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Abstract We prove the following.

(1) The inequalities
(

2 − 1
Γ (x)

)a
+

(
2 − 1

Γ (1/x)

)a
� 2 �

(
2 − 1

Γ (x)

)b
+

(
2 − 1

Γ (1/x)

)b

hold for all x > 0 if and only if

−1.204 64 . . . = 2 +
1
γ

− 1
6

(
π

γ

)2
� a � 0 � b.

(2) For all real numbers x ∈ (0, 1] we have

xα � 1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
� xβ ,

with the best possible constants

α = 1.321 76 . . . and β = 0.

These theorems extend and complement a result of Gautschi (from 1974), who proved that for all x > 0
the harmonic mean of Γ (x) and Γ (1/x) is greater than or equal to 1.

Keywords: gamma function; inequalities; mean values

AMS 2000 Mathematics subject classification: Primary 33B15; 26D15

1. Introduction

In 1974, Gautschi [6] published the following interesting inequality for Euler’s gamma
function:

Γ (x) =
∫ ∞

0
e−ttx−1 dt (x > 0).

For all x > 0 we have
1

Γ (x)
+

1
Γ (1/x)

� 2. (1.1)

Inequality (1.1) states that the harmonic mean of Γ (x) and Γ (1/x) is greater than or
equal to 1. This result has found the attention of several mathematicians, who proved
various extensions, refinements and companions of (1.1).
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590 H. Alzer

The power mean of order t ∈ R of the positive real numbers x and y is defined by

Mt(x, y) = ( 1
2 (xt + yt))1/t (t �= 0), M0(x, y) =

√
xy.

The most important properties of these and other mean values are given in the mono-
graph [5].

Using the notation of power means, we can write (1.1) as

1 � M−1(Γ (x), Γ (1/x)) (x > 0). (1.2)

An extension of (1.2) can be found in [3]. The inequality

1 � Mt(Γ (x), Γ (1/x)) (1.3)

holds for all x > 0 if and only if t � (1/γ) − (π2/(6γ2)) = −3.204 64 . . .. Here, γ denotes
Euler’s constant.

Since the power mean is increasing with respect to its order (see [5, p. 159]), we obtain
from (1.2)

1 � Γ (x)Γ (1/x) (x > 0), (1.4)

which was also proved by Kairies [10]. Laforgia and Sismondi [11] provided a counterpart
to (1.4):

1
Γ (1 + λ)

�
[

Γ (1 + x)Γ (1 + 1/x)
Γ (λ + x)Γ (λ + 1/x)

]1/2

(x > 0; 0 < λ < 1). (1.5)

If λ > 1, then the reversed inequality is valid. The following double inequality was
recently published by Giordano and Laforgia [9]:

1
2

� Γ (1 + x)Γ (1 + 1/x)
Γ (1 + x + 1/x)

< 1 (x > 0). (1.6)

In view of (1.1) it is tempting to conjecture that the inequality

n∑
k=1

1
Γ (xk)

� n (1.7)

holds for all positive real numbers xk (k = 1, . . . , n) satisfying
∏n

k=1 xk = 1. This problem
was attacked by Gautschi [7], who proved that if n � 9, then (1.7) is in general not true.
Furthermore, he gave ‘numerical evidence’ [7, p. 282] that (1.7) is valid for all n � 8.
But a proof for this conjecture is known only for n = 2.

Lucht [12] established a generalization of (1.4). Let c∗ = 0.461 63 . . . be the only posi-
tive solution of c∗ψ(c∗) = −1, where ψ = Γ ′/Γ denotes the logarithmic derivative of the
gamma function. Then we have for all positive real numbers xk and pk (k = 1, . . . , n)
with

∑n
k=1 pk = 1 and

∏n
k=1 xpk

k � c∗:

Γ

( n∏
k=1

xpk

k

)
�

n∏
k=1

(Γ (xk))pk .
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On a gamma function inequality of Gautschi 591

A survey on gamma function inequalities and a detailed list of references on this subject
can be found in [8, § 5].

In this paper we continue the study of inequalities involving Γ (x) and Γ (1/x). In § 3
we determine all parameters a and b such that the double inequality

(
2 − 1

Γ (x)

)a

+
(

2 − 1
Γ (1/x)

)a

� 2 �
(

2 − 1
Γ (x)

)b

+
(

2 − 1
Γ (1/x)

)b

(1.8)

holds for all x > 0. We remark that the right-hand side of (1.8) with b = 1 is equivalent
to inequality (1.1).

Let

G(x) =
1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
.

We have G(1) = 1 and limx→0 G(x) = 0, which implies that the constant bounds in

0 � G(x) � 1 (0 < x � 1) (1.9)

cannot be improved. Numerous computer calculations suggested that the function G can
be approximated on the unit interval by powers of x. More precisely, these experiments
led to the conjecture that for all x ∈ (0, 1] the value x4/3 is a lower bound for G(x). In § 3
we prove that this is true. We determine the smallest number α (that is, we present
exactly five places of decimals of the numerical value of α) and we provide the largest
number β such that the inequalities

xα � G(x) � xβ (1.10)

are valid for all x ∈ (0, 1].
The numerical values given in §§ 2 and 3 have been found by computer computations

carried out by Maple V, release 5.1.

2. Lemmas

In this section we collect several lemmas that we need to prove our main results. Through-
out, we denote by c = 1.461 63 . . . the only positive zero of ψ. Furthermore, let r = 0.14
and s = 0.215.

Lemma 2.1. For all integers n � 1 and for all real numbers x > 0 we have

(−1)n+1ψ(n)(x) = n!
∞∑

k=0

1
(x + k)n+1 . (2.1)

The series representation (2.1) is given in [1, Equation 6.4.10].

Lemma 2.2. The function δ(x) = xψ(x) is decreasing on (0, c0] and increasing on
[c0, ∞), where c0 = 0.216 09 . . . is the unique positive root of ψ(x) + xψ′(x) = 0. Fur-
thermore, δ is convex on (0, ∞).
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A proof of Lemma 2.2 is given in [2, Theorem 4], [7, Proposition 1] and [12, Satz 1].
The following two lemmas are proved in [4, Lemmas 1 and 2].

Lemma 2.3. Let n � 1 be an integer. The function φn(x) = xψ(n+1)(x)/ψ(n)(x) is
increasing on (0, ∞).

Lemma 2.4. Let θt,n(x) = xt|ψ(n)(x)|, where t is a real number and n � 1 is an
integer.

(i) If t � n, then θt,n is decreasing on (0, ∞).

(ii) If t � n + 1, then θt,n is increasing on (0, ∞).

Lemma 2.5. Let λ(x) = xψ′(x)/ψ(x).

(i) λ is decreasing on [r, s] and on (c,∞).

(ii) λ is decreasing and concave on (1/c, c).

Proof. Part (ii) is proved in [3, Lemma 2]. To establish part (i) we define

λ1(x) = 1 + φ1(x) − θ2,1(x)
δ(x)

,

where δ, φ1, θ2,1 are given in Lemmas 2.2–2.4. Since δ is negative on [r, s], we get, for
x ∈ [r, s],

λ1(x) � 1 + φ1(r) − θ2,1(r)
δ(s)

= 0.017 . . . .

From ψ < 0 < ψ′ on (0, c), we conclude that

λ′(x) =
ψ′(x)
ψ(x)

λ1(x) < 0 for x ∈ [r, s].

Let x > c. We have

λ1(x) = 1 + φ1(x) − θ1,1(x)
ψ(x)

.

The function φ1 is increasing on (c,∞), whereas θ1,1 and 1/ψ are decreasing and positive
on (c,∞). This implies that λ1 is increasing on (c,∞). The limit relations

lim
x→∞

xψ′(x) = − lim
x→∞

xψ′′(x)
ψ′(x)

= 1, lim
x→∞

xψ′(x)
ψ(x)

= 0

(see [1, pp. 259, 260]) yield
lim

x→∞
λ1(x) = 0.

Hence, λ1(x) < 0 for x > c. Since ψ and ψ′ are positive on (c,∞), we obtain λ′(x) < 0
for x > c. �

Lemma 2.6. The function µ(x) = xψ(x)/[2Γ (x) − 1] is strictly increasing on [1, c)
and strictly convex on (1/c, c).
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On a gamma function inequality of Gautschi 593

Proof. Let δ and λ be the functions defined in Lemmas 2.2 and 2.5. Since −Γ ′ and
−δ are positive and decreasing on [1, c) we obtain

2Γ ′(x)δ(x) � 2Γ ′(1)δ(1) = 0.666 . . . (1 � x < c). (2.2)

The function χ(x) = 2Γ (x) − 1 is positive and decreasing on (0, c]. Furthermore, δ′ is
increasing and non-negative on [1, c). Thus, we get

δ′(x)χ(x) � δ′(1)χ(c) = 0.823 . . . (1 � x < c). (2.3)

Using (2.2) and (2.3) we obtain

µ′(x)(χ(x))2 = δ′(x)χ(x) − 2Γ ′(x)δ(x) � 0.15 for x ∈ [1, c).

We have

µ′′(x)(χ(x))2 = [2ψ′(x) + xψ′′(x)]χ(x) − 2Λ(x)(ψ(x))2Γ (x), (2.4)

where
Λ(x) = 2 + 3λ(x) − δ(x)ξ(x) and ξ(x) = 1 +

1
Γ (x) − 1

2

.

Applying (2.1) we get

2ψ′(x) + xψ′′(x) = 2
∞∑

k=1

k

(x + k)3
> 0 for x > 0. (2.5)

Since ξ is positive and increasing on (0, c), we obtain from Lemmas 2.2 and 2.5 for
1/c � a � x < b � c:

Λ(x) � 2 + 3λ(a) − δ(a)ξ(b) = Ω(a, b), say.

We have
Ω(1/c, 1) = −0.168 . . . and Ω(1, c) = −4.475 . . . .

This implies
Λ(x) < 0 for x ∈ (1/c, c). (2.6)

From (2.4)–(2.6) we conclude that µ′′ is positive on (1/c, c). �

Lemma 2.7. The function ν(x) = ψ′(x)/ψ(x) is increasing on [r, s].

Proof. Let φ1 and λ be defined as in Lemmas 2.3 and 2.5. Then we have

xψ(x)
ψ′(x)

ν′(x) = φ1(x) − λ(x) = ν1(x), say.

Since ν1 is increasing on [r, s], we get

ν1(x) � ν1(s) = −0.905 . . . for x ∈ [r, s].

This implies that ν′ is positive on [r, s]. �
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Lemma 2.8. The function ρ(x) = ψ′′(x)/(ψ(x))2 is increasing on [r, s].

Proof. If φ2 and λ are the functions given in Lemmas 2.3 and 2.5, then we get

x(ψ(x))2

ψ′′(x)
ρ′(x) = φ2(x) − 2λ(x) = ρ1(x), say.

Since
ρ1(x) � ρ1(s) = −0.983 . . . for x ∈ [r, s],

we conclude that ρ′ is positive on [r, s]. �

Lemma 2.9. The function ω(x) = [(ψ(x))2 − ψ′(x)]/Γ (x) is decreasing on [r, s].

Proof. Let ν and ρ be the functions defined in Lemmas 2.7 and 2.8. We have

Γ (x)
(ψ(x))2

ω′(x) = 3ν(x) − ρ(x) − ψ(x) = ω1(x), say.

Let r � a � x � b � s. Then we obtain

ω1(x) � 3ν(b) − ρ(a) − ψ(a) = ω2(a, b), say.

The numerical values

ω2(0.140, 0.143) = −0.03 . . . , ω2(0.143, 0.146)= −0.06 . . . ,

ω2(0.146, 0.149) = −0.08 . . . , ω2(0.149, 0.152)= −0.11 . . . ,

ω2(0.152, 0.156) = −0.01 . . . , ω2(0.156, 0.160)= −0.05 . . . ,

ω2(0.160, 0.164) = −0.08 . . . , ω2(0.164, 0.169)= −0.02 . . . ,

ω2(0.169, 0.174) = −0.06 . . . , ω2(0.174, 0.180)= −0.01 . . . ,

ω2(0.180, 0.186) = −0.07 . . . , ω2(0.186, 0.193)= −0.04 . . . ,

ω2(0.193, 0.201) = −0.03 . . . , ω2(0.201, 0.210)= −0.03 . . . ,

ω2(0.210, 0.215) = −0.34 . . .

reveal that ω1(x) < 0 for x ∈ [r, s]. This implies that ω′ is also negative on [r, s]. �

Lemma 2.10. The function σ(x) = x3/Γ (x) is decreasing on [1/s, 1/r].

Proof. An application of Lemma 2.2 yields, for x ∈ [1/s, 1/r],

x

σ(x)
σ′(x) = 3 − δ(x) � 3 − δ(1/s) = −3.631 . . . .

Thus, σ′ is negative on [1/s, 1/r]. �

Lemma 2.11. The function τ(x) = x(ψ(x))2−2ψ(x)−xψ′(x) is positive and increasing
on [1/s, 1/r].
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On a gamma function inequality of Gautschi 595

Proof. Let
τ1(x) = δ(x) − λ(x) − 2,

where δ and λ are defined in Lemmas 2.2 and 2.5. Then we conclude that τ1 is increasing
on [1/s, 1/r] with τ1(1/s) = 3.849 . . . . The representation τ = ψτ1 reveals that τ is the
product of two functions, which are increasing and positive on [1/s, 1/r]. �

3. Main results

We are now in a position to prove our main results. First, we present all real numbers a

and b such that (1.8) is valid for all x > 0.

Theorem 3.1. Let a and b be real numbers. The inequalities

(
2 − 1

Γ (x)

)a

+
(

2 − 1
Γ (1/x)

)a

� 2 �
(

2 − 1
Γ (x)

)b

+
(

2 − 1
Γ (1/x)

)b

(3.1)

hold for all positive real numbers x if and only if

−1.204 64 . . . = 2 +
1
γ

− 1
6

(
π

γ

)2

� a � 0 � b.

Proof. Let ab �= 0. First, we assume that (3.1) is valid for all x > 0. If x tends to ∞,
then we get 2a+1 � 2 � 2b+1, which implies a < 0 < b. Furthermore, we have, for x > 0,

fa(x) = 2 −
(

2 − 1
Γ (x)

)a

−
(

2 − 1
Γ (1/x)

)a

� 0.

Since fa(1) = f ′
a(1) = 0, we obtain

f ′′
a (1) = − 1

3a[6γ2a + π2 − 6γ − 12γ2] � 0.

This leads to

a � 2 +
1
γ

− 1
6

(
π

γ

)2

.

Let u(x) = 2 − 1/Γ (x), v(x) = u(1/x) and a0 = 2 + (1/γ) − π2/(6γ2). We prove that the
inequality

1 < Ma0(u(x), v(x)) (3.2)

is valid for 0 < x �= 1. Let a0 � a < 0 < b. Using the monotonicity of the power mean
we obtain, from (3.2),

1 < Ma(u(x), v(x)) � Mb(u(x), v(x)) (0 < x �= 1).

This leads to (3.1) with ‘<’ instead of ‘�’.
We show that the function

g(x) = (u(x))a0 + (v(x))a0
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is strictly decreasing on [1, ∞). Then we have

g(x) < g(1) = 2 (x > 1),

so that the identity g(x) = g(1/x) yields g(x) < 2 for 0 < x �= 1. This proves (3.2).
Since u and v are strictly increasing on [c,∞) we conclude that g is strictly decreasing

on [c,∞). It remains to show that g is also strictly decreasing on (1, c). Let x ∈ (1, c). A
simple calculation yields that g′(x) < 0 is equivalent to h(x) < 0, where

h(x) = (a0 − 1)[log(u(x)) − log(v(x))] − log(v′(x)) + log(−u′(x)).

Next, we establish that h is strictly decreasing on (1, c). Differentiation gives

xh′(x) = (a0 − 1)[µ(x) + µ(1/x)] + λ(x) + λ(1/x) − [δ(x) + δ(1/x)] + 2, (3.3)

where δ, λ and µ are defined in Lemmas 2.2, 2.5 and 2.6. We have 1/c < 1/x < x < c,
so that the concavity of −δ, λ and −µ leads to

−[δ(x) + δ(1/x)] � −2δ( 1
2 (x + 1/x)), (3.4)

λ(x) + λ(1/x) � 2λ( 1
2 (x + 1/x)), (3.5)

−[µ(x) + µ(1/x)] � −2µ( 1
2 (x + 1/x)). (3.6)

From (3.3)–(3.6) we get

1
2xh′(x) � (a0 − 1)µ( 1

2 (x + 1/x)) + λ( 1
2 (x + 1/x)) − δ( 1

2 (x + 1/x)) + 1. (3.7)

We have 1 < 1
2 (x + 1/x) < c. The monotonicity of δ, λ, µ and ψ(1) = −γ, ψ′(1) = π2/6

yield

1
2xh′(x) < (a0 − 1)µ(1) + λ(1) − δ(1) + 1 = (a0 − 1)ψ(1) + ψ′(1)/ψ(1) − ψ(1) + 1 = 0.

Hence, h is strictly decreasing on (1, c), which implies h(x) < h(1) = 0 for x ∈ (1, c).
Thus g is strictly decreasing on (1, c). This completes the proof of Theorem 3.1. �

Remark 3.2. The proof of Theorem 3.1 reveals that if ab �= 0, then the sign of equality
holds in (3.1) if and only if x = 1.

Remark 3.3. Let a0 = 2 + (1/γ) − π2/(6γ2), a1 = a0 − 2 and u(x) = 2 − 1/Γ (x).
From (3.2) and (1.3) we obtain the power mean inequalities

1 � Ma0(u(x), u(1/x)) (x > 0) (3.8)

and

1 � Ma1(Γ (x), Γ (1/x)) (x > 0). (3.9)

The function
D(x) = Ma1(Γ (x), Γ (1/x)) − Ma0(u(x), u(1/x))

is positive for all sufficiently small x and negative for all x, which are sufficiently close
to 1. Hence, (3.8) and (3.9) do not imply each other.
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Our second theorem provides the smallest constant α and the largest constant β in
(1.10). In particular, we obtain a refinement of the left-hand side of (1.9).

Theorem 3.4. For all real numbers x ∈ (0, 1] we have

xα � 1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
� xβ , (3.10)

with the best possible constants

α = 1.321 76 . . . and β = 0.

More precisely, α satisfies the estimates 1.321 767 � α � 1.321 769.

Proof. Let α0 = 1.321 769. First, we prove

xα0 � 1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
for x ∈ (0, 1]. (3.11)

We consider four cases.

Case 1 (x ∈ (0, 0.14]). Let

f(x) = log(Γ (x)) + α0 log(x) + log(2).

Applying Lemma 2.2 we get

xf ′(x) = δ(x) + α0 � δ(0.14) + α0 = 0.270 . . . ,

which implies
f(x) � f(0.14) = −0.005 . . . .

This leads to

xα0 <
1

2Γ (x)
<

1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
.

Case 2 (x ∈ [0.14, 0.215]). Let r = 0.14 and s = 0.215, and

g(x) =
1

Γ (x)
+

1
Γ (1/x)

− 2xα0 .

We prove that g is strictly convex on [r, s]. Differentiation gives

g′′(x) = ω(x) + σ(1/x)τ(1/x) + κ(x),

where ω, σ, τ are defined in Lemmas 2.9–2.11, and

κ(x) = 2α0(1 − α0)xα0−2.

Let r � a � x � b � s. The monotonicity of ω, σ, τ and κ leads to

g′′(x) � ω(b) + σ(1/a)τ(1/b) + κ(a) = g1(a, b), say.
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Since
g1(r, 0.16) = 2.930 . . . and g1(0.16, s) = 4.615 . . . ,

we conclude that g′′ is positive on [r, s], so that g′ is strictly increasing on [r, s]. Let
y1 = 0.157 620 and y2 = 0.157 629. We have g′(y1) < 0 < g′(y2). This implies that there
exists a number x∗ ∈ (y1, y2) such that g′ is negative on [r, x∗) and positive on (x∗, s].
Hence,

g(x) � g(x∗) for all x ∈ [r, s]. (3.12)

The convexity of g in combination with Taylor’s Theorem yields

g(x∗) � g(y2) + (x∗ − y2)g′(y2) � g(y2) + (y1 − y2)g′(y2) = 0.000 000 61 . . . . (3.13)

From (3.12) and (3.13) we conclude that g is positive on [r, s].

Case 3 (x ∈ [0.215, 0.42]). Let

h(x) =
1

Γ (x)
− 2xα0 .

Differentiation yields

−Γ (x)h′(x) = ψ(x) + 2α0x
α0−1Γ (x) = u(x), say.

If x ∈ [0.215, 0.29], then we get

u(x) � ψ(0.215) + 2α0(0.215)α0−1Γ (0.29) = 0.076 . . . .

Thus h is decreasing and we obtain

h(x) +
1

Γ (1/x)
� h(0.29) +

1
Γ (1/0.215)

= 0.002 . . . .

If x ∈ [0.29, 0.42], then

u(x) � ψ(0.29) + 2α0(0.29)α0−1Γ (0.42) = 0.117 . . . .

This implies

h(x) +
1

Γ (1/x)
� h(0.42) +

1
Γ (1/0.29)

= 0.156 . . . .

Case 4 (x ∈ [0.42, 1]). We define

v(x) = log(Γ (x)) + log(Γ (1/x)) + 2α0 log(x).

Applying Lemma 2.2 we obtain

xv′(x) = δ(x) − δ(1/x) + 2α0 � δ(0.42) − δ(1/0.42) + 2α0 = 0.095 . . . .

This implies
v(x) � v(1) = 0. (3.14)
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Inequality (3.14) and the geometric mean–harmonic mean inequality yield

xα0 � [Γ (x)Γ (1/x)]−1/2 � 1
2

(
1

Γ (x)
+

1
Γ (1/x)

)
.

This completes the proof of (3.11).

Let

∆(x) = log
[
1
2

(
1

Γ (x)
+

1
Γ (1/x)

)]
/ log(x) (0 < x < 1).

Applying l’Hôpital’s rule we obtain

∆(1) = lim
x→1

∆(x) = 0. (3.15)

The inequalities (1.1) and (3.11) lead to

0 � ∆(x) � α0 for x ∈ (0, 1]. (3.16)

From (3.10) we conclude that the best possible constants α and β are given by

α = sup
x∈(0,1]

∆(x) and β = inf
x∈(0,1]

∆(x).

Using (3.15) and (3.16) we obtain β = 0. Furthermore, we have

1.321 767 . . . = ∆(0.157 624) � α � α0 = 1.321 769.

Thus, α = 1.321 76 . . . . The proof of Theorem 3.4 is complete. �
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