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UPPER BOUNDS FOR THE RESONANCE COUNTING FUNCTION
OF SCHRODINGER OPERATORSIN ODD DIMENSIONS

RICHARD FROESE

ABSTRACT. The purpose of this note is to provide a smple proof of the sharp
polynomial upper bound for the resonance counting function of a Schrodinger operator
in odd dimensions. At the same time we generalize the result to the class of super-
exponentially decreasing potentials.

1. Introduction. LetH = —A+V beaSchrodinger operator actingin L?(R"), n odd,
whose potentia V is super-exponentially decreasing. By definition, this means that for
every N there isa constant C such that

IV(X)| < Ce™NX,

Let R(K) = (H — k?)~1 be the resolvent of H, initially defined for k in the upper half
plane. Let Ry(k) denote the weighted resolvent

Rv(K) = VIRK)|V]?.

When V is super-exponentially decreasing and n is odd, Ry(k) has a compact operator
valued meromorphic continuation to the entire complex plane. Resonances are polesin
this meromorphic continuation.

We areinterested in upper bounds for the counting function

n(r) = #{resonances k: |k| <r}.

Hereiswhat is known about the large r behaviour of n(r).
When n = 1 and V has compact support

n(r) = % diam(supp(V))r + o(r).

Thisresult is due to Zworski [Z1]. For some super-exponentially decaying potentialsin
one dimension there is a comparable result [F]
n(r) = Cr” +o(r”),

where p is the order of growth of the Fourier transform of V. For a class of radialy
symmetric potentialsin dimensions greater than one Zworski [Z2] proves

n(r) = Cy radius(supp(V))r" +o(r").
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This exhausts the examples of Schrodinger operators for which the first term in an
asymptotic expansion is known.

For a general compactly supported potential in dimensions greater than one, only
upper bounds (of polynomial type) are known:

n(r) < Cr".

The first polynomial bound (r"™') was obtained by Melrose [Mel]. The sharp bound
(r") was first obtained by Zworski [Z3]. For potentials decreasing like exp(—|x|**¢),
S4 Barreto and Zworski [SZ1] prove

n(r) < Cr(l+l/f)n.

In Theorem 3.1 we generalize this to super-exponentially decaying potentials. The
Fourier transform of a potential in this class is an entire function in C". Our bound
isgiven in terms of the growth of the Fourier transform. We will show that if V(K) grows
like exp(®(|k|)), then

n(r) < Co"(cr).

Although polynomial lower bounds have not been established in general, it is known
that infinitely many resonances exist. This was shown in three dimensions by Mel-
rose [Me2], and in any odd dimension by Sa Barreto and Zworski [SZ2]. The existence
of infinitely many resonanceswas previously only known under positivity conditionson
the potential (seethe referencesin [SZ2]).

There is a substantial literature on closely related problems, involving, for example,
metric perturbations of the Laplacian or even dimensions. We mention here only the
paper of Vodev [V] which was influential in our thinking. Further references can be
found in the review article [Z4] and the book [Me2].

It is worth pointing out that there are many other definitions of resonancesin the
literature. The theory of dilation and translation analyticity give rise to definitions that
do not require the potential to decrease so rapidly.

2. Meromorphic continuation and the scattering operator We begin by using
standard Birman-Schwinger identities to show that Ry(k) has a meromorphic continua-
tion. Let Ry(k) = (—A — k?)~1 be the free resolvent and define Ryy (k) = VZRy(K)|V/=.
For Imk > 0, the resolvent equation

Ro(k) — R(K) — RK)VRo(k) = 0
implies
(1—=Rv(K)(1+Rov(K) = 1.

For Imk large, the norm of Ryy(K) issmall, so 1 + Ryy(K) isinvertible and

21 1—Ry(K) = (1+Rov(K)
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The operator Ryy(k) has an explicit integral kernel given by Vz(X)Go(X. Y. K)|[V|Z(Y),
where Gy is the free Green's function. Using this representation, it is easy to seethat in
odd dimensions Ryy (k) has a compact operator valued analytic continuation to the entire
complex plane (except for a pole at zero in dimension 1). Thus, by the meromorphic
Fredholm theorem [9], the left side of (2.1) defines a meromorphic continuation for
Ry(K).

From this formula we can see that the resonances are precisely those values of k for
which Ryy(K) has an eigenvalue —1. Equivalently, resonances are precisely the zeros of
the analytic function det(1 + Rov(k))—provided Rov (k) is trace class. Unfortunately, this
only happenswhen n = 1. In higher dimensions, it turns out that R}, (k) for p > n/2is
trace class. If —1 is an eigenvaluefor Ryy(K), then £1 is an eigenvalue for R}, (). Thus
the set of resonances is contained in the set of zeros of the function det(l + Rgv(k))
for p > n/2 and £(—1)P = 1. This function is entire, except for poles arising from
eigenvalues. One can therefore estimate the number of resonances by estimating the
growth of this function. This approach is used in previous work.

Our approachisto first multiply 1 + Roy(K) by a suitable invertible operator and then
take the determinant. For k in the lower half plane, —k isin the upper half plane, and so
by (2.1) the operator 1 + Ryy(—K) isinvertible (with inverse 1 — Ry(—Kk)) except at the
finitely placeswhere k? is an eigenvalue of H. Define

QK = (1+Rov(~K)) (1 + Rov(K))

Wewill show that the determinant of Q(k) iswell defined. Then resonancesare precisely
the zeros of det Q(K) in the lower half plane. The disadvantage of our regularization is
that det Q(K) is not entire, but has poles in the upper half plane. (Clearly —k is pole
whenever k is a zero.) This makes it necessary to include an estimate of the scattering
phasein our proof.

In fact, we will show presently that det Q(k) = det S(—k) where S(K) is the scatter-
ing operator, confirming that resonances are precisely equal to scattering poles. This
equivalenceis well known, but we could not resist giving this simple proof.

Begin with the classical Green’s function identity

(2.2 Go(x, Y. K) — Go(x. y, —K) = c(k) /81 . dKwxy) g,
where -
_ K™
ck) = 2

This can be proven using the representation of Gy as a Fourier transform [see Me2], or
by applying Green’s theorem to the functions f(2) = Go(X, z k), 9(2) = Go(z Y, —K) in a
sphere of radiusr and letting r tend to infinity.

The identity (2.2) for real k can be written as an operator equation. Let my denote
the operator that takes a function on R" to its Fourier transform restricted to a sphere of
radius k. Then (2.2) can be written

Ro(K) = Ro(=K) + c(K) .
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This has to be interpreted as an equation involving operators between Besov spaces,
since none of the operators are bounded on L2(R") for real k. However, if we multiply on
theleft by Vz andonthe right by |V| 2 then we do obtain an equation involving operators
on L2(R"), namely

(2.3) Rov(K) = Rov(—K) + c(KIF(K)Fyy; (K)

where the operator Fy(k): L*(R") — L*(S"*) is the formal product mV|2 is given by
(Fvi) @) = [, @IV d.
and the operator FJ,(k): L2(S"1) — L(R") is the formal product Vzr; given by

(FI098)0) = Vi) [, €6(w) dov.

Since all the operators in the equation (2.3) have analytic continuations to complex k,
the equation remains valid for all k € C.
We now return to Q(k). Using (2.3) this operator can be rewritten

QK) = (1+Rov(—K) " (1+Rov(K)
= (1+Rov(=K) (1 + Rov(—K) *+ cOFY(R)F v K)
= 1+¢((1+ Rov(—K)  FY(Fy (K)
= 1+c(K)(1— Ry(—K)) FL(K)Fjy (K)
It follows from the estimateson singular valuesbel ow that the secondterm on theleft side
istraceclass, so we may takethedeterminant. Using theidentity det(1+AB) = det(1+BA)
gives
det Q(k) = det(l + c(k)FM(k)(l — RV(—k)) F\T,(k)).
The operators on the |eft are now operators on L2(S™1). Now
24)  c(KFp (1 —Ru(—K)Fy(k) = cm(V — VR(=K)V) i = T(=K),
is exactly the expression from stationary scattering theory for the T matrix. Thus
det Q(k) = det(l + T(—k)) = det §(—k),
as claimed.
3. Upper bounds. We now state our main theorem.
THEOREM 3.1. Supposethat V is a super-exponentially decaying potential with
V()| < ce™@

Then
n(r) < Co"(cr) + O(d"(cr))

for some constants c and C.

The proof will be broken up into aseriesof lemmas. We begin with asimple estimate.
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LEMMA 3.2. Let ¢(k) = det(1+ T(k)) where T(K) is a trace-class operator valued
analytic function in the closed upper half plane, where1 + T(s) isunitary for s € R, and
where T(0) = 0. Let n(t) denote the number of zeros of ¢(k) in a half disk in the upper
half plane of radiust. Define

N(r) =‘/0r @dt
Then
1 1 o« .
NO < o [ [ ITO)lldsct+ = [MInfo(re)] o

Here|| - |1 denotesthe trace norm.

PrROOF. Integrating along a contour enclosing the half disk, we have
_ LAG
"M =55 ?é ok ¢

= —Im/tt (2((55)) 2 /t In|o(te’)| do

o [ 16Ol dst o (13 Injoqe’) ao

| /\

We used the fact that |¢(s)| = 1 for real s. Dividing by t and integrating, we find
NG < — [0 [ /(9] dsdt+ — [ In|o(re)| do
<o [t [ ¢/©ldsdt+ — [Tinfo(re")

We used $(0) = 1 to evaluate the second term. Since ¢'(s) = qﬁ(s)tr( (1+ T(s))flT/(s)),
and |¢(s)| = |[(1+T(s)) H = 1for real s, it follows that for real s

#© < [(1+TE) T,
<[ (1+71©) " IT©s
= [T
This compl etes the proof. ]

To apply this lemma, we must estimate the trace norm of T’ along the real axis, and
the growth of ¢ = det(1 + T) in the upper half plane when T is given by (2.4).

LEMMA 3.3. LetV be a super-exponentially decaying potential and let T (k) be given
by (2.4). Thenfor s€ R

IT'O)ll < Cls"™?
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PROOF. The operator T(s) is a product c(s)Fy;(s)(1 — Ry(—s))Fy(s). We estimate
each term and its derivative. To begin, we have

lc(9)| < Cls|"?
() <Clsg"?

It follows from the representation (2.1) that

[1-Rv(-9)| <C
IR/ (=9)| <C

Using the explicit integral kernelsfor FY(s) and Fv|(s) it is easy to estimate the Hilbert-
Schmidt norms

IF©I3= [, [, 1€5VER[dxdo < C
IFV@I3= [, [, lifw x)e=VE(? dxdw < C.

The same estimates hold for ||Fy(s)||2 and || Fl’vl(s) ||2. The proof is completed by using

the Leibnitz rule to write T’(s), and the estimate
1 1
1AB|2 < [|AIIZ B3 .

It remains to estimate the growth of ¢(k) for complex k.

LEMMA 3.4. SupposeV is a super-exponentially decreasing potential, and let T (k)
be given by (2.4). Then for k in the upper half plane, T(K) is trace class. Let ¢(k) =
det(1 + T(K)). Supposethat the Fourier transformof V satisfies the growth estimate

|\7(Z)| < Ce¢’(|ZD
for some positive, increasing function ®(x). Then
609] < exp(5- 02+ k) +O(@" (2 + k) )

for any e > 0, and some constant C.

ProOF. We will use Weyl's estimate
[609] = | det(1+T()| < TI(1+w(TK))
i

and therefore must estimate the singular values of T(k). Using the estimate

11 (AB) < ||All15(B)
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and
1 (AB) = 11 (BA)
(twice) wefind

3.1) 1 (TM) < [le(=K)@ = Ry(K)l| (FU—KIFy (=)
< CIK™ (Vi)

Wherethe operator V\ = Fyy|(—k)Fy(—k) isanintegral operator on L%(S™*) withintegral
kernel \7(—k(w — w’)). To estimate the singular valueswe will use the following bound
without proof. (It followsfrom the analyticity of V.) Let L, denotethe positive Laplacian
on S in the variables w. Then for any ¢ > 0 thereis a constant C such that

L2 (K(w — o))| < CPpt €(@*IK)
Summing the Taylor expansion for the exponential, this gives, for § < C1,
‘eéLé \7(k(w _ w’))‘ <@- 5C)*1e¢((2+f)|k\)
Since the left sideis theintegral kernel for the operator efs'-% Vy, thisimplies that

1
| V|| < Ce®(@+alk)

(The constants C may change from lineto line.) Thus

1 1
w(Vi) = (e € vy

A

1 1
< 1€ Vidlie ™)
< Ce¢_§J 1/(n-1)

Here ® = ®((2+¢)|K|). Using (3.1), we get the same bound for 1j(T(k)), if weincrease
e dlightly. Thus T(K) is trace class, and

(1 T)| < [T v,

This product is easily estimated by breaking it into two pieces. For j < (®/8)"! we
obtain

H (1 + Ceq)f&jl/(n—l)) S H (C + 1)e¢)7(5]‘1/(n—1)

j<(@/5)n1 j<(e/5)n-2
@/
- (C+ 1)(¢>/5)n71eq>n/§n—1 exp( Z _5j1/(n71))
j=1

(ol /5nfl+o(¢nfl)
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Forj > (®/6)"! wehave

H (1+Ce®*5jl/(“*1)) < eXp( Z Ceq)*(sjl/(”*l))
>(@/8t i>(@/6)"t

<ep(o 3 &)
j>(®/5)1

The sum appearing in this formula can be estimated by an integral.
Z eﬁﬁjl/(n—l) S e75(¢/5) + /‘OO eiéxl/(nil) d)(
j>(¢/5)n—l (¢/5)n71

< e—CD + Ce—fl)q)n—Z
Thus the product for large j satisfiesthe bound

1+ Ce® MYy < L7,
J.>(£[5)n71( ) <

Combining the estimates for small and large j completes the proof. ]
We can now prove the main theorem.

PrROOF OF THEOREM 3.1. Let T(K) be given by (2.4). We must count the zeros of
¢(K) = det(1+ T(k)) in ahalf disk of radiusr in the upper half plane. The operator T(K)
isanalytic in the upper half plane, except for possibly finitely many poles, which won't
affect the counting function. Since 1 + T(k) = S(K) is the scattering operator, we know
that 1+ T(k) isunitary for k real, and that T(0) = 0. Therefore Lemma 3.2 applies. Using
Lemma 3.3 to estimate || T'(k)||1 and Lemma 3.4 to estimate In|#(k)| yields

N(r)

IN

C /0 "1 [ s 2 dsdt+(2m) /0 § (5—<“—1> O"((2+)r) + O(@" (2 + e)r))) d9

< O+ 272+ o) + O™ Y2+ 4)r) )

By looking at V along the imaginary axis, we see that ® must grow at least asfast asr.
(For compactly supported V's we have ®(r) = Cr.) Thus we can ignore the first term.
Thisgives

N(r) < 2% Don(2+e)r) + O(d)”*l((z + e)r))

To get an estimate on n(r) from this, note that for any s > 1, since n(r) is monotone,

nring~* [ ¥ %dt
< (Ing* /rsr @ dt

= (Ins)*(N(sr) — N())

< (Ing)"IN(sn).

n(r)

This completes the proof. ]
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