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Abstract

In this note we provide an upper bound for the difference between the value function of a
distributionally robust Markov decision problem and the value function of a non-robust
Markov decision problem, where the ambiguity set of probability kernels of the distribu-
tionally robust Markov decision process is described by a Wasserstein ball around some
reference kernel whereas the non-robust Markov decision process behaves according to
a fixed probability kernel contained in the ambiguity set. Our derived upper bound for
the difference between the value functions is dimension-free and depends linearly on the
radius of the Wasserstein ball.
Keywords: Markov decision process; Wasserstein uncertainty; distributionally robust
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1. Introduction

Markov decision processes enable the modeling of non-deterministic interactions between
an agent and its environment within a tractable stochastic framework. At each time t an agent
observes the current state and takes an action which leads to an immediate reward. The goal of
the agent then is to optimize its expected cumulative reward. Mathematically, Markov decision
problems are solved based on a dynamic programming principle, whose framework is the
foundation of many reinforcement learning algorithms such as, e.g., the Q-learning algorithm.
See [5, 10, 25, 26] for the theory of Markov decision processes, and [1, 6, 7, 11, 12, 15, 20, 29,
33] for their applications, especially in the field of reinforcement learning.

In the classical setup for Markov decision problems, the transition kernel describing the
transition probabilities of the underlying Markov decision processes is given. Economically,
this means that the agent possesses the knowledge of the true distribution of the underly-
ing process, an assumption which typically cannot be justified in practice. To address this
issue, academics have recently introduced a robust version of the Markov decision problem
accounting for a possible misspecification of the assumed underlying probability kernel that
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describes the dynamics of the state process. Typically, we assume that the agent possesses a
good guess of the true, but to the agent unknown, probability kernel, but due to her uncertainty
decides to consider the worst case among all laws which lie within a ball of certain radius
around the estimated probability kernel with respect to some distance, e.g. the Wasserstein
distance or the Kullback–Leibler distance. See [3, 4, 8, 9, 16–18, 21, 23, 24, 27, 28, 30, 32, 34–
37, 39] for robust Markov decision problems and corresponding reinforcement-learning-based
algorithms to solve them.

In this note, the goal is to analyze the difference between the value function of the cor-
responding Markov decision problem with respect to the true (but to the agent unknown)
probability kernel and that of the robust Markov decision problem defined with respect to
some Wasserstein ball around the (by the agent) estimated transition kernel. Note that the esti-
mated transition kernel does not necessarily need to coincide with the true probability kernel,
however we assume that the agent’s guess is good enough that the true probability kernel lies
within the Wasserstein ball around the estimated probability kernel.

Similar, while not identical, research questions have been studied in [2, 13, 14, 19, 38],
mainly focusing on establishing stability results for value functions with respect to the choice
of the underlying transition probability. In [19, Theorem 4.2], the author presents a state-
dependent bound on the difference between iterations of value functions (obtained via the
so-called value iteration algorithm) of two Markov decision processes, implying that these
iterations depend continuously on the transition kernels. As a refinement of [19, Theorem 4.2]
and also of the related result obtained in [13, Theorem 2.2.8], the result from [38, Theorem 6.2]
shows that in a finite time horizon setting the difference between the value functions of two
Markov decision processes with different transition probabilities can be bounded by an expres-
sion depending on a certain tailored distance between the transition probabilities. In [14], the
author proposes a semi-metric for Markov processes which allows us to determine bounds for
certain types of linear stochastic optimization problems, cf. [14, Theorem 3]. The authors of
[2] study the sensitvity of multi-period stochastic optimization problems over a finite time hori-
zon with respect to the underlying probability distribution in the so-called adapted Wasserstein
distance. They show in [2, Theorem 2.4] that the value function of their robust optimization
problem, with the corresponding ambiguity set being a Wasserstein ball around a reference
measure, can be approximated by the corresponding value function of the non-robust opti-
mization problem defined with respect to the reference measure plus an explicit correction
term. Vaguely speaking (as the optimization problem in [2] is technically speaking not com-
parable to our setting), this is similar to our analysis in the special case where our reference
measure coincides with the true measure.

Under some mild assumptions, we obtain in Theorem 3.1 an explicit upper bound for the
difference between the value function of the robust and the non-robust Markov decision prob-
lem which only depends on the radius ε of the Wasserstein ball, the discount factor α, and
the Lipschitz constants of the reward function and the true transition kernel. In particular, we
obtain that the difference of the two value functions only grows at most linearly in the radius
ε and does not depend on the dimensions of the underlying state and action space.

The remainder of this note is as follows. In Section 2 we introduce the underlying setting
used to derive our main result, which is reported in Section 3. The proof of the main result and
auxiliary results necessary for the proof are reported in Section 4.
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2. Setting

We first present the underlying setting to define both robust and non-robust Markov decision
processes that we then use to compare their respective value functions.

2.1. Setting

As the state space we consider a closed subset X ⊆R
d for some d ∈N, equipped with

its Borel σ -field FX , which we use to define the infinite Cartesian product � := XN0 =
X ×X × · · · and the σ -field F := FX ⊗FX ⊗ · · · . For any q ∈N, we denote by Mq

1(X )
the set of probability measures on X with finite q-moments and write M1(X ) := M1

1(X )
for brevity. We define on � the infinite-horizon stochastic process (Xt)t∈N0 via the canonical
process Xt((ω0, ω1, . . . , ωt, . . . )) := ωt for (ω0, ω1, . . . , ωt, . . . ) ∈ �, t ∈N0.

To define the set of controls (also called actions) we fix a compact set A ⊆R
m for some

m ∈N, and set

A := {a = (at)t∈N0 | (at)t∈N0 : � → A; at is σ (Xt)-measurable for all t ∈N0}
= {(at(Xt))t∈N0 | at : X → A Borel measurable for all t ∈N0}.

Next, we define the q-Wasserstein distance dWq (·, ·) for some q ∈N. For any P1, P2 ∈
Mq

1(X ) let dWq (P1, P2) be defined as

dWq (P1, P2) :=
(

inf
π∈�(P1,P2)

∫
X×X

‖x − y‖q dπ (x, y)

)1/q

,

where ‖ · ‖ denotes the Euclidean norm on R
d, and where �(P1, P2) denotes the set of joint

distributions of P1 and P2. Moreover, we denote by τq the Wasserstein q-topology induced by
the convergence with respect to dWq .

To define an ambiguity set of probability kernels, we first fix throughout this paper some
q ∈N and ε > 0. Then, we define, as an ambiguity set of probability kernels,

X × A � (x, a) �P(x, a) := B(q)
ε (̂P(x, a)) := {

P ∈M1(X ) | dWq (P, P̂(x, a)) ≤ ε
}

(2.1)

with respect to some center X × A � (x, a) 
→ P̂(x, a) ∈ (Mq
1(X ), τq

)
, meaning that

B(q)
ε (̂P(x, a)) denotes the q-Wasserstein ball (also called the Wasserstein ball of order q) with

radius ε and center P̂(x, a).
Under these assumptions we define, for every x ∈X and a ∈A, the set of admissible

measures on (�,F) by

Px,a := {δx ⊗ P0 ⊗ P1 ⊗ · · · | for all t ∈N0 : Pt:X →M1(X ) Borel measurable,

and Pt(ωt) ∈P(ωt, at(ωt)) for all ωt ∈X },
where the notation P= δx ⊗ P0 ⊗ P1 ⊗ · · · ∈Px,a abbreviates

P(B) :=
∫
X

· · ·
∫
X

· · · 1B((ωt)t∈N0 ) · · · Pt−1(ωt−1;dωt) · · · P0(ω0;dω1)δx(dω0), B ∈F .

2.1. Problem formulation and standing assumptions

Let r : X × A ×X →R be some reward function. We assume from now on that it fulfils the
following assumptions.
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Assumption 2.1. (Assumptions on the reward function) The reward function r : X × A ×X →
R satisfies the following:

(i) The map X × A ×X � (x0, a, x1) 
→ r(x0, a, x1) ∈R is Lipschitz continuous with con-
stant Lr > 0.

(ii) If X is unbounded and q ∈N defined in (2.1) satisfies q = 1, then we additionally assume
that supx0,x1∈X ,a∈A |r(x0, a, x1)| < ∞.

Note that Assumption 2.1(i) implies that the reward r is bounded whenever X is bounded.
Next, we impose the following standing assumption on our reference probability kernel

modeled by the center of the q-Wasserstein ball.

Assumption 2.2. (Assumption on the center of the ambiguity set.) Let q ∈N be defined in
(2.1). Then the center X × A � (x, a) 
→ P̂(x, a) ∈ (Mq

1(X ), τq) satisfies the following:

(i) The map X × A � (x, a) 
→ P̂(x, a) ∈ (Mq
1(X ), τq) is continuous.

(i′) If the reward function r is unbounded, then we assume instead of (i) the stronger
assumption that P̂ is Lipschitz continuous, i.e. that there exists L

P̂
> 0 such that

dWq (̂P(x, a), P̂(x′, a′)) ≤ L
P̂

(‖x − x′‖ + ‖a − a′‖) for all x, x′ ∈X , a, a′ ∈ A.

Finally, we assume the following on the discount factor α ∈ (0, 1).

Assumption 2.3. (Assumption on the discount factor) Let q ∈N, ε > 0 be defined as in
(2.1), and X × A � (x, a) 
→ P̂(x, a) ∈ (Mq

1(X ), τq) be as defined in Assumption 2.2. Then the
discount factor α satisfies 0 < α < 1/CP, where 1 ≤ CP < ∞ is defined by

CP =
⎧⎨⎩max

{
1 + ε + sup

a∈A
inf

x∈X

{ ∫
X

‖z‖ P̂(x, a)(dz) + L
P̂
‖x‖

}
, L

P̂

}
if r is unbounded,

1 otherwise.

Our goal is to compare the value of the robust Markov decision problem with the value of
the non-robust Markov decision problem. To define the robust value function, for every initial
value x ∈X , we maximize the expected value of

∑∞
t=0 αtr(Xt, at, Xt+1) under the worst-case

measure from Px,a over all possible actions a ∈A. More precisely, we introduce the robust
value function by

X � x 
→ V(x) := sup
a∈A

inf
P∈Px,a

(
EP

[ ∞∑
t=0

αtr(Xt, at, Xt+1)

])
. (2.2)

To define the non-robust value function under the true, but to the agent unknown, probability
kernel Ptrue contained in the ambiguity set P , we impose the following assumptions on P

true.

Assumption 2.4. (Assumptions on the true probability kernel) Let q ∈N be as defined in (2.1).
Then the true (but unknown) probability kernel X × A � (x, a) 
→ P

true(x, a) ∈ (Mq
1(X ), τq)

satisfies the following:

(i) P
true(x, a) ∈P(x, a) for all (x, a) ∈X × A.
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(ii) P
true is LP-Lipschitz with constant 0 ≤ LP < 1/α, where 0 < α < 1 is defined in

Assumption 2.3, i.e. we have

dWq (Ptrue(x, a), Ptrue(x′, a′)) ≤ LP(‖x − x′‖ + ‖a − a′‖)

for all x, x′ ∈X , a, a′ ∈ A.

Then, we introduce the non-robust value function under the true (but to the agent unknown)
transition kernel by

X � x 
→ V true(x) := sup
a∈A

(
EP

true
x,a

[ ∞∑
t=0

αtr(Xt, at, Xt+1)

])
, (2.3)

where we write, for any x ∈X and a ∈A,

P
true
x,a := δx ⊗ P

true ⊗ P
true ⊗ P

true ⊗ P
true · · · ∈M1(�).

Note that Assumptions 2.1–2.4 ensure that the dynamic programming principle holds for both
the robust and non-robust Markov decision problem; see [23, Theorem 2.7].

3. Main result

As a main result we establish a bound on the difference between the value function of the
Markov decision process with fixed reference measure defined in (2.3), and the value function
of the robust Markov decision process defined in (2.2).

Theorem 3.1. Let all Assumptions 2.1–2.4 hold.

(i) Then, for any x0 ∈X ,

0 ≤ V true(x0) − V(x0) ≤ 2Lrε(1 + α)
∞∑

i=0

αi
i∑

j=0

(LP)j < ∞. (3.1)

(ii) Moreover, in the special case that Ptrue = P̂, for any x0 ∈X ,

0 ≤ V true(x0) − V(x0) ≤ Lrε(1 + α)
∞∑

i=0

αi
i∑

j=0

(LP)j < ∞. (3.2)

We highlight that the upper bound from (3.1) depends only on ε, α, and the Lipschitz-
constants Lr and LP. In particular, the upper bound depends linearly on the radius ε of the
Wasserstein ball and is independent of the current state x0 and the dimensions d and m of the
state and action space, respectively.

Remark 3.1. The assertion from Theorem 3.1 also carries over to the case of autocorre-
lated time series where one assumes that the past h ∈N∩ [2, ∞) values of a time series
(Yt)t∈{−h,...,−1,0,1,...} taking values in some closed subset Y of R

D for some D ∈N may
have an influence on the next value. This can be modeled by defining the state pro-
cess Xt := (Yt−h+1, . . . , Yt) ∈Yh =: X , t ∈N0. In this setting, the subsequent state Xt+1 =
(Yt−h+2, . . . , Yt+1) shares h − 1 components with the preceding state Xt = (Yt−h+1, . . . , Yt)
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and uncertainty is only inherent in the last component Yt+1. Thus, we consider a refer-
ence kernel of the form X × A � (x, a) 
→ P

true(x, a) = δπ (x) ⊗ P̃
true(x, a) ∈M1(X ), where

P̃
true(x, a) ∈M1(Y) and X � (x1, . . . , xh) 
→ π (x) := (x2, . . . , xh) denotes the projection on

the last h − 1 components. In this setting, for q ∈N and ε > 0, the ambiguity set is given by

X × A � (x, a) �P(x, a) := {
P ∈M1(X ) such that P= δπ (x) ⊗ P̃

for some P̃ ∈M1(Y) with Wq (̃P, P̃true(x, a)) ≤ ε
}
.

The described setting is discussed in more detail in [23, Section 3.3] or [21, Section 2.2].
Typical applications can be found in finance and include portfolio optimization; cf. [23,
Section 4].

Example 3.1. (Coin toss.) To illustrate the applicability of Theorem 3.1, we study an example
similar to the one provided in [21, Example 4.1]. To this end, we consider an agent who at
each time tosses 10 coins and observes the number of heads. Thus, we model the environment
by a state space X := {0, . . . , 10}. Prior to the toss, the agent can bet whether in the next
toss of 10 coins the sum of heads will be smaller (a = −1) or larger (a = 1) than the previous
toss. She gains $! if the bet is correct, and in turn has to pay $1 if it is not (without being
rewarded/punished if the sum of heads remains the same). Moreover, the agent can also decide
not to bet for the toss (by choosing a = 0). We model this via the reward function

X × A ×X � (x, a, x′) 
→ r(x, a, x′) := a1{x<x′} − a1{x>x′},

where the possible actions are given by A := {−1, 0, 1}. The reference measure in this set-
ting assumes a fair coin, and therefore (independent of the state action pair) is a binomial
distribution with n = 10, p = 0.5, i.e.

X × A � (x, a) 
→ P
true(x, a) = P̂(x, a) := Bin (10, 0.5).

In the described setting it is easy to see that r is Lipschitz continuous with Lipschitz constant

Lr =
(

max
y0,y′

0,x1,x′
1∈X , b,b′∈A

(y0,b,x1)�=(y′
0,b

′,x′
1)

|r(y0, b, x1) − r
(
y′

0, b′, x′
1

)|
‖y0 − y′

0‖ + ‖b − b′‖ + ‖x1 − x′
1‖

)
= 1.

Moreover, we have LP = 0. In Figure 1 we plot the corresponding upper bound from (3.2)
against the difference V true(x0) − V(x0) for different initial values x0 and different levels of
ε used for the computation of V with α = 0.45. The value functions are computed using
the robust Q-learning algorithm proposed in [21]. The code used can be found at https://
github.com/juliansester/MDP_Bound.

4. Proof of the main result

In Section 4.1 we provide several auxiliary lemmas which are necessary to establish the
proof of Theorem 3.1, which is reported in Section 4.2.
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564 A. NEUFELD AND J. SESTER

FIGURE 1. The difference between the non-robust and the robust value function compared with the upper
bound from (3.2) in the setting described in Example 3.1 with ε > 0 and for different initial values of the
Markov decision process. Initial values larger than 5 are omitted due to the setting-specific symmetry

V(x0) − V true(x0) = V(10 − x0) − V true(10 − x0) for x0 ∈ {0, 1, . . . , 10}.

4.1. Auxiliary results

Lemma 4.1. Let r : X × A ×X →R satisfy Assumption 2.1. Let X × A � (x, a) 
→
P

true(x, a)(dx1) ∈ (Mq
1(X ), τq) satisfy Assumption 2.4. For any v ∈ Cb(X ,R), where here and

in the following we denote by Cb(X ,R) the set of continuous and bounded functions from X
to R, define

T truev(x0) := sup
a∈A

∫
X

(r(x0, a, x1) + αv(x1))Ptrue(x0, a)(dx1), x0 ∈X . (4.1)

Then, for any v ∈ Cb(X ,R) being Lr-Lipschitz, n ∈N, x0, x′
0 ∈X , we have

∣∣(T true)nv(x0) − (T true)nv
(
x′

0

)∣∣≤ Lr

(
1 + LP(1 + α)

n−1∑
i=0

αiLi
P

)
‖x0 − x′

0‖. (4.2)

Proof. For any x0, x′
0 ∈X and a ∈ A, let �true(dx1, dx′

1) ∈M1(X ×X ) denote an optimal
coupling between P

true(x0, a) and P
true(x′

0, a) with respect to dW1 , i.e.∫
X×X

‖x1 − x′
1‖�true(dx1, dx′

1) = dW1 (Ptrue(x0, a), Ptrue(x′
0, a))

≤ dWq (Ptrue(x0, a), Ptrue(x′
0, a)),
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where the inequality follows from Hölder’s inequality (see, e.g., [31, Remark 6.6]). We prove
the claim by induction. We start with the base case n = 1, and compute by using the Lipschitz
continuity of the functions r and v, and of Ptrue that∣∣∣(T true)v(x0) − (T true)v

(
x′

0

) ∣∣∣= ∣∣∣∣∣ sup
a∈A

∫
X

(r(x0, a, x1) + αv(x1))Ptrue(x0, a)(dx1)

− sup
a∈A

∫
X

(
r
(
x′

0, a, x′
1

)+ αv
(
x′

1

))
P

true (x′
0, a

) (
dx′

1

) ∣∣∣∣∣
≤ sup

a∈A

∫
X×X

|r(x0, a, x1) + αv(x1) − r
(
x′

0, a, x′
1

)− αv
(
x′

1

) |�true (dx1, dx′
1

)
≤ Lr‖x0 − x′

0‖ + Lr(1 + α) sup
a∈A

∫
X×X

‖x1 − x′
1‖�true (dx1, dx′

1

)
≤ Lr‖x0 − x′

0‖ + Lr(1 + α) sup
a∈A

dWq

(
P

true(x0, a), Ptrue (x′
0, a

))
≤ Lr‖x0 − x′

0‖ + Lr(1 + α)LP‖x0 − x′
0‖

= Lr(1 + (1 + α)LP)‖x0 − x′
0‖.

We continue with the induction step. Hence, let n ∈N∩ [2, ∞) be arbitrary and assume that
(4.2) holds for n − 1. Then, we compute∣∣∣(T true)nv(x0) − (T true)nv

(
x′

0

) ∣∣∣≤ sup
a∈A

∫
X×X

∣∣∣r(x0, a, x1) + α(T true)n−1v(x1)

− r
(
x′

0, a, x′
1

)− α(T true)n−1v
(
x′

1

) ∣∣∣�true (dx1, dx′
1

)
≤ Lr‖x0 − x′

0‖ + Lr sup
a∈A

∫
X×X

‖x1 − x′
1‖�true (dx1, dx′

1

)
+ α sup

a∈A

∫
X×X

∣∣∣(T true)n−1v(x1) − (T true)n−1v
(
x′

1

) ∣∣∣�true (dx1, dx′
1

)
.

Applying the induction hypothesis to this therefore yields∣∣(T true)nv(x0) − (T mathrmtrue)nv
(
x′

0

)∣∣
≤ Lr‖x0 − x′

0‖ + Lr sup
a∈A

∫
X×X

‖x1 − x′
1‖�true(dx1, dx′

1

)
+ αLr

(
1 + LP(1 + α)

n−2∑
i=0

αiLi
P

)
sup
a∈A

∫
X×X

‖x1 − x′
1‖�true(dx1, dx′

1

)

≤ Lr‖x0 − x′
0‖ + Lr · LP‖x0 − x′

0‖ + αLr

(
1 + LP(1 + α)

n−2∑
i=0

αiLi
P

)
LP‖x0 − x′

0‖

= Lr

(
1 + (1 + α)LP + LP(1 + α)

n−2∑
i=0

αi+1Li+1
P

)
‖x0 − x′

0‖

= Lr

(
1 + LP(1 + α)

n−1∑
i=0

αiLi
P

)
‖x0 − x′

0‖.
�
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Lemma 4.2. Let Assumptions 2.1 and 2.4 hold. Moreover, let X × A � (x, a) 
→ P
wc(x, a) ∈

P(x, a) denote another probability kernel contained in P(x, a) for each x, a ∈X × A.
Furthermore, for any v ∈ Cb(X ,R), define

T wcv(x0) := sup
a∈A

∫
X

(r(x0, a, x1) + αv(x1))Pwc(x0, a)(dx1), x0 ∈X . (4.3)

(i) Then, for any v ∈ Cb(X ,R) that is Lr-Lipschitz, n ∈N, and x0 ∈X ,

∣∣(T wc)nv(x0) − (T true)nv(x0)
∣∣≤ 2Lrε(1 + α)

n−1∑
i=0

αi
i∑

j=0

(LP)j, (4.4)

where T true is defined in (4.1).

(ii) Moreover, in the special case that Ptrue = P̂, we obtain, for any x0 ∈X ,

∣∣(T wc)nv(x0) − (T true)nv(x0)
∣∣≤ Lrε(1 + α)

n−1∑
i=0

αi
i∑

j=0

(LP)j. (4.5)

Proof. (i) For any x0 ∈X and a ∈ A, let �
(
dx1, dx′

1

) ∈M1(X ×X ) denote an opti-
mal coupling between P

wc(x0, a) and P
true(x0, a) with respect to dW1 . Then, since both

P
wc(x0, a), Ptrue(x0, a) ∈B(q)

ε (̂P(x0, a)) we have

∫
X×X

‖x1 − x′
1‖�

(
dx1, dx′

1

)= dW1 (Pwc(x0, a), Ptrue(x0, a))

≤ dWq (Pwc(x0, a), Ptrue(x0, a)) ≤ 2ε, (4.6)

where the first inequality follows from Hölder’s inequality (see, e.g., [31, Remark 6.6]). We
prove the claim by induction. To this end, we start with the base case n = 1, and compute by
using (4.6) and the Lipschitz continuity of r, v, and P

true that

∣∣(T wc)v(x0) − (T true)v(x0)
∣∣= ∣∣∣∣ sup

a∈A

∫
X

(r(x0, a, x1) + αv(x1))Pwc(x0, a)(dx1)

− sup
a∈A

∫
X
(
r
(
x0, a, x′

1

)+ αv
(
x′

1

))
P

true(x0, a)
(
dx′

1

)∣∣∣∣
≤ sup

a∈A

∫
X×X

|r(x0, a, x1) + αv(x1) − r
(
x0, a, x′

1

)− αv
(
x′

1

)|�(dx1, dx′
1

)
≤ Lr(1 + α) sup

a∈A

∫
X×X

‖x1 − x′
1‖�

(
dx1, dx′

1

)
≤ Lr(1 + α) sup

a∈A
dWq (Pwc(x0, a), Ptrue(x0, a)) ≤ Lr(1 + α) · 2ε.
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We continue with the induction step. Therefore, let n ∈N∩ [2, ∞) be arbitrary and assume
that (4.4) holds for n − 1. Then, we compute∣∣(T wc)nv(x0) − (T true)nv(x0)

∣∣
≤ sup

a∈A

∫
X×X

∣∣r(x0, a, x1) + α(T wc)n−1v(x1)

− r
(
x0, a, x′

1

)− α(T true)n−1v
(
x′

1

)∣∣�(dx1, dx′
1

)
≤ sup

a∈A

∫
X×X

|r(x0, a, x1) − r
(
x0, a, x′

1

)|�(dx1, dx′
1

)
+ α sup

a∈A

∫
X×X

∣∣(T true)n−1v(x1) − (T true)n−1v
(
x′

1

)∣∣�(dx1, dx′
1

)
(4.7)

+ α sup
a∈A

∫
X×X

∣∣(T wc)n−1v(x1) − (T true)n−1v(x1)
∣∣�(dx1, dx′

1

)
. (4.8)

Applying Lemma 4.1 to (4.7) and the induction hypothesis to (4.8) together with (4.6) therefore
yields∣∣(T wc)nv(x0) − (T true)nv(x0)

∣∣∣∣
≤ Lr sup

∈A

∫
X×X

‖x1 − x′
1

∥∥�(dx1, dx′
1

)
+ αLr

(
1 + LP(1 + α)

n−2∑
i=0

αiLi
P

) ∫
X×X

‖x1 − x′
1‖�

(
dx1, dx′

1

)
+ α

(
2Lrε(1 + α)

n−2∑
i=0

αi
i∑

j=0

Lj
P

)

≤ Lr · 2ε + αLr

(
1 + LP(1 + α)

n−2∑
i=0

αiLi
P

)
2ε + α

(
Lr · 2ε(1 + α)

n−2∑
i=0

αi
i∑

j=0

Lj
P

)

= 2Lrε(1 + α)

(
1 + αLP

n−2∑
i=0

αiLi
P +

n−2∑
i=0

αi+1
i∑

j=0

Lj
P

)

= 2Lrε(1 + α)

(
n−1∑
i=0

αiLi
P +

n−1∑
i=1

αi
i−1∑
j=0

Lj
P

)
= 2Lrε(1 + α)

(
n−1∑
i=0

αi
i∑

j=0

Lj
P

)
.

(ii) In the case P
true = P̂ we have, for any x0 ∈X and a ∈ A that

dWq (Pwc(x0, a), Ptrue(x0, a)) ≤ ε, (4.9)

since the ambiguity set P(x0, a) is centered around P
true(x0, a) = P̂(x0, a). Hence, replacing

(4.6) by (4.9) and then following the proof of (i) shows the assertion. �

Lemma 4.3. Let 0 < α < 1 and LP ≥ 0 satisfy α · LP < 1. Then

∞∑
i=0

αi
i∑

j=0

(LP)j < ∞.
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Proof. Note that

0 ≤
∞∑

i=0

αi
i∑

j=0

(LP)j ≤
∞∑

i=0

(i + 1) · αi max{1, LP}i =:
∞∑

i=0

ai, (4.10)

with ai = (i + 1) · αi max{1, LP}i. Moreover,

ai+1

ai
= (i + 2) · αi+1 max{1, LP}i+1

(i + 1) · αi max{1, LP}i
= i + 2

i + 1
· α · max{1, LP} → α · max{1, LP} < 1

as i → ∞. Hence, d’Alembert’s criterion implies that
∑·

i=0 ai converges absolutely. Thus, by
(4.10), we have

∑∞
i=0 αi ∑i

j=0 (LP)j < ∞. �

Lemma 4.4. Let Assumptions 2.1–2.3 hold. Then P(x, a) := B(q)
ε (̂P(x, a)) as defined in (2.1)

satisfies [23, Standing Assumption 2.2] and the reward function r : X × A ×X →R together
with the discount factor 0 < α < 1 satisfy [23, Standing Assumption 2.4]. As a consequence,
[23, Theorem 2.7] then directly implies that the dynamic programming principle holds for the
robust Markov decision problem defined in (2.2).

Proof. First, if r : X × A ×X →R is bounded, then Assumptions 2.1–2.3 allow us to use
[23, Proposition 3.1], which immediately ensures that the result holds true with respect to p = 0
and CP = 1 in the notation of [23, Standing Assumptions 2.2 2.4].

Now, assume for the rest of this proof that r : X × A ×X →R is unbounded. Then, by
Assumption 2.1(ii) we have that q ∈ [2, ∞) ∩N. In this case, let p = 1 in the notation of [23,
Standing Assumptions 2.2 and 2.4]. Then our Assumptions 2.1 and 2.3 immediately ensure that
[23, Standing Assumption 2.4] holds. Moreover, by our Assumption 2.2, we directly obtain
from [22, Proposition 4.1] that [23, Standing Assumption 2.2(i)] holds. Therefore, it remains
to verify [23, Standing Assumptions 2.2(ii)]. To that end, let

CP := max

{
1 + ε + sup

a∈A
inf

x′∈X

{ ∫
X

‖z‖ P̂(x′, a)(dz) + L
P̂
‖x′‖

}
, L

P̂

}
< ∞. (4.11)

Indeed, note that CP < ∞, as Assumption 2.2 ensures that the map

X × A � (x′, a) 
→
∫
X

‖z‖ P̂(x′, a)(dz) + L
P̂
‖x′‖ ∈ [0, ∞)

is continuous. This implies that the map

A � a 
→ inf
x′∈X

{ ∫
X

‖z‖ P̂(x′, a)(dz) + L
P̂
‖x′‖

}
∈ [0, ∞)

is upper semicontinuous, which in turns ensures that CP is finite as A is compact. Now, let
(x, a) ∈X × A and P ∈P(x, a) =B(q)

ε (̂P(x, a)) be arbitrarily chosen. Then by following the
calculations in [22, Proof of Proposition 4.1, (6.34)] (with p = 1 in the notation of [22]), using
the Lipschitz continuity of P̂ we obtain, for any arbitrary x′ ∈X , that∫

X
1 + ‖y‖ P(dy) ≤ 1 + ε +

∫
X

‖z‖ P̂(x′, a)(dz) + L
P̂

(‖x′‖ + ‖x‖).
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Since x′ ∈X was arbitrarily chosen, we see from (4.11) that∫
X

1 + ‖y‖ P(dy) ≤ 1 + ε + sup
a∈A

inf
x′∈X

{ ∫
X

‖z‖ P̂(x′, a)(dz) + L
P̂
‖x′‖

}
+ L

P̂
‖x‖ ≤ CP(1 + ‖x‖),

which shows that [23, Standing Assumption 2.2(ii)] indeed holds. �

4.2. Proof of Theorem 3.1

Proof. (i) First note that as, by assumption, P
true(x, a) ∈P(x, a) for all (x, a) ∈X × A,

we have 0 ≤ V true(x0) − V(x0) for all x0 ∈X . To compute the upper bound, we fix any v ∈
Cb(X ,R) which is Lr-Lipschitz and we define the operator T true by (4.1). Then, by Lemma 4.4
and [23, Theorem 2.7(ii)], we have

V true(x0) = lim
n→∞ (T true)nv(x0), V(x0) = lim

n→∞ (T )nv(x0) (4.12)

for all x0 ∈X and for T as defined in [23, (8)]. Moreover, by [23, Theorem 2.7(iii)], there
exists a worst case transition kernel X × A � (x, a) 
→ P

wc(x, a) with P
wc(x, a) ∈P(x, a) for

all (x, a) ∈X × A such that, by denoting, for any a = (at)t∈N0 ∈A,

P
wc
x0,a := δx0 ⊗ P

wc ⊗ P
wc ⊗ P

wc ⊗ P
wc · · · ∈M1(�),

we have

V(x0) = sup
a∈A

EP
wc
x0,a

[ ∞∑
t=0

αtr(Xt, at(Xt), Xt+1)

]
= lim

n→∞ (T wc)nv(x0), x0 ∈X , (4.13)

where T wc is as defined in (4.3). Therefore, by (4.12), (4.13), Lemma 4.2, and Lemma 4.3, we
have, for all x0 ∈X ,

V true(x0) − V(x0) = lim
n→∞ (T true)nv(x0) − lim

n→∞ (T wc)nv(x0)

≤ lim
n→∞

∣∣(T true)nv(x0) − (T wc)nv(x0)
∣∣

≤ 2Lrε(1 + α) lim
n→∞

n−1∑
i=0

αi
i∑

j=0

Lj
P

= 2Lrε(1 + α)
∞∑

i=0

αi
i∑

j=0

Lj
P < ∞. (4.14)

(ii) In the case Ptrue = P̂, due to Lemma 4.2(ii), we may use (4.5) and replace the inequality
(4.14) by

V true(x0) − V(x0) ≤ Lrε(1 + α) lim
n→∞

n−1∑
i=0

αi
i∑

j=0

Lj
P = Lrε(1 + α)

∞∑
i=0

αi
i∑

j=0

Lj
P < ∞. �
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