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To Professor Kivosur Nosuiro on the occasion of his 60th birthday

1. Introduction. The theorem of identity for analytic subsets of a reduced
complex space is stated as follows;

Let V and V' be two analytic subsets of a reduced complex space. If V
-is irreducible and there exists a point x< V such that the germ V: of V at x
is included in V%, then V is included in V.

To an analytic set V there corresponds exactly one coherent Ideal o with
rad o =.«f. Replacing the above statement concerning analytic sets by
coherent Ideals, we obtain the theorem of identity for coherent Ideals with
suitable conditions. The first result of this paper is to generalize this to the
case of coherent Modules over a complex space X = (| X|, ©).

Let .2 be an arbitrarily given coherent @-Module over X. We shall call
a coherent sub-@-Module .# of £ over X to be primary if .#: has no
embedded primary component for any x|/ A |: ={x; (L /A)x=0} and
the analytic subset |-£/_#| is irreducible.

We shall prove in §3

TuareoreM (1st theorem of identity). If &4 is primary and M <2 W< for
another coherent sub-@O-Module _# of - and some x < \|. L[ M|, we have M 2 _¥.

For an arbitrary .4, we shall show

THEOREM (2nd theorem of identity). For an arbitrarily given coherent sub-
@G-Module A of L there exists a locally finite family of irreducible analytic sets
{V.} such that any coherent sub-@-Module ¥ of . with {x ; M2 #}NV.%¢
for any ¢ is contained in M (§5).

To seek such {V.} we pay attention to a reduced primary decomposition
of A zxin £ for x| A/ _#|. The class of all prime ideals associated with
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A «is uniquely determined independently of a particular reduced primary decom-
position consiq{er_e&.; By piecing together:these prime ideals we shall construct
the coherent Idea}S -which define desired analytic sets V.'s (§4).

In a reduced primary decomposition an isolated primary component is also
uniquely determined. The same argument as the a;bove is applicable to costruct
the isolated primary components of a coherent Module M. We shall obtain
coherent primary Modules by piecing together isolated components of each £ x.
Using this, if each #» has no embedded primary component in .2, we shall
show £ can be represented as the intersection of a locally finite family of
primary Modules. In case that X is Stein, such a coherent primary sub-O-
Module .# of -2 defines just a closed primary H°(X, @)-submodule H*(X, .#)
of a Stein module H*(X, @) in [6]. Our primary decomposition theorem is a
generalization of Forster’s theorem ([6] p. 328) to the case of arbitrary complex
spaces.

As an application of these results, we can prove Abhyankar’s theorem ({[11)
concerning the continuity of order on a complex space without the assumption
of the simplicity of irreducible analytic set germs (Theorem 7.4). Moreover,
we shall show that for a normal complex space X there exists a canonical

bijection between the set of all positive divisors on X and the set of coherent
Ideals with suitable conditions (§8).

The auther would like to thank Mr. T. Okano for his many useful sug-
gestions.

2. Algebraic preliminaries. Let R be a commutative noetherian ring with
identity and L be an R-module of finite type.

An R-submodule Q of L (Q%L) is called to be primary if it satisfies the

condition that for any a< R and m & L the conditions am < Q and me& Q imply

that a”-L S @ for a suitable positive integer #». For a primary R-submodule

Q of L, the ideal Q:L={aeR;aL=Q)} is a primary ideal in R. We shall
call rad (Q : L) the prime ideal associated with Q.

As is well known, every R-submodule M of L (ML) has a primary
decomposition

(P) M=Q;n"‘an

where each Q; is a primary R-submodule of L. By p; we denote the prime
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ideal associated  with @; in this decomposition. Omitting some of @; in the
above decomposmon we may -assume (a) ;%N Q;. If finitely many primary
R-submodules Qi of L define the same prime 1de;Jp =rad (Q; : L), then N;Q;
is also an primary R- submodule of L. Using thls, in (P) we may also assume
(b) pi%p; (i%7). We shall call a primary decomposition satisfying these

conditions (a) and (b) a reduced primary decomposition of M in:L.

(2.1) Let M=@N -+ N Qs=QiN -+~ N be two reduced primary
decompositions and p,(1$z<s) p,(ls j<t) be the prlme ideals assoc1ated with
Qi, Q; respectively. Then the sets (n,) and (p,> commde with each other We
denote it by Ass.(M). For convenience’ sake we put Assu (M) = =¢ if L=M.

Each @; corresponding to a minimal p; in Ass.(M) is called an isolated
component of M in L and the other Q; is called an embedded component.

Let S be a multiplicatively closed subset of R. For an R-submodule M of
L we consider the set ML[S] ={melL; sme M for soxhe s€ S} and call it
the S component of M. v

(2 2) If M has a primary decomposition (P) and SNw=¢ (1<i<H),
SNp;x¢ (t+1<j<s) for prime ideals p; associated with Q;, then we have

ML[S]=Q1n s N
Now, we take a subset P of Ass.(M). If P satisfies the condition that

any pe Ass.(M) with pS)' for some p'e P is always contained in P, we shall
call it an isolated subset.

(2.3) Let M=@Q,N - -+ NQs be a reduced primary decompositon of M in
L and p; be the prime ideals associated with each Q.. Assume that a set
P={pi,...,p) is an isolated subset of {pi}. Then (N Qi depends only on

1=v=e

P and not on a particular reduced primary decomposition, because we have
M/[S]= 1[\" @i, for the multiplicatively closed set S = ﬂ (R p,). - We shall

call it the P-component of M and denote it by M. [P] frequently.
Particularly, a minimal element p in Ass.(M) defines an isolated subset
P={p}. The P-component, or simply p-component of M is nothing but an

isolated component of M defined by p, which depends only on p.

Let M and N be two R-submodules of L. It is a necessary and sufficient
condition for M 2 N that the ideal M : N in R is equal to the total ring R.
For later uses, we give
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LemMA 2.4. Under the above situation, the radical of the ideal M : N is equal

to the intersection éf some of elements in Assi(M) or to the total ring R.
Proof. Take a reduced primary decomposiﬁon
M=QN:---NQ,
Easily, we have
rad (M : N)=rad(Q, : N)N - -+ Nrad (@ : N).

To complete the proof, it suffices to show (a) rad (@ : N) =R if NS @ and
(b) rad (@; : N) =p; for the prime ideal p; associated with Q; if N&EQ;. The
condition (a) is evident. To see (b), we assume N<EQ;, namely, there exists
an element n€ N with n¢Q;. Let a be an arbitrary element in Q; : N. Since
anc Q; and n¢ Q;, we see ac pj=rad (Q; : L) by the definition of a primary
module. This implies @; : N=p; and therefore rad (Q; : N) £p;. On the other
hand, evidently rad (Q; : N) 2rad(Q; : L) = p;. Thus we conc_lude rad
(Qj : N) =y;. q.ed.

3. The first theorem of identity. Let X = (] X|, @x) be a complex space
in the sense of Grauert [7] with the basic topological space |X| and the
structure sheaf @y, or simply @. Take an arbitrary coherent analytic sheaf
< over X. In the following, we restrict ourselves to the study of coherent
analytic sheaves of - over X. Following Grothendieck [8], by a coherent
sub-@-Module over X we shall mean a coherent analytic subsheaf of . over
X. Particﬁlarly. if £ =@, by a coherent Ideal we shall mean a coherent
analytic subsheaf of @ i.e. a coherent analytic sheaf of ideals. :

A coherent Ideal .=/ defines exactly one closed complex subspace (|&/ |,
@lf) of X, where |@/_«| denotes the subset {x& |X]| ; (@/f)%0} of |X|.

Now we recall the coherency of the Ideal rad (0) of @. The complex
subspace (| X|, @/rad (0)) of X is called the reduction of X and denoted by
red X. By defini.ion, a reduced complex space X is a complex space with
X=red X. By an analytic subset of X we shall mean the basic topological
space for a reduced complex subépace of X without consideration of the structure
sheaf, and by a reduced irreducible complex space we shall mean a reduced

complex space which cannot be decomposed into the union of two proper
analytic subsets of X.
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DeriniTiON 3.1. A coherent sub-@-Module # of . is called primary if
it satisfies the followings ;

(i) for any x€ |/ A a reduced primary decomposition of &z in .#x
has no embedded component,

(ii) the set |."/ #! is an irreducible analytic subset of X.

In connection with coherent Modules, we give the following theorem which
is a generalization of the theorem of identity for analytic subsets of a reduced
complex space.

TueoreM 3.2. Let M and AN be two coherent sub-@-Modules of .52 over X.
If A is primary and there exists at least one point xw& | [ M| such that
M2 Ny, then it holds M 2 N, or Mz2Nx for any x| X|.

Proof. Since A : L = A : ¥, the complex subspace V: = (|@/ A : _#|,
O} M :#) of X is also a complex subspace of V' = (&) # : L), C] A : L).
Therefore | V| = |0/ : A#| is an analytic subset of V'. We assume | V]| #kqb
and take a point y in |V|. By Lemma 2.4, rad (_#y:_#y) is equal to the
intersection of a subset of Ass, (.#,). This shows the germ | V|, of | V| aty
is the union of some of irreducible components of | V|, by virtue of the con-
dition (i) of Definition 3.1. Now, we can apply the theorem of identity for an
irreducible analytic subset | V'| of red X. Thus we have | V|&|V'|<| V| and
so | V| =]V’l. On the other hand, the point #x, is contained in | V| but not in
| V| by the assumption. This is a contradiction. We conclude | V| = ¢, which
shows A : # =@, namely, A 2 _#. qged.

We can weaken slightly the assumption of Theorem 3.2 as follows.
CoroLLARY 3.3.  Under the same situation in Theovem 3.2, if M is primary

and there exists a point %€ | L[ M| such that for a primary component Q of
My in Ly Q2 Ny, then it holds M = .

Proof. Let M =N --NEQs be a reduced primary decomposition of
My in L, say Q=Q. Since Ly, is an €,-module of finite type, there
exists a finite system of generators of an €, -module @; for each @;. Using
these generators, we can define coherent sub-¢-Module .2; of‘of over a

suitable neighborhood U of x, such that

(%ngln R no@s
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on U. Then, making U sufficiently small, we can assume 2,2 ._# on U because
D%, = Q2 #4. On the other hand, by the condition. (i) of Definition 3.1 the
prime ideal p; associated with Q; satisﬁes"p’,g-?‘glp,-. - It follows from Nullstel-
lensatz (c.f. [4] Exposé 19, p. 17) there exists; point ye |/ 2:| such that
y&|./ 9;| for any ix 1. Then we see easilyye |2/ A | and Ay = 2,2 Ny
This shows .# and # satisfy the conditions in Theorem 3.2. The proof
is accomplished. g.e.d.

CoroLLARY 3.4. Let M be a coherent primary sub-@-Module of .  If a
section fe H (X, ) satisfies fr,& Q for a point x| L/ M| and a primary
component Q of M x,, then f is contained in H'(X, M ).

Proof. Putting #x: =@y {fs} in £ for each x= | X|, we get a coherent
sub-@-Module .7 = U lc/}'/,: of 2 over X. Apply Corollary 3.3 to the coherent
aE|X
Modules .# and .#. We have fe H'(X, #)SH'(X, A). ged.
A coherent sub-@-Modules .# of . defines an H°(X, ©@)-submodule of

H' (X, ).

CoroLLARY 3.5. If A is primary, then H' (X, M) is a primary submodule
of H'(X, £, that is, for any fe H'X, ©) and g H' (X, -£) the condition
fg€ HYX, M) and g& H'X, M) implies f"H' X, ) SH"X, M) for a
suitable positive integer n.

Proof. We take a point x€ V: = |/ M| =0/ A :.Z| such that the
analytic subset V of X is irreducible at x. For a reduced primary decomposition
M= N -+ NQs, we have

Mt L= (@ LN N(Qs: L),

which is a primary decomposition of the ideal .#x : -». This shows Ass,,
(M ) EASS, (A +) and any minimal element in Ass. (_# ) is contained
in Assy (£« -Zy). By the irreducibility of V. Ass,,( #x : -£x) contains
only one minimal element and by the assumption of .#. all elements of
Assy,( # ;) are minimal. Therefore, Assy,(.# «) consists of only one prime
ideal and so .# . is primary ih L xe

On the other hand, by the assumption of g& H*(X, .#), there exists a
point y such that gy,&.#,. Moreover, according to Corollary 3.4, we can
assert g ./, for any z in |/ _#|, especially the above x. Thus we see
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fx&:€ M, and g:% A x for a primary module ./ in £; and so f3* LS A«
for a suitable positive integer » by definition. ~Applying Corollary 3.4 again
we havé f"he HX, ) for any h e H'X, =) because (f"h)z& M
Eventually, f"H'(X, ) S H'(X, _#), which completes the proof.

Remark. 1In §6, we shall consider the converse statement of Corollary 3.5

(see Theorem 6.5).

4. Coherent prime Ideals associated with a coherent Module. A coherent
sub-@-Module _# of . defines the set Ass,,(_# x) of all prime ideals associated
with /s in £ for each ¥€|X]| ((2.1)). The purpose of this section is to
introduce an analogous notion of coherent Modules from a global point of view.

Firstly, we give the following Lemma, bwhich plays an essential role in this

section.

Lemma 4.1. For a coherent sub-O-Module M of & over X the set of all
x| X| such that M « has no embedded component is an open subset of | X|.

This is a consequence of G. Scheja [13], especially, the assertion of the
equivalence of the conditions (1) and (2) in Satz 9, p. 85. Easily we can
conclude the openness of the considered set in view of the condition (2) in it.

Remark. In case of £ =@, we can give another proof of Lemma 4.1.
For a coherent Ideal .« and a point x= | X|, _«x has no embedded component
if and only if a ring @./.of» satisfies Serre’s condition (S.). On the other
hand, the set of all x=|X]| such that @./«, does not satisfy the condition
(Sy) is a closed analytic subset of red X for any g (c.f. Houzel [4] Exposé 21,
p. 7, Proposition 4).

The . following Lemma is a generalization of the assertions concerning
primary decompositions stated in §2 to the case of coherent Modules under

semi-local consideration.

LemMma 4.2, Let A be a coherent sub-©-Module of & over X. For any
vl L/ M| we can find a sufficiently small neighborhood U of x and coherent
primary sub-@-Modules 2; (1=i<s) of & satisfying the following conditions;

@) A=2:0:-N0N9s0n U,
(40) each Dix is a primary © ysubmodule of L .,
(i10) for any ye UN | L/ A\, if we take an arbitrary reduced primary
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decomposition of each iy in Ly
Qiy=QiaN + + - NQik,
then the primary decomposition of M y
My=Ni(Qi,sN * *+ N Qi)

is also a reduced primary decomposition, where we consider the indices i with
iy =Ly only in the above.

Proof. We take a reduced primary decomposition
Me=QN - NQs,

where each @; is considered as the stalk of a coherent Module .2; over a
sufficiently small neighborhood U of x by the same argument in the proof of
Corollary 3.3. Then, it may be assumed

M=2:N0 N Ds

on U and, moreover, according to Lemma 4.2 each .2;y, may be assumed to
have no embedded component for any ye UN |/ 2;|. For our purpose, it
suffices to take these U and 2; (1=<i<s). The conditions (i) and (ii) are
satisfied automatically. To examine the condition (iii), it 1s necessary to show
(a) Qi,k%‘?mkg‘j,“Qj,t and (b) pix: =rad (Qir * L) *p;,1t =rad (Qi1: L)
for any (i, k) = (4. 1), where Qiy= lsﬂ;k‘Qi,l as in the condition (iii). Firstly,
we apply Corollary 3.3 to the coh;;e;lt sub-C-Modules 2; and N .2; of -
over U. Since 2; is primary over U and 2i:22\ 2jx, any prima;;Jcomponent
Qi1 of 2iy does not include N .2jy=N N éjj Therefore, we can take an
element f E:Qj 1 ngJQj,! witl;*jf&‘ Q,-_:Fj 1=Slizr‘;‘::e pir is a minimal element in
Ass,,(2iy), we can take also an element ge Q‘p;,l with g € p;,x. Replacing
g by g” for a suitable # if necessary, we can assume ge& sz(Qi" 1 <) and

g%, k. Then the element %2 = g+ f is contained in(‘. k)ﬂ(v . Qj,1 but not in Q; .
This asserts (a). On the other hand, by Deﬁnitionl,S.ﬂi,]'e)ach Vi=12y/2il is
an irreducible analytic subset of U and defines exactly one irreducible component
of Vi.. Now the assertion (b) is an immediate consequence of the theorem of

identity for analytic subsets of a reduced complex space. q.e.d.

We shall call a coherent Ideal .# over X to be prime if it defines a reduced
irreducible subspace (|&/.#|, €/.P) of X. In view of the proof of Lemma
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4.2, for each x=| X| there exists a neighborhood U of x and coherent prime
Ideals #; (1<i<s) suchthat U;Assp,(#;y) = Ass,,(_#) for any ye U. The

following theorem asserts this is valid globally.

TuroreM 4.3. For an arbitrary coherent sub-@-Module M of £ over X,
there exists one and only one family { P.: ¢ I} of coherent prime Ideals over X
such that ‘LEJlAss@,(ﬂc,,) = Assy,, (A y) for any y|X|. We shall call it the set
of all coherent prime Ideals associated with _# and denote it by Ass (. A ).

Proof. To see the uniqueness, we have only to recall the theorem of
identity, which asserts any two distinct coherent prime Ideals .# and %
satisfy Ass; (P:) N Assp,(P:) =¢ for any x| X|.

For each non-negative integer 2, we define the -set V, of all points x such
that there exists at least one prime ideal of depth % in Ass,,(.#,). We want
to show each Vi is an analytic subset of X. Obviously, Vi is analytic at a
point x& |2/ _#]. We take a point x|/ #|. By the above note, there
exists a neighborhood U of x and coherent prime Ideals .#; (1<i<s) satisfying
the conditions in Theorem 4.3 for the coherent Module . # | U over U. By the
uniqueness of the prime ideals associated with .# :, we can easily prove VN U
is the union of all |@/ . #;| with P;= Ass.(_#) of depth k. Consequently,
Vi is analytic at x in this case too. By definition, for any ye|./.#| any
irreducible component of Vi is an analytic set defined by some p< Ass, ( #y)
of depth % and conversely any p< Ass., (. #y) defines an irreducible component
of Viy if £=depth p. If we take the prime Ideal %, corresponding to each
irreducible component Vi, of each V, the family {.#.} satisfies the desired
condition. g.ed.

Remark. The above set Ass (.#) is always a locally finite family of
prime Ideals, that is, the family {|@/.P|; P e Ass ()} is a locally finite
family of closed subsets of |X|. For, each point x| X| has a neighborhood U
such that Ass |s(.# |U) is finite and therefore the number of elements .#'s

“in Ass/(. ) with @] PN U=¢ is finite.

5. The second theorem of identity. Using the results in § 4, we can

generalize Theorem 3.2 to arbitrary coherent Modules.

TueoreMm 5.1. Let & and _# be coherent sub-@-Modules of -+ over X.
If {x; A x2_4x} intersects the analytic subset V.: =|.L [ P.| of X for any
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P.c Ass (M), then it holds A 2. #.

Proof. The proof is similar to Theorem 3.2. Take a coherent sub-&-Modulé
of .. We consider the analytié subset V: = |0/ # : A#| of X. As in the
proof of Theorem 3.2, Lemma 2.4 shows any irreducible component of V, is
equal to an irreducible component of one of {V.,} for each ye V. Therefore,
V must be equal to the union of some of {V.} owing to the theorem of identity.
On the other hand, by the assumption there exists a point x. € V. with x. ¢V
for each ¢. Consequently, we conclude V=¢ and so & 2 7. ged.

In the previous paper [5], we studied the continuability of analytic sets in
a reduced complex space. To an analytic subset V of a reduced complex space
X there corresponds one and only one coherent Ideal -« : = (V) with rad
of = .of consisting of all germs of holomorphic functions which vanish on V.
We are interested in the study of the continuability of coherent Ideals without
the assumption rad =/ = .o/ or more generally coherent Modules. Theorem
5.1 gives us a condition for the uniqueness of continuability of coherent Modules
as follows (c.f. Corollary 8.2).

For convenience’ sake, we give

DeriniTiON 5.2. For a coherent sub-@-Module .# over X we shall say
A to be of lower dimension k in = at x if 1. dim,, # +: = min {dim O./p;
pe Ass, (A x)} =% and to be of lower dimension k£ on X if 1L.dim, # : = géllr}l
l.dim,, # =k, where we put l.dimz, (. AZ ) = o if Ass (A1) = ¢.

CoroLLARY 5.3. Let X be a complex space and X' be an open subset of | X|
with the property that any analytic set of dimension =k in X intersects X'. If
two coherent sub-C-Modules M and ¥ satisfy the conditions 1. dim, . # =k and
M= N on X', then it holds M 2 7.

Furthermore, if |.dim, # =k, M = N on X' implies M =¥ on X.

Proof. By the assumption, the irreducible analytic subset of X defined by
each element of Ass.(.#) is of dimension =% and therefore intersects X' by
the assumption. We can easily examine the assumption of Theorem 5. 1. q.e;d.

There are many well-known examples of complex spaces and their open
sets satisfying the condition in Corollary 5.3. Here we give two typical examples.

CoroLLARY 5.4. Let X be a complex space, V be an analytic subset of X and
M, N be coherent sub-O-Modules of .2 over X. If l.dim , A » and 1.dim ¥,
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are both larger than-dim.V for any x< V, then A = # on |X| =V implies
M= on{X|.

Indeed, any analytic set defined by .# € Ass,.(_#) cannot be contained in
V..

CoroLLARY 5.5. Let D be a bounded domain in C" and M, N be two
coherent sub-C-Modules of a coherent ©-Module £ over a neighborhood of D. If
l.dim,_# and 1.dim c ¥ are both positive and M = N in a suitable neighborhood
of the boundary of D, then we have _# = _# on D.

Proof. We know that there is no compact analytic subset of positive
dimension in C”. Any analytic set of pbsitive dimension in a neighborhood of
D has to intersect C" — D. Eventually, .# and .# satisfy all conditions in
Corollary 5.3. q.e.d.

The arguments used in the proof of Corollary 5.5 is applicable to a complex
space which admits a function satisfying maximum principle on each 2-

dimensional analytic set e.g. a *-strongly k-convex function (see [5] §2).

6. Isolated components of coherent Modules. Let .# be a coherent sub-
@-Module of . and S be a multiplicatively closed set of holomorphic functions.

We define a presheaf L//[f[\g] by the assignment of the set
MAISNU) : ={fe HU, ) : sfe HU, ) for a suitable s S}

to each open subset U of | X|. By this presheaf _A[S1, we obtain a subsheaf
AHIS] of .Z over X, whose stalk is .#.[S:] at each x| X|.

TrEOREM 6.1. #[S] is a coherent Module over X.

Proof. The problem is local. It suffices to show each x=|.Z/_#| has a
neighborhood U such that .#[S] is a coherent Module over U. To see this,
we take a neighborhood U of ¥ and coherent primary Modules .2; (1=i<s)
with the properties (i) ~ (iii) in Lemma 4.2 over U. For any y and any i, let
Qi i(») (1=I<ki(y)) be the primary component of 2;y. Now, we apply
Corollary 3.5 to each 2; and an arbitrarily fixed element of S. Easily, we see
a necessary and sufficient condition for SN H(U, .#;) % ¢ is that Sy Np; (y) * ¢
for any ! and any y€ U, or that S,Np;i(y)x¢ for a particular / and y€ U,

. where #; =rad (2; : ) and pv;,1=rad (Qi,; : -£y). Replacing indices suitably,

https://doi.org/10.1017/5S002776300002420X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002420X

114 HIROTAKA FUJIMOTO

we may assume SNH"U, P)=¢ for 1si<t and SNHNU, #;)x ¢ for
t+1<j<s. By (2.2), we conclude #[S1=.92:N-++N_2: on U, which is
coherent over U. This completes the proof. q.e.d.

Next, we generalize the notion of an isolated subset of Ass.(.#) to the
case of coherent Modules.

DeriniTiON 6.2. For a coherent sub-@-Module .# of ., we shall call a
subset 17 of Ass.(_#) an isolated set if any # < Ass (4 ) with L <=.# for
some %' < II is always contained in I7. '

Let I7 be an isolated subset of Ass.(.#). For any x=|X|, we consider
the set I7; of all prime ideals associated with the stalk .#; of each .# in IT.
Each 11, is also an isolated subset of Ass (A ). Indéed, each prime ideal
b€ Ass,,( A 1) is associated with only one .# € Ass,(_#) and this correspondence
is order-preserving. Taking an element p € Ass,, (£ ) with pSp' for some
p' & I, the coherent prime Ideal .#’ determined by p' includes the coherent
prime Ideal .# determined by p. By definition, y' € IT, implies ' I, <11

and hence p e IT,.

THEOREM 6.3. For an isolated subset IT of Assy(_ M) there exists a coherent
sub-@-Module AT of £ with the stalk AT 1x= A LIT:] for each x<|X|.
We shall call it the II-component of M .

Proof. As in the proof of Theorem 6.1, for an arbitrarily given point
xe |/ ]|, we take coherent primary Modules over a suitable neighborhood
U of x with the properties in Lemma 4.2. We see easily Ass, (2;) NIy =¢
for any y < U if it holds for at least one y = |.¥”/.2;|. After a suitable change
of indices we may assume Ass,,(.2;y) N Iy % ¢ for 1<i<t and Ass,,(2i) NIy =¢
for t+1<j<s. Since the former implies Assy,(.2iy) 17 for any y e |.2°/ 2|

and I7, is an isolated set, we have
L//z/y[”y] = Qly NN oQty-
Thus A#[0]: = 2,N -+ N2, is coherent over U. _qed.

CoroLLARY 6.4. Suppose that for a coherent sub-O-Module M of -2 and
each x| L] A\ My has no embedded component. Then A is uniquely rep-
resented as the intersection of a locally finite family { 2.} of primary sub-C-Modules
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of £ such that 2.2 N\ 2v and rad (2. : L) xrad(2:. * L) for =,

[£14

Proof. Any element % in Ass.(.#) defines an isolated subset {. %} of
Ass,(_#). Evidently, it holds

M= N ALA]

FEAssL(A)

where #Z[ %] denotes the {.#}-component of _#. It is easy to examine the
family {_A[.#]; P Ass,( )} satisfies all conditions in Corollary 6.4.
The uniqueness is a result of the uniqueness of a reduced primary decomposi-
tion of _# in .¥, for each x (see (2.1) and (2.3)). g.e.d.

Now we can prove the converse assertion of Corollary 3.5 for a special
case.

THEOREM 6.5. Suppose X is a holomorphically complete complex space. Then
a coherent sub-@-Module M of a coherent O-Module . over X is primary if aud
only if the H' (X, ©)-submodule H'(X, .#A) of H X, £) is primary.

The “only if ”-part is a result of Corollary 3.5. To see the “if’-part we
need the following Lemma, which is a simple generalization of O. Forster [6],
Lemma, p. 314.

LeMMA 6.6. Under the same situation in Theorem 6.5, if H'(X, #) is
primary, then an element fe H\X, ) with f&€ M » for some x| L[| M| is
contained in H'(X, M ).

Proof of Theorem 6.5. Let _# be a coherent primary @-Module such that
HY(X, .#) is primary. Take a minimal element .2 & Ass,(.#). The {#}-
component #[.#] is a coherent primary Module. To complete the proof, it
suffices to see A = A[FP]. Even if A % #[.#] we can easily find a point
sel|lL/ | with M= AL P]x. In view of Theorem 3.2 and Lemma 6.6,
we can assert HX(X, #)=HX, #[#]). Now, Theorem 6.5 is an immediate
consequence of Theorem A for a holomorphically complete space. q.e.d.

Remark. In case that X is holomor_phicall‘y complete, Corollary 6.4 above
is a special case of Theorem in [6] p. 328.

7. Continuity of order of coherent Ideals over a complex space. As an

application of the results in the previous sections, we can generalize Abhyankar’s
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theorem concerning the continuity of order on a complex space. For this
purpose, we. recall some properties of ideals in a commutative ring.

Let R be a commutative noetherian ring with identity.  For a prime ideal
of p is defined by the equation p'™: =

(n)

p in R the symbolic zn-th power p
P"Ry N R =p"[p].

Firstly we give

Lemma 7.1. If an ideal N in R has a reduced primary decomposition

A=pN e Nps
and each b; is prime, then we have
A'LPI=p" N - Nps™

for the isolated class P: = Assg(%A) ={p;, ..., bs}.

We shall denote U"[P] by U™ in the following.

Proof. As is easily seen, P is just equal to the class of all minimal
elements of Assg(A”). With both sides of the equation in question' associate
the same prime ideals p;, ..., ps. By (2.3), it suffices to show for each p; the
pi-components of both sides coincide with each other. This follows from the

equations
(A'CPDIp]=A"[pid = (A"Ry) NR= (ARy)"NR= (hiRy)"NR=p{" q.e.d.

Let % be an ideal in R. By definition, for an arbitrarily given prime
ideal p, the order ordp¥ of A at p is the largest » such that AR, Sp"R, in R,
where ordy =0 means A<Ep and ordyW = © means a*Y =0 for a suitable a<y.

Easily, we see

(7.2) If A=Q, then ordp¥ <ord,Q.

(7.3) If A has a primary decomposition Y =p; N + -« + Nps.
with prime ideals p;, then ordp%'” =# for any b;.

Now, we come back to the study of coherent Ideals over a complex space
X. For coherent Ideals we can apply all results in the previous sections with
S =0.

We consider the space 8(X): = . EL’J,“Spec( @,) or all irreducible germs of

locally analytic subsets of X. According to H. Cartan [3], we can define the
following canonical topology in 8(X). For an element pe 8(X), say =(p) =%
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for the canonical projection = : 8(X)—X, we choose a neighborhood U of x
and a coherent prime Ideal .# over U with #,=p. And we consider the set
(U, p) of all prime ideals associated with .#, for any y= U. As a fundamental
system of neighborhoods of p we adopt the above sets U, b) with a parameter
U. As is well known, 8(X) is a locally arcwiée connected and locally compact
Hausdorff space.

Take a coherent Ideal «/. For each x& |X|, .« defines an ideal -«/x of
C.. We can introduce the concept of the order ordp«/ of _«/ at b for each
pe8(X) by the equality ordp=/: = ordy«/x in @, where x: = n(p).

The following theorem is a generalization of Abhyankar’s Theorem ([1]
(11.3), p. 185).

THEOREM 7.4. For any coherent Ideal .«f ordy-sf is continuous on $(X).
For the proof, we need

LemMma 7.5. For a coherent ldeal of with rad of = ., we can define a
coherent Ideal '™ with the stalk (o), = (ol )'™ at each x| X]|.

Proof. This was proved by Kuhlmann ([9], Lemma 7, p. 401) for a special
case. Using our results, we can easily prove this for a general case. Indeed,
taking an isolated subset Ass;( /) of Ass,(.«/"), we put o™ = o/ "[Ass, (s )].
By Theorem 6.3 /'™ is coherent and by Lemma 7.1 .«/'" satisfies the desired

condition. q.e.d.

Proof of Theorem 7.4. The problem is local and each p = ¢(X) has a
neighborhood P such that P = uguAss@y(ﬂy) for a suitable neighborhood U
of x: =m(p) and a coherent prime Ideal .# with .#,=p. Therefore it suffices
to show ordp.=/ is constant on # above. Then, in view of Lemma 7.7, .#™
is a coherent Ideal and it is primary over U because of Ass,( . #'™) = { P},

Now let 7: =supi{n; of S P")< . The proof of Theorem 7.4 is
reduced to show ordy.=/ is constantly equal to #, on P For each nej
ordp-«f Zn, is evident by virtue of (7.2) and (7.3). On the other hand, applying
Corollary 3.3 to a coherent primary Ideal .#'” and using Lemma 7.1, we can
assert ., Sp™ and f,&p™ " for any pe P with n(p) =ye U.  Assume
ordpoly=ny+ 1 or coly+(Dy)p Sp™ (D), for some pe P with 7(p) =y. Then

rﬂ/y = d(y(@y )}) n _@y & D”°+1((Oy)p n @y = p(”°+l).
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This is a contradiction. We conclude ordp.«/ =7 on 2.
Similarly, it is easy to show ordp.« =« on P if ordpsf = © for some
pe L. q.e.d.

8. Remarks on divisors on a complex space. Finally, we give some remarks
on divisors on a reduced irreducible complex space.

By a non-negative divisor on a reduced irreducible complex space X of
dimension 7, we mean a free sum >,%.V. of (% —1)-dimensional irreducible
analytic subsets of X with non-negative integral coefficients such that the set
{V.: n %0} is a locally finite family of closed subsets of |X|. For an open
subset U of X we denote the set of all non-negative divisors on U by D" (D).
Taking another open set U’ ( € U), we can define the restriction mapping 7y :
DY (U) ->D"(U") by ruwAn V) = Sn( S Vu), where V. runs through all
irreducible components of V. N U’ and we put #.=0 if V.NU'=¢. If we call
two elements a= > % V. and 8= >\m.V. in D*(U) satisfying #.<m. for any
¢ to be a<pB, D*(U) is considered as a partially ordered set. Obviously, the
above 7yys is an order-reversing mapping.

According to Theorem 7.4, we can define the order of a coherent Ideal
./ over an open subset U of X for a coherent prime Ideal .# over U by
ords.«/ : = ordpsf, for an arbitrarily fixed pe"\EJU Assg, (Py) with z(p) =x.
To each non-zero coherent Ideal .« we assign an element ¢(.«) = ,Zord-’“’)
(/)+V in D*(U), where V runs through all irreducible analytic subsets of
dimension # — 1. On the other hand, there exists a canonical restriction mapping
rue- of coherent Ideals over U to U’. Obviously, ¢ is surjective. Indeed, an
element S)#n.V,€ D" (U) is the ¢-image of a coherent Ideal N & (V,)"?,

In case of a normal complex space, we have the more precise information.

TueoreMm 8.1. If X is a connected normal complex space of dimension n.
The above mapping ¢ gives a one-to-one ovder-reversing bijection between the class
of all non-zero coherent Ideals of of 1. dimypsd =n~1 and D' (X).

Proof. We have only to prove the injectivity of ¢. As is well known,
an ideal % of 1.dim A =# -1 in a normal ring is uniquely represented as the
intersection of symbolic powers of the prime ideals associated with %. Therefore,
if X is normal, any coherent primary Ideal of height 1 is equal to a symbolic
power " of a coherent prime Ideal .# and any coherent Ideal of lower
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dimension 7 —1 is uniquely represented as the intersection of such primary
Ideals.  This shows two coherent Ideals .« and .8 with ¢(.o)=¢(.B)
coincide with each other. q.ed.

CoroLLARY 8.2. Let X be a connected normal complex space of pure-dimension
n and X' be its open subset. Suppose that any purely (n— 1)-dimensional analytic
subset of X' is uniquely continuable to the total space X. Then any coherent Ideal
of with l.dimg. o/ =n—1 over X' is uniquely continuable to X.

Proof. By A(X) denoting the class of all coherent Ideals of lower dimension

n—1, we have a commutative diagram

¢
A(X) —D*(X) - {0}
I lr
¢
A(X)—D"(X") —{0}.
Since by the assumption 7yy : D¥(X)->D"(X") is bijective and by Theorem 8.1

¢’s are also bijective, 7xx- : A(X)->A(X") is bijective. This asserts Corollary

7.7. q.ed.

In case of a complex manifold, a coherent Ideal .« of lower dimension
7 — 1 is nothing but a holomorphic Cousin-II distribution. While, any Cousin-1I
distribution is represented as a quotient of two holomorphic Cousin-II distribu-
tions. The study of the continuability of Cousin-II distribution is reduced to

that of coherent Ideals of lower dimension » — 1.

CoroLrary 8.3. Under the same assumption in Corollary 8.2, if we assume,
Sfurthermore, X is a complex manifold, then any Cousin-II distribution in X' is

uniquely continuable to X.

Several kinds of conditions for the continuability of analytic subsets of
codimension 1 were given in [5], [11] and [12] etc.. Immediately, we have
the same conditions for the continuability of coherent Ideals and Cousin-II

distributions.
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