remarks

5.1. Applications

Random vectors of the form (S!'(Ny), 52 (N3)) can be interpreted in insurance portfolios
as follows. Suppose that we have a sequence of independent, identically distributed random
vectors (X;, Y;), i = 1,2, ..., where X; and Y; denote the claim sizes of claims of type 1 and
type 2, respectively. We can think of accidents which involve personal and/or material damage.
Attime ¢ > 0, the number of claims of type i is given by N; () and the total claim size is given
by (SY(N1), S%(N»)). Our results can be used to estimate P(max(S'(Ny), S2(N2)) > x) for
large values of x.

Another interpretation comes from reliability theory. Suppose that a material system is
subject to shocks that have multidimensional effects. One shock may, for example, influence
both the temperature and the strength of the material. Suppose that the ith shock results
in a vector of damage given by (X;, Y;). If the number of shocks is given by N, then the
accumulated damage is given by the vector (S L(N), S2(N)). Ourresults can be used to estimate
P(S'(N) < tx, S*2(N) < ty) for large values of ¢. In [24] the present authors studied renewal
quantities related to this type of process.

We can also use our results to study the multivariate analogues of [21], [22] and [34]. In
this case, we study a sequence of random vectors Y; defined as follows. Let A, B, and C
denote random variables with generating functions given by a(s), b(s), and c(s), respectively.
Let p and g denote real numbers such that 0 < p = 1 — ¢ < 1 and b(s) = pa(s) + gc(s).
The sequence Y is defined recursively using the following generating functions:

pa(s)gr—1(s)

o(s) =1, ) =—"""—"——, k=12,....
§ T ge®ai ()
Using a Taylor expansion, we find that
o0
gk(s) = a($)g-1(5) Y pq" (c(s)gk—1()". 3)

n=0

Clearly Yy is related to a compound geometric sum as follows. Let N denote a geometric
random variable with P(N = n) = pg", n > 0. Fori > 1, let Y;(i) denote independent,

identically distributed copies of ¥; and, independently, let C; denote independent, identically
distributed copies of C. Define S;_1(n) by

Sic1(0)=0,  S_i(m) =) Yii().
i=1

From (3) we see that Y Z A+ Yi—1 + Sk—1(N). Our results can be used to study the
asymptotic behaviour of 1 — P(¥;x < x). As in the univariate case, the random variable
Y} can be interpreted in terms of shock models or insurance mathematics.
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5.2. Concluding remarks
(i) For (x) > 0 and ¢ = ¢, Theorem 1 shows that

F*(tx) ~ nF(1x). “4)

Relation (4) admiti the following probabilistic interpretation. Sincen(1— F(tx)) ~ 1—F"(tx)
and F*'(tx) ~ nF(tx), (4) implies that

1 —P(S(n) <tx) ~1—P(M(n) < tx),

where S(n) = (8'(n), S2(n), ..., S%(n)) denotes the vector of partial sums and M(n) =
(M1 (n), M2(n), A Md(n)) denotes the vector of partial maxima. Clearly

1 —P(S(n) < tx) = P(max S t),

Xi

1 —P(Mn) < tx) = P(max M;F") > z).

i Mi
P<max ') > t) ~ P(max ®) > t).
i X i X

In the univariate case, we know that the tails of S’(n) and M'(n) are asymptotically
the same. In the multivariate case, the previous result shows that max; (S (n) /xi) and
max; (M’ (n)/x;) also have the same tail behaviour. It would be interesting to study the relation
between the tail behaviours of

It follows that

i i n i i

. S8'(n) X X . X

min , max min —=, E min —-, and min max —-.
i X I<j<n 1<i<d X i X I<i<d 1<j<n X;

It would also be interesting to study these quantities for triangular arrays.

(ii) The condition F € L(Rd) can be reformulated as follows. Let X = (X1, X»2,..., Xg)
denote a positive random variable with DF F(x). For a fixed x = (x1,x2,...,x4) > 0,
define the new random variable Z(x) = max(X;/x;, i = 1,2, ..., d). Clearly the DF of Z(x)
is given by P(Z(x) < t) = Fz(x)(t) = F(tx). Since F is monotone, it is easy to show that
F(x) € L(R?) ifand only Fz(x)(t) € L(R). Note that Theorem 1 shows that fz(x)(t) e L(R)
implies F € S(RY).

(iii) In this paper, among others, the present authors have studied the asymptotic behaviour of
sums of the form W(x) = Zsio pn F*"(x), where {p,,} denotes a probability distribution. It
is also possible to study W (x) using sequences {p,, } of other sorts. For example, if p, = 1 then
we obtain the d-dimensional renewal function (see [30]). If po = O and p, = 1/n, n > 1,
then we obtain the harmonic renewal function. In [29] and [24], generalized renewal functions
in R and R¢ were studied.

(iv) The concept of subexponential densities in R¢ has not been studied yet. For densities,
subexponentiality could be defined by assuming that f(x) € L(R?) and that

f® f(tx)
- - T
f@x)

for some limit function. More research is needed in this area.

a(x)
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