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Compact Operators in Regular LCQ
Groups
Mehrdad Kalantar

Abstract. We show that a regular locally compact quantum group G is discrete if and only if L∞(G)
contains non-zero compact operators on L2(G). As a corollary we classify all discrete quantum groups
among regular locally compact quantum groups G where L1(G) has the Radon–Nikodym property.

It is known that for a locally compact group G, the following are equivalent:

(i) G is discrete,
(ii) L∞(G) contains a compact operator on L2(G),
(iii) L1(G) has the Radon–Nikodym property,
(iv) the von Neumann algebra L∞(G) is purely atomic (cf. [2] and [6]).

In the general setting of locally compact quantum groups G, it is known that (i)
implies other properties: (iii) and (iv) are equivalent, and there are examples of G
that satisfy (iii), but not (i) (cf. [6] and [7]).

In this paper we investigate the relations between (ii) and other above properties.
We prove that in the case of regular locally compact quantum groups, (ii) implies (i),
whence (iii) and (iv). Moreover we classify regular locally compact quantum groups
that satisfy (iv), and (or but not) (ii).

First, let us recall some definitions and preliminary results that we will be using in
this paper. For more details on locally compact quantum groups we refer the reader
to [4].

A locally compact quantum group G is a quadruple
(
L∞(G),Γ, ϕ, ψ

)
, where

L∞(G) is a von Neumann algebra, Γ : L∞(G)→ L∞(G)⊗̄L∞(G) is a co-associative
co-multiplication, i.e., a unital injective ∗-homomorphism, satisfying

(Γ⊗ ι)Γ = (ι⊗ Γ)Γ,

and ϕ and ψ are (normal faithful semi-finite) left and right invariant weights on
L∞(G), that is

ϕ
(

(ω ⊗ ι)Γ(x)
)

= ϕ(x)ω(1)

for all ω ∈ L∞(G)+
∗ and x ∈ L∞(G)+ where ϕ(x) <∞, and

ψ
(

(ι⊗ ω)Γ(x)
)

= ψ(x)ω(1)

for all ω ∈ L∞(G)+
∗ and x ∈ L∞(G)+ where ψ(x) < ∞. We denote by L2(G)

the GNS Hilbert space of ϕ. Then one obtains two distinguished unitary operators
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W ∈ L∞(G)⊗B
(
L2(G)

)
and V ∈ B

(
L2(G)

)
⊗L∞(G), called the left and right

fundamental unitaries, which satisfy the pentagonal relation, and such that the co-
multiplication Γ on L∞(G) can be expressed as

Γ(x) = W ∗(1⊗ x)W = V (x ⊗ 1)V ∗, x ∈ L∞(G).

The reduced quantum group C∗-algebra,

{
(ι⊗ ω)W : ω ∈ B

(
L2(G)

)
∗

}‖·‖
=
{

(ω ⊗ ι)V : ω ∈ B
(
L2(G)

)
∗

}‖·‖
,

is denoted by C0(G) and is a weak∗ dense C∗-subalgebra of L∞(G). Let M(G) denote
the dual space C0(G)∗. There exists a completely contractive multiplication on M(G)
given by the convolution

? : M(G)⊗̂M(G) 3 µ⊗ν 7−→ µ ? ν = µ(ι⊗ ν)Γ = ν(µ⊗ ι)Γ ∈M(G)

such thatM(G) containsL1(G) := L∞(G)∗ as a norm closed two-sided ideal. There-
fore, for each µ ∈M(G), we obtain a pair of completely bounded maps

f 7−→ µ ? f and f 7−→ f ? µ

on L1(G) through the left and right convolution products of M(G). The adjoint
maps give the convolution actions x 7→ µ ? x and x 7→ x ? µ that are normal com-
pletely bounded maps on L∞(G) (note that our notation for the convolution actions
is opposite to the more commonly used (e.g., [3]), where µ ? x is denoted by x ? µ).

For a Hilbert space H, we denote by B(H), and B0(H) the spaces of all bounded
operators, and compact operators on H, respectively.

A locally compact quantum group G is said to be regular if the norm-closed linear
span of

{
(ι⊗ω)(ΣV ) : ω ∈ B

(
L2(G)

)
∗

}
equals B0

(
L2(G)

)
, where Σ denotes the

flip operator on L2(G) ⊗ L2(G). All Kac algebras, as well as discrete and compact
quantum groups are regular [1].

It follows from [3, Theorem 3.1] that for a ∈ B0

(
L2(G)

)
and ω ∈ B

(
L2(G)

)
∗,

we have

(ι⊗ ω)
(

W ∗(1⊗ a)W
)
∈ C0(G) and (ω ⊗ ι)

(
V (a⊗ 1)V ∗

)
∈ C0(G),

and also it is proved in [3, Corollary 3.6] that if G is regular, then

(ω⊗ ι)
(

W ∗(1⊗a)W
)
∈ B0

(
L2(G)

)
and (ι⊗ω)

(
V (a⊗1)V ∗

)
∈ B0

(
L2(G)

)
.

Therefore, if G is regular and a ∈ L∞(G) ∩B0

(
L2(G)

)
, then

(0.1) f ? a, a ? f ∈ C0(G) ∩B0

(
L2(G)

)
for all f ∈ L1(G).

The following is the main result of the paper.
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Theorem 1 Let G be a regular locally compact quantum group. If

L∞(G) ∩B0

(
L2(G)

)
6= {0},

then G is discrete.

Note that the converse of this theorem is also true; in fact, it follows from the
structure theory of discrete quantum groups (cf. [7]).

We break down the proof of the theorem into few lemmas that follow.

Lemma 2 Let 0 ≤ µ ∈ M(G) be non-zero. Then the convolution map x 7→ x ? µ is
faithful on L∞(G)+.

Proof Let ψ be the right Haar weight of G; then we have

ψ(x ? µ) = ψ(x ? µ)ω(1) = ψ
(

(ι⊗ ω)Γ(x ? µ)
)

= ψ
((
ι⊗ (ω ? µ)

)
Γ(x)

)
= ψ(x)ω(1)‖µ‖

for all x ∈ L∞(G)+ and ω ∈ L1(G)
+

, and since ψ is faithful, the lemma follows.

Lemma 3 The von Neumann algebra L∞(G) is purely atomic.

Proof Since L∞(G) ∩ B0

(
L2(G)

)
6= {0}, it follows that L∞(G) contains a non-

zero minimal projection. Suppose that {eα} is a maximal family of mutually orthog-
onal minimal projections in L∞(G). Set e0 = 1 −

∑
α eα, and let a ∈ L∞(G) ∩

B0

(
L2(G)

)
be non-zero and positive. Moreover, suppose that ω0 ∈ L1(G)

+
is such

that supp(ω0) ≤ e0. Then, since e0 does not dominate any non-zero minimal projec-
tion, it follows that e0

(
L∞(G) ∩ B0

(
L2(G)

))
e0 = 0, and therefore using (0.1) we

obtain
〈 f , a ? ω0〉 = 〈ω0, f ? a〉 = 〈ω0, e0( f ? a)e0〉 = 0

for all f ∈ L1(G), and therefore a?ω0 = 0. So, it follows from Lemma 2 that ω0 = 0.
Hence, e0 = 0 and L∞(G) is purely atomic.

So, by the previous lemma, we conclude that L∞(G) is a direct sum of type I
factors:

L∞(G) = l∞ −
⊕
i∈I

B(Hi).

Then L2(G), being the (unique) standard Hilbert space of L∞(G), can be identified
with the Hilbert space l2−⊕i∈IHS(Hi), where HS(Hi) is the Hilbert–Schmidt space
over Hi . Moreover, from the uniqueness of the standard representation, it follows
that the representation of every summand B(Hi) on L2(G) is equivalent to their
representation on Hi⊗Hi , mapping a ∈ B(Hi) to a⊗1 ∈ B(Hi⊗Hi). In particular,
if a ∈ B(Hi) is compact on L2(G), then either a = 0 or Hi is finite dimensional.

We denote by 1 j ∈
⊕

i∈I B(Hi) the projection onto H j . Then 1 j is in the center
of
⊕

i∈I B(Hi), and x =
∑

i 1ix for all x ∈
⊕

i∈I B(Hi).

If a ∈ L∞(G) ∩ B0

(
L2(G)

)
, then 1 ja is a compact operator on L2(G). Thus, if

1 ja 6= 0, the Hilbert space H j is finite dimensional.

https://doi.org/10.4153/CMB-2013-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-003-5


Compact Operators in Regular LCQ Groups 549

Lemma 4 For each j ∈ I there exists a ∈ L∞(G) ∩ B0

(
L2(G)

)
such that 1 ja 6= 0.

In particular, dim(H j) <∞ for all j ∈ I.

Proof Let 0 ≤ a ∈ L∞(G) ∩ B0

(
L2(G)

)
be non-zero. We show that there exists

f ∈ L1(G) such that 1 j(a ? f ) 6= 0, and this yields the lemma by (0.1). So, suppose
to the contrary that 1 j(a ? f ) = 0 for all f ∈ L1(G), and choose 0 ≤ ω ∈ L1(G)
such that ω(1 j) 6= 0. Then we get

〈 f , (1 jω) ? a〉 = 〈ω, 1 j(a ? f )〉 = 0

for all f ∈ L1(G), which implies that (1 jω)?a = 0. But, by Lemma 2 this contradicts
our assumptions.

The proof of the following lemma is standard.

Lemma 5 If H and K are Hilbert spaces, and Φ : B(H) → B(K) is an injective
∗-homomorphism, then Φ(x) ∈ B0(K) implies x ∈ B0(H).

Lemma 6 We have

c0 −
⊕
i∈I

B0(Hi) = L∞(G) ∩B0

(
L2(G)

)
= C0(G).

Proof First equality follows from Lemmas 4 and 5. We first show that the first two
spaces are included in C0(G). Suppose that φ ∈ L∞(G)∗ is zero on C0(G). Denote
by φn and φs the normal and singular parts of φ, respectively. Then, by (0.1) we have
φ(a? f ) = 0 for all a ∈ L∞(G)∩B0

(
L2(G)

)
and f ∈ L1(G), and since φs is zero on

any compact operator, it follows that 〈φn, a ? f 〉 = 0. This implies that φn ? a = 0 for
all a ∈ L∞(G) ∩ B0

(
L2(G)

)
= c0 − ⊕i∈IB(Hi). Since the latter is weak* dense in

L∞(G) and convolution map x 7→ φn?x is normal on L∞(G), it follows that φn = 0.
Hence, φ vanishes on L∞(G) ∩B0

(
L2(G)

)
, and therefore the inclusion follows.

For the reverse inclusion, suppose that µ ∈ M(G) is zero on c0 −
⊕

i∈I B(Hi) =

L∞(G) ∩ B0

(
L2(G)

)
⊆ C0(G), then similar to the above we get µ ? a = 0 for all

a ∈ c0 −
⊕

i∈I B(Hi), and since convolution action by µ is normal on L∞(G), we
get µ = 0. This completes the proof.

Proof of Theorem 1 From Lemma 6 we have C0(G) = c0 −
⊕

i B(Hi) is an ideal in
C0(G)∗∗ = l∞ −

⊕
i B(Hi). Hence G is discrete by [5, Theorem 4.4].

Corollary 7 Let G be a regular locally compact quantum group such that

L∞(G) = l∞ −
⊕
i∈I

B(Hi).

Then the following are equivalent:

(i) dim(Hi) <∞ for all i ∈ I;
(ii) dim(Hi) <∞ for some i ∈ I;
(iii) dim(Hi) = 1 for some i ∈ I;
(iv) G is discrete.
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Proof (i)⇒ (ii) is trivial. From the structure theory of discrete quantum groups [7],
(iv) implies the other statements. The implication (iii) ⇒ (iv) was proved in [5,
Proposition 4.1] (without the regularity condition). (ii) implies that L∞(G) ∩
B0

(
L2(G)

)
6= {0}, and hence by Theorem 1 yields (iv).

Remark By [6, Theorem 3.5], L1(G) has the Radon–Nikodym property (RNP) if
and only if the von Neumann algebra L∞(G) is purely atomic, i.e., an l∞-direct sum
of type I factors. So, under the regularity condition, Corollary 7 gives a distinction
between discreteness of G and the RNP of L1(G), based on the dimension of direct
summands of L∞(G).
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