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Abstract

In situ structural biologywith cryo-electron tomography (cryo-ET) and subtomogram averaging
(StA) is evolving as a major method to understand the structure, function, and interactions of
biological molecules in cells in a single experiment. Since its inception, the method has matured
with some stellar highlights and with further opportunities to broaden its applications. In this
short review, I want to provide a personal perspective on the developments in cryo-ET as I have
seen it for the last ~20 years and outline the major steps that led to its success. This perspective
highlights cryo-ET with my eyes as a junior researcher and my view on the present and past
developments in hardware and software for in situ structural biology with cryo-ET.

Introduction and personal history

In 2005, I was about to complete my physics degree at an institution now called Siberian Federal
University (Russia) when EMBL Heidelberg (Germany) invited me to a PhD student interview.
My initial intention was to develop myself as a bioinformatician in one of the then-already
famous groups; however, Achilleas Frangakis showed me cryo-electron tomography (cryo-ET)
and got me excited with the fact that they were noisy, with an anisotropic resolution, and
definitely needed computational processing (Frangakis, 2021). However, I failed the final
interview to EMBL. Yet, the challenge of cryo-ET and the promise to visualize molecules inside
cells at high resolution (Grünewald et al., 2003) were fascinating. Luckily, a malaria biologist,
Freddy Frischknecht, recruited me as one of his first PhD students at Heidelberg University
(Germany). We collaborated with Wolfgang Baumeister’s department at the Max Planck
Institute for Biochemistry, where the pioneering work on establishing cryo-ET was ongoing.
This was the start of my cryo-EM journey. My PhD project focused on how Plasmodium
sporozoites, the infectious stages of the malaria parasite transmitted from a mosquito to a host,
move. Unlike most eukaryotic cells, sporozoites are thin enough to be imaged by cryo-ET. The
research was exploratory, and we did not know what we were going to find if anything at all.
However, as this was potentially a good application of cryo-ET, my co-PI Marek Cyrklaff
convinced Wolfgang Baumeister to give me a guest contract to visit MPIB. We froze grids in
our lab in Heidelberg, traveled to Munich with a dryshipper, and mostly booked night shifts as
this was the only time when the microscope was free. On a good shift, I could record two to four
tomograms with a total of ~140 during my PhD. Currently, we can record this much data in one
session.

We were successful in the generation of tomographic data and could observe large molecules
and organelles inside parasites (Figure 1). By looking at microtubules, we realized that they had
an extra density inside (Cyrklaff et al., 2007) suggesting the presence of microtubule inner
proteins. These were later identified by Wang et al. in the related parasite Toxoplasma gondii
(Wang et al., 2021). We discovered that microtubules and most organelles are located at a fixed
distance from the parasite’s inner membrane complex, suggesting the presence of a linker
molecule (Kudryashev et al., 2010c). Interestingly, parasites, when isolated, glide on solid support
preferably in a counterclockwise direction (Hegge et al., 2009).We found that the arrangement of
the microtubules around the Plasmodium-specific microtubule-organizing center creates a stiff
‘cage’ on the support, on which they glide (Kudryashev et al., 2012). I always found tomograms
fascinating – they contain all the information about protein structures in a cell, although at
limited resolution. We often observed proteins that we could attribute to textbook molecules,
such as ribosomes, nuclear pore complexes, connections between microtubules and transport
vesicles (Figure 1c, d), and many unidentified features or features that were at the edge of the
resolution limit such as repetitive structures within the polar rings that have now been resolved
(Martinez et al., 2022). Plasmodium sporozoites move using their own actin machinery and we
wanted to visualize it, however, we could never see them under the parasite plasma membrane,
where they were expected (Figure 1e). From this, we concluded that they must be rather short
(Kudryashev et al., 2010b). Indeed, only recent tomograms revealed their presence (Martinez
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et al., 2023). Overall, the high-resolution cell biology ofPlasmodium
sporozoites was highly informative and we published the last
tomograms 9 years after I defended my PhD (Kehrer et al., 2018)
with a number of them remaining unpublished. Recent develop-
ments in cryo-EM/ET made the technologies much more access-
ible, enabling many excellent groups to produce amazing
tomograms and structures at higher resolution and gain insights
into the molecular architecture of malaria parasites (Anton et al.,
2023; Ferreira et al., 2023; Wang et al., 2021; Martinez et al., 2022;
Sun et al., 2024) and it is fascinating to see the developments.

In 2005, subtomogram averaging (StA) was implemented as a
set of scripts allowing to obtain moderate-resolution structures of
molecules in tomograms (Förster et al., 2005), and we had to try
it. Yet, we did not find a protein complex that would be interesting,
large, and abundant in our tomograms of malaria parasites. We
therefore obtained very thin bacteria – spirochetes of the genus
Borrelia, known for causing Lyme disease. Most bacteria, including
spirochetes, move by rotating flagellar filaments by a large trans-
membrane protein complex called a bacterial flagellar motor
(BFM). BFM is a fascinating molecular machine converting proton
gradient across the bacterial inner membrane into mechanical
rotation. The first structure in situ was reported by Grant Jensens’
group (Murphy et al., 2006), it was produced by averaging 20 par-
ticles with C16 symmetry and had a resolution of 7 nm. I thought
that with more tomograms I could average more particles and
improve the resolution. I collected ~35 tomograms over many
sessions (Kudryashev et al., 2009) and produced a structure from
128 particles with C16 symmetry at a resolution of 4.6 nm
(Kudryashev et al., 2010a). Roughly simultaneously, Jun Liu from
Houston produced amuch better structure at a resolution of 3.5 nm
from a heroic effort of averaging over 1280 particles (Liu et al.,
2009). It became clear that obtaining higher resolution structures is
possible, and it would require a higher throughput of data collection
and processing. Later work with modern equipment and much

higher throughput resulted in even higher resolution structures,
allowing the fitting of the atomicmodels of the components of BFM
(Carroll et al., 2020; Guo et al., 2022), and there seems to be more
potential for further improvement.

When I finished my PhD in 2009, I was lucky to get a postdoc
position with Henning Stahlberg at the Biozentrum Basel
(Switzerland). Biozentrum had one of the first Titan Krios micro-
scopes, and a part of Henning’s group had a technological inclin-
ation. Having access to the automated high-throughput instrument
was promising to be able to record large tomographic datasets. At
that point, one of the major bottlenecks became data processing –
with increased throughput and larger sizes of digital volumes.
In 2009, we used Av3 (Förster et al., 2005), a set of MATLAB-
based scripts to align subtomograms to one reference on one CPU.
It was intuitive, compact, and functional but required a certain
computational background to use, and was slow and prone to
overfitting, like many other cryo-EM packages at the time
(Scheres & Chen, 2012). Another option IMOD/PEET (Nicastro
et al., 2006) also worked, it had a graphical interface and was useful
for teaching undergraduates, but did not allow the flexibility that we
wanted.

Luckily, my office neighbor Daniel Castaño-Diez took the chal-
lenge to improve data processing for cryo-ET and StA. He was
excited about the potential of GPU acceleration for 3D image
processing before it became mainstream (Castaño-Díez et al.,
2008). Daniel developed a set of tools now known as Dynamo – a
GPU-accelerated package for StA that ran on clusters (Castaño-
Díez et al., 2012) and was much faster than CPU-based implemen-
tations. Dynamo had a graphical user interface, enabling scientists
without coding expertise to use it. Dynamo changed the way we
worked: before Dynamo we would start a subtomogram alignment
project for an overnight run, andwithDynamo, we could run it over
a coffee break. Dynamo widened the bottleneck of StA, but it still
required reconstructed tomograms and picked particles to start.
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Figure 1. Molecular architecture of the apical end of a Plasmodium berghei sporozoite.
(a, b) A slice through a tomogram of the apical end of a sporozoite (a) and its volume rendering (b). The labels point to PM, plasma membrane (blue); IMC, Inner membrane complex
(yellow); Rho, Rhoptries (magenta); Mic, Micronemes (cyan); MT, Microtubules (green). Red highlights density between PM and IMC, also shown in e. Adapted from Kudryashev et al.
(2010c). (c) A slice through a tomogram of the central part of a sporozoite showing a part of a nucleus with an apparent nuclear pore complex (NPC), end of amicrotubule (MT), and
ribosome-looking particles. (d) Slices through tomograms showing a close distance between the microtubules (MT) and micronemes (Mic) with apparent connections. Scale bar:
50 nm. (e) A volume-rendered visualization of a side view onto the IMC with the removed PM. Red arrowheads point to the filament-like densities where actin filaments are expected. The
direction of the electron beam is horizontal. Right: a projection of the EM density through the volume between the IMC and the PM. Scale bar: 100 nm. Panel adapted from Kudryashev
et al. (2010b).
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Understanding these challenges, Daniel developed variable tools for
particle picking and data management in Dynamo Catalogue
(Castaño-Díez et al., 2017), which is still very useful in the majority
of applications. Daniel first developed Dynamo for our in-house
projects, andwe naturally wanted others to use it too, and organized
many workshops in Basel and around the world. This helped to
understand the requirements of Dynamo users; however, the
majority of users were onboarded to Dynamo only once it got a
wiki page with documentation.

Equippedwith the automatedmicroscope and the tools to process
data, we were excited to put them to good use. I thought that cryo-ET
could make the biggest contribution to the structural analysis of
protein complexes that are hard to purify, for example, large mem-
brane protein complexes. We teamed up with Guy Cornelis’s group,
prominent researchers in the field of bacterial secretion to determine
the structure of the bacterial injectisome in pathogenic Yersinia
enterocolitica. The injectisome, also known as the type 3 secretion
system, is a multiprotein transmembrane complex that bacteria use
to deliver their effectors (i.e., toxins) into the host cells. The injecti-
some is evolutionarily related toBFM (Cornelis, 2006).We generated
minicells that were smaller and provided higher contrast and deter-
mined a ~40 Å structure of the injectisome in cells. The structure
showed significant flexibility of the part of the injectisome located
between the bacterial inner and outer membranes, which we attrib-
uted to an adaptation to deal with the naturally occurring variations
in the intermembrane distance (Kudryashev et al., 2013). The injecti-
somes tended to form small clusters on the surface of the bacteria,
which likely increased the total secretion efficiency (Kudryashev
et al., 2015a). We then teamed up with Nans et al. who imaged
pathogenic bacteria Chlamydia infecting human cells grown on
grids. Such imaging naturally contained idle bacteria and those that
infected cells, which allowed us to determine themoderate resolution
structures of the injectisomes in their inactive and active states.
Interestingly, the injectisomes in contact with the host cells had a
shorter periplasmic part, suggesting that a ‘pump-action’ is required
for secretion (Nans et al., 2015).

At the end of 2013, we got one of the first K2s – a direct electron
detector (DED) from Gatan, at that moment – without an energy
filter. I was about to join the group of Marek Basler, who just started
his group in Biozentrum Basel. The focus of the group was the
recently discovered bacterial secretion system type 6 (T6SS), which
is similar to an inverted bacteriophage tail (Brunet et al., 2014), which
bacteria use to kill each other (Basler et al., 2013, 2012). Marek knew
how to purify the T6SS sheath – a helical spring loaded with toxins
that stored mechanical energy for a quick release. I prepared cryo-
EM grids and collected ~250 micrographs manually over a Saturday
onour new system. I have never done single-particle cryo-EMbefore,
especially helical reconstruction, therefore we contacted an expert –
Edward Egelman. Within weeks, we got the structure at 3.5 Å
resolution (Kudryashev et al., 2015b),which showedmost side chains
in the ordered part of the protein. In a way, the T6SS sheath is a
perfect sample for single-particle cryo-EM as it is very stable and has
helical and C6 symmetry. This is why a high-resolution structure
could be obtained from the best 77 images. The field was still
developing at the time and the software did not have hard blocks
on the overfitting of maps, and the building of atomic models was
usually done into X-raymaps. Therefore, we had to improvise on the
aspects of image processing and building atomic models into the
maps de novo (Wang et al., 2015). Our early routines were using the
data very efficiently, and only a small improvement in resolution
from 3.5 to 3.3 Å was demonstrated with the later versions of helical
refinement in Relion (He & Scheres, 2017).

A good way to think about structural biology and many other
things is the framework of evolution. Max Perutz and John Ken-
drew solved structures of hemoglobin and myoglobin by X-ray
crystallography, and it was a major effort to establish it starting
from basic principles (Meurig Thomas, 2020). X-ray crystallog-
raphy defined structural biology for many years with a method
mostly focused on relatively small soluble proteins. To facilitate the
crystallization of more difficult targets, a proficient structural
biologist had to optimize constructs, truncate domains, and intro-
duce stabilizing mutations, whichmay limit the functionality of the
resulting structures. The entire infrastructure of hardware (from
crystallization robots to beamlines) and software for automatic data
processing have been developed, making X-ray crystallography a
very mature technique. Unwin and Henderson applied the crystal-
lography approach to a crystalline purple membrane containing
bacteriorhodopsin using electrons as probes (Henderson &Unwin,
1975). This gave rise to a method of electron crystallography,
motivating many researchers to grow 2D crystals of membrane
proteins and image them in diffraction or imaging modes on an
electron microscope (Abeyrathne et al., 2012). This technology was
moderately successful, resulting in structures of many membrane
proteins including 1.9 A structures of AQP0 (Gonen et al., 2005)
and interestingly, tubulin in a lattice (Nogales et al., 1998). How-
ever, as 2D crystals of membrane proteins are generally hard to
grow and screen, the method has become less popular over time.
Small 3D crystals can be analyzed by microcrystal electron diffrac-
tion (microED), and the larger crystals can even be FIB-milled to
reduce their thickness (Mu et al., 2021), however, it still requires
crystallization. Nuclear magnetic resonance (NMR) has also
evolved as a structural biology method that is very successful for
the structural analysis of proteins, including membranes. NMR
requires a high concentration of stable protein and is limited in
the sequence length (Marion, 2013). Single-particle cryo-EM solved
most of the problems of the existing methods: it required much less
protein, and the protein did not have to be 100% pure and stable for
days. Single-particle cryo-EM does not require crystallization,
reveals structures of proteins in solution, and allows us to under-
stand the structure and dynamics of macromolecules from one
dataset. Eventually, electron microscopists transitioned from niche
structural biologists studying ‘blobs’ to the ‘superstars’ of science,
culminating with the award of theNobel Prize in Chemistry in 2017
to the pioneers of cryo-EM. Single-particle cryo-EM was particu-
larly successful in determining structures of membrane proteins
and ion channels with the quintessential structure of the TRPV1
channel (Liao et al., 2013), as previously they were very hard to
crystallize.

Inspired by single-particle cryo-EM, in 2015, I made a detour
from cryo-ET and started a research group focusing on the struc-
ture and function of ion channels, which I thought were under-
studied and seemed like a good target for cryo-EM. With the cryo-
EM hype and some luck, I got a big grant from the Alexander von
Humboldt Foundation and recruited an amazing team to the Max
Planck Institute of Biophysics in Frankfurt on Main. Notsurpris-
ingly, membrane protein biochemistry proved to be hard: mam-
malian protein expression and purification are often very
challenging and require a lot of optimization. Even when it works,
there are day-to-day variability. A major challenge in determining
the structure of a membrane protein is, therefore, not the cryo-EM
work, but the quality of the protein. As a result, the competition in
the field of cryo-EM of membrane proteins is immense, as many
outstanding labs generate bright ideas and stable pure proteins. As a
postdoc, I analyzed the structure of the serotonin receptor ion
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channel 5-HT3R, which instead of growing into 2D crystals, pre-
ferred to end up in small lipid vesicles. I, therefore, used cryo-ET
and STA and determined the structure of 5-HT3R in lipids at a
moderate resolution of 12 A. The structure was very similar to the
previously reported X-ray structure at this resolution (Kudryashev
et al., 2016). However, high-resolution single-particle analysis of
5-HT3R in a membrane mimetic saposin determined by Yingyi
Zhang and Patricia Dijkman showed major differences from the
previous structures without lipids. Functionally important choles-
terol stabilizes the structure of 5-HT3R and together with phospho-
lipids allows the ion-selective pore in the membrane to open and
conduct ions (Zhang et al., 2021). Our groups determined several
other important structures: together with the late Herman Bujard,
we determined the structure of the malaria surface protein MSP1
(Dijkman et al., 2021), which he developed over 40 years into a
malaria vaccine candidate currently undergoing clinical trials
(Blank et al., 2020). Together with Volker Haucke, we determined
the structure of a membrane-associated kinase PI3KC2α, which
allowed us to suggest the mechanism of its action (Lo et al., 2022).

As amazing as single-particle cryo-EM is, I find thatmembrane
protein biochemistry is a critical bottleneck. Depending on the
purification protocol, the use of different detergents or membrane
mimetic, lipid composition, and others, the structures can be
different (Dalal et al., 2024; Hoffmann et al., 2024). Therefore,
the structures need to be critically evaluated for their physiological
relevance. In my opinion, at the next iteration of structural biol-
ogy, we can determine the structures of membrane proteins in
membranes by skipping protein purification steps. This will allow
us to obtain unambiguous structures of membrane proteins in
lipid bilayers, potentially with the interacting partners or under
physiological gradients. Our group at the Max Delbruck Center
for Molecular Medicine in the Helmholtz Society in Berlin pushes
‘ways to means’ to determine the structures of membrane proteins
in unrestricted membranes. For this, we experiment with display
systems, from cryo-FIB milling into cells followed by cryo-ET, or
by analyzing membrane proteins in purified native membranes,
such as the vesicles of sarcoplasmic reticulum purified from rabbit
muscle (Chen & Kudryashev, 2020; Sanchez et al., 2020) or
synaptic vesicles purified from mouse brains (Kravcenko et al.,
2024). As the structure determination methods are still being
developed, it is clear that high-throughput and streamlined pro-
cessing will be needed to average over many thousands of asym-
metric particles; therefore, we develop automation tools, such as
tomoBEAR (Balyschew et al., 2023). In some cases, the structures
of proteins in membranes can be determined by single-particle
cryo-EM, without recording tomograms (Mandala &MacKinnon,
2022; Tao et al., 2023; Yao et al., 2020); however, there seem to be
limits to the protein size and flexibility. Perhaps, hybrid StA
(Sanchez et al., 2020; Song et al., 2020), combining some advan-
tages of both imaging modalities will be useful for a class of
proteins? We work on it while aiming to produce new insights
into transmembrane signaling by medically important membrane
proteins.

How cryo-ET and StA became great: Hardware and the
interplay between academia and industrial developments

Conceptually, cryo-ET is simple: a sample, protein solution, or
small organisms are frozen in a thin layer of amorphous ice;
consecutive tilted transmission images are recorded, computation-
ally aligned, and reconstructed into a 3D volume; multiple copies of

the same molecules can be identified, mutually aligned and aver-
aged (Walz et al., 1997). However, the actual implementation was
challenging. Tomograms have to be collected keeping the total
electron dose limited, after each tilt of the microscope stage, the
position of the sample has to be re-centered, and refocusing needs
to be performed. Although heroes of early cryo-ET could collect tilt
series manually (Cheng et al., 2007), making cryo-ET practically
useful required automation. The first tomography microscope at
the Max Planck Institute for Biochemistry was a Phillips CM300
with a motorized ‘compuStage’, a CCD camera Gatan US1000, and
a side-entry holder operated by in-house developed software. Side-
entry holders are generally not designed to be tilted to 60°; there-
fore, liquid nitrogen used to cool it down started bubbling, pouring
out at high tilts, and required refilling with liquid nitrogen every few
hours. Replacing the gridswith such a system took a significant time
and was associated with diminishing the microscopes’ vacuum,
practically limiting the throughput to three grids per day. Following
this successful prototype, FEI (later purchased by Thermo Fisher
Scientific) and JEOL designed more stable cold stages with multi-
grid capabilities. FEI Polara had amultispecimen holder, which was
still hard to use, and it was easy to drop a cartridge with a grid inside
the microscopy column. More modern microscopes with an auto-
loader are automated and allow to screen up to 12 grids per loading,
which could be donemore than once per session, it is a big factor for
throughput.

The microscopes and cameras are fully computer-controlled,
and the microscope producers maintain application programming
interfaces (APIs) to allow external developers to control the devices.
This open environment enabled academics to develop creative ideas
for data collection, such as the automation packages Apion for
single-particle cryo-EM (Lander et al., 2009), TOM toolbox
(Nickell et al., 2005), Leginon for tomography (Suloway et al.,
2009), and the commonly used SerialEM (Mastronarde, 2005;
Schorb et al., 2019). Building on the scripting capabilities of Seri-
alEM enabled further improvements in tomography such as the
dose-symmetric tilt scheme (Hagen et al., 2017), which enabled the
Briggs group to obtain the first sub-4 Å structure by cryo-ET (Schur
et al., 2016). Scripting further enabled recording tomograms in
parallel (Bouvette et al., 2021; Eisenstein et al., 2023; Khavnekar
et al., 2023), greatly increasing the throughput of data collection.
This is borderline revolutionary and switched the challenge of cryo-
ET from having enough time on the microscope to record the data
to have enough computational resources to store and process all the
data. Therefore, it is highly beneficial for both academic researchers
and the industry to maintain APIs to further collaborate on innov-
ations.

The detector quantum efficiency (DQE) of photographic film
was generally comparable to or better than that of the CCD cameras
of the early 2000s (McMullan et al., 2009; Ruskin et al., 2013). There
were first-generation FEI Titan Krios with chambers for photo-
graphic film, suggesting that some of the instruments weremeant to
screen the grids using CCD and to collect the data on film. The
current generations of DED much surpass the DQE of film and
provide high data collection speed, allowing recording ‘movies’ and
correcting beam-induced motion (BIM; Brilot et al., 2012; Zheng
et al., 2017). The development of DEDs is considered the major
factor in the breakthrough of single-particle cryo-EM (Nogales,
2016). However, I would argue that for cryo-ET, without the
parallel developments of automated microscopes, computer hard-
ware, and software, the progress would not have been as impressive.
As I discussed earlier, the automation of microscopy is much more
important for tomography and it was already implemented onCCD
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cameras, DED gave a large boost in the resolution of final struc-
tures. I think that it is important to give credit to the industrial
research and development teams who invested time and money to
produce hardware at scale and robustly. My only concern with
hardware and commercial software is that we need to ensure
significant competition in the markets of microscopes, cameras,
and software to keep the prices competitive for the limited research
budgets.

The current frontiers of hardware technology include sample
preparation for cryo-ET, especially for interesting and challenging
samples ranging from cells to tissues. Following the pioneering
developments of Marko et al. (2007), the department of Wolfgang
Baumeister turned the milling of cryo-preserved samples with ions
into a robust technology. Currently, milling into individual cells has
become a commercially available technology. Further develop-
ments by the groups of Juergen Plitzko, JuliaMahamid, Alex Noble,
Michael Grange, and others target the methods to image complex
samples and multicellular organisms (Schiøtz et al., 2023; Matsui
et al., 2024). While currently, it seems difficult, some of these
technologies will become routinely useable sooner rather than later.
Another potentially large step for cryo-ET is the development of a
laser phase plate by the group ofHolgerMuller, which will allow the
recording of data close to focus (Schwartz et al., 2019), further
improving the quality of tomograms.

How cryo-ET and StA became great: Rise of software and
software workflows

In July 2024, the EMDB depository (the wwPDB Consortium,
2024) had ~2185 subtomogram averages, slightly under 6% of all
the depositions. The number of depositions grows fast and the
resolution of the structures improves with years (Figure 2). The
top 200 depositions have the resolution of 6.7 Å or higher. Such

resolution allows for the resolving alpha-helices and a reasonable
positioning of available atomic models. Many papers report sub-
tomogram classifications resulting in multiple depositions of the
same molecule from the same datasets. It highlights the power of
cryo-ET and StA in the hands of several groups. There are many
‘favorite molecules’ of subtomogram average reports: purified apo-
ferritin, lattices of rotaviruses such as GAG (Obr et al., 2022; Schur
et al., 2016), and ribosomes (Gemmer et al., 2023; Tegunov et al.,
2021; Xing et al., 2023). I would also note actin filaments from
sarcomeres in situ (Wang et al., 2022), microtubules in axonemes
(Tai et al., 2023) an archeal S-layer (vonKügelgen et al., 2024), and a
COPII coat (Hutchings et al., 2021). Highest resolution structures
typically contain a large number of particles: 35,061 particles for a
purified ribosome at 3.1 Å (EMD 33834); 286,400 particles for a
ribosome in cells (3.1 Å resolution, EMD-16721); and 77,659*C6
for the CA-SP hexameric lattice at 2.9 Å resolution (EMD-14013).
These are pioneering high-resolution structures, and except for
apoferritin, provide insights into the structure of molecular com-
plexes in situ. Interestingly, many deposited structures were part of
publications in reputable journals (Figure 2).

I attribute the broader adoption of structural analysis by StA at
higher resolution to the developments in software, which I break
down into two 2 factors. The first factor – the software has become
more usable. Many academic packages are good at doing one or a
few operations. However, interfacing software responsible for mul-
tiple steps is not trivial and often requires scripting input and
output to sometimes poorly documented packages. We previously
estimated that processing of cryo-ET and StA datasets may include
up to 16 steps of various difficulty and computational complexity
(Leigh et al., 2019). Tomy knowledge, many successful StA labs had
in-house solutions based on MATLAB or bash scripts, which are
hard tomaintain ormodify for the new versions of infrastructure or
other packages. Such sets of scripts are hard to transfer to another
system, and there is a risk that once a scientist who wrote them
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Figure 2. Statistics of EMDB depositions for subtomogram averaging in July 2024.
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leaves the group – they will be unusable. The development of
workflows, covering multiple steps of data processing, such as
IMOD/PEET (Heumann et al., 2011; Mastronarde & Held, 2017),
EMAN2 (Chen et al., 2019), pyTom (Hrabe et al., 2012), emClarity
(Ni et al., 2022), Dynamo (Scaramuzza & Castaño-Díez, 2021),
Warp-Relion-M (Tegunov et al., 2021), TomoBEAR (Balyschew
et al., 2023), nextPYP (Liu et al., 2023), Relion5 (Burt et al., 2024),
TOMOMAN (Khavnekar & Wan, 2024), and others makes the
processing more accessible. There are many advantages of using a
workflow, among others: potentially optimized execution with the
reduced requirement for computational resources and storage;
more reliability and reproducibility, better documentation, and
an easier learning curve for new researchers. To obtain thousands
to hundreds of thousands of asymmetric units for averaging to
obtain a high-resolution structure, a large degree of automation is
required.

The second aspect of the software is the opportunity to refine the
structures to high resolution,making themethod attractive tomany
biological applications. Here, two main challenges exist: computa-
tional costs and the accounting for the beam-BIM. Large compu-
tational resources are spent for the maximization of 3D cross-
correlation (CC): a template is rotated to a set of angles, filtered,
and distorted by a missing wedge, and the CC between it and the
particle is calculated in 3D by convolution in Fourier space. The
maximal CC value determines the optimal angles, whereas the
position of the CCpeak determines the shifts. Importantly, multiple
3D rotations and 3D Fourier transforms need to be calculated to
perform CC maximization. When reaching high resolution in StA,
the number of informative voxels in a volume increases, increasing
the size of the ‘box’ with the particles. Practically, the largest
currently deposited structures in EMDB are in the range of
400 voxels3, further processing is limited by the memory of graph-
ical processors and, given the need to average over large datasets,
the speed of processing altogether. This limitation can be partially
circumvented by reducing the calculator of 3D CC to a set of 2D
CCs. In the context of cryo-ET, it was first suggested by Ricardo
Sanchez from our group (Sánchez et al., 2019a, 2019b) and used in
high-end processing packages such as ‘M’ (Tegunov et al., 2021)
and Relion 4/5 (Burt et al., 2024), reducing the computational
complexity of the algorithm from L3 to L2, where L is the size of
the volume. Still, further improvements in algorithms and their
implementations are needed to reduce the computational and
environmental load of StA and to make StA accessible to more
groups that do not have access to large computational resources.

Accounting for BIM in tomography is arguably more difficult
than in 2D single-particle cryo-EM, as the motion is 3D (Brilot
et al., 2012; Zheng et al., 2017) and tomographic imaging is per-
formed at tilts. Furthermore, cryo-ET imaging is performed on
something more difficult than purified proteins, therefore the
motion of the sample could be non-trivial, although it is not well
described. Tomography-specific implementation ofmotion correc-
tion by ‘constrained single-particle-cryo-ET’ was first suggested by
Bartesaghi et al. (2012). Alignment parameters of the tilt series were
refined based on their fit to the final structure, resulting in a ~ 8 Å
structure of GroEL from CCD data. This elegant algorithm has not
been utilized for a decade, and it was recently reimplemented in a
workflow nextPYP (Liu et al., 2023). A similar approach was
suggested in emClarity: local refinement of tilt series alignment
parameters based on the fit of the particles in 2D projections to the
final structure, leading by iterative refinement (Himes & Zhang,
2018). ‘M’ by Tegunov et al. further improved the BIM refinement
by incorporating several distortions for several types of molecules

into one cost function and introduced an elegant filtering of half-
maps during subtomogram alignment (Tegunov et al., 2021).
EMAN2 introduced the direct ‘subtilt’ refinement of 2Dprojections
and CTF parameters of particles versus the structure (Chen et al.,
2019). Relion 4/5 introduced Bayesian priors for motion between
the neighboring particles in tomograms to prevent overfitting,
resulting in improved reliability & precision (Burt et al., 2024).

As powerful as cryo-ET is for the highlight applications, in my
opinion, the range of molecules potentially amenable for the ana-
lysis by StA is still limited to the ‘favorite molecules’ which are
stable, abundant, and large or periodic assemblies. Such molecules
can be identified by automatic algorithms (Chen et al., 2017; de
Teresa-Trueba et al., 2023; Moebel et al., 2021), can be easily
computationally aligned to templates, and further refined to high
resolution. In a way, there are similar limits of molecular weight to
be able to identify a particle of interest and to align it to a template.
However, an average protein in a cell is ~50 kDa, as a monomer
(Kozlowski, 2017), which is much smaller than the highlighted
applications and is present in cells (and tomograms) in low copy
numbers (Wiśniewski et al., 2014). Alignment of particles to an
average is a particular challenge for membrane proteins and the
membrane has high contrast (Chang et al., 2023). In fact, the
average structure deposited to EMDB in 2024 has a resolution of
~20 Å. Such structures are also highly useful, especially as atomic
models of proteins and complexes can be predicted by Alphafol3
(Abramson et al., 2024) or other approaches.

Future of in situ structural biology with cryo-ET: a broadly
used method for biological discovery

Methods such as X-ray crystallography, and single-particle cryo-
EM matured somehow similar to cryo-ET. At first, the basic con-
cepts and prototype hardware and software were developed by
pioneers, followed by the commercialization or open-sourcing of
the tools,making the technologies generally accessible. I believe that
currently in situ structural biology with cryo-ET passed the early
steps of reaching general accessibility. Sample preparation and
microscopes have become robust and highly productive. Import-
antly, several initiatives enabled shared access to microscopes
(Zimanyi et al., 2022), such as EMBL, NECEN, eBIC, Simons
Electron Microscopy Center, and NIH. This means that any
researcher can record several hundreds of high-quality tomograms
of their sample of interest for a reasonable fee under the supervision
of an expert. In the future, hardware will improve with newer
detectors and phase plates; such add-ons would be easier to pur-
chase and manage by larger cryo-EM/ET centers.

The major bottleneck for a new group interested in joining the
cryo-ET community is data processing. Starting from storing
terabyte-scale datasets, current software generally has a steep learn-
ing curve and requires large computing resources. The develop-
ments in making the software more stable, computationally
efficient, and generally usable would provide benefits to the adop-
tion of cryo-ET as a mainstream method. Graphical user interfaces
and extensive documentation, like in IMOD, EMAN2, Dynamo,
Relion5, and nextPYP, are key to enabling the users to take full
advantage of the cryo-ET data. Importantly, many of the tasks in
cryo-ET and StA are performed by conventional deterministic
algorithms, such as CC-based tilt series alignment, template match-
ing, subtomogram alignment-based CC maximization, and subto-
mogram classification using flavors of multireference alignment.
Many of these operations can be performed by neural networks that
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can be either pretrained on large datasets or/and trained on a small
part of the dataset of interest. Neural network inference is can be
faster than CC, which will make processing less computationally
demanding. Such implementations of neural networks would work
best as a part of an integrated workflow.

Ultimately, as hardware and software will become better, we will
be able to see more details in tomograms. On thin samples, perhaps
from milled preparations, we will be able to observe molecules and
individual domains in situ. Annotating 3D volumes manually is
difficult and we will need to use algorithms to build atomic models
of macromolecular complexes into tomograms. For this purpose,
complementary information about protein structure and flexibility,
protein–protein interactions, cellular localization, and other factors
could be integrated into dedicated multimodal neural networks.
Identified proteins could be further processed by StA. Suchmolecu-
lar mapping in situ will enable an understanding of the molecular
landscapes of cells in high-resolution detail, which will become an
important tool in molecular systems biology. In the future, under-
standing the cellular landscapes in detail will provide numerous
insights into the molecular mechanisms of life and could allow for
analyzing disease scenarios and suggesting therapeutic strategies.
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