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Abstract

Extending recent results by Cascales et al. [‘Plasticity of the unit ball of a strictly convex Banach space’,
Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. 110(2) (2016), 723–727], we demonstrate that for
every Banach space X and every collection Zi, i ∈ I, of strictly convex Banach spaces, every nonexpansive
bijection from the unit ball of X to the unit ball of the sum of Zi by `1 is an isometry.
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1. Introduction

This article is motivated by the challenging open problem, posed by Cascales et al. in
2016 [2], of whether the unit ball BX of a Banach space X is expand-contract plastic, in
other words, whether every nonexpansive bijective automorphism of BX is an isometry.
It looks surprising that such a general property, if true, remained unnoticed during the
long history of the development of the theory of Banach spaces. On the other hand,
if there is a counterexample, it is not an easy task to find it, because of known partial
positive results. In the finite-dimensional case, the expand-contract plasticity of BX

follows from a compactness argument: every totally bounded metric space is expand-
contract plastic [5]. For the infinite-dimensional case, the main result of [2] ensures
expand-contract plasticity of the unit ball of every strictly convex Banach space, in
particular, of Hilbert spaces and of all Lp with 1 < p < ∞. An example of a not
strictly convex infinite-dimensional space with the same property is presented in [3,
Theorem 1]. This example is `1 and, more generally, `1(Γ), by a minor modification of
the same proof.

In this paper we ‘mix’ results from [2, Theorem 2.6] and [3, Theorem 1] and
demonstrate the expand-contract plasticity of the ball of the `1-sum of an arbitrary
collection of strictly convex spaces. Moreover, we demonstrate a stronger result: for
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every Banach space X and every collection Zi, i ∈ I, of strictly convex Banach spaces,
every nonexpansive bijection from the unit ball of X to the unit ball of the `1-sum of
the spaces Zi is an isometry. Analogous results for nonexpansive bijections acting from
the unit ball of an arbitrary Banach space to unit balls of finite-dimensional or strictly
convex spaces, as well as to the unit ball of `1, were established recently in [6].

Our demonstration uses several ideas from the papers mentioned above, but
elaborates them substantially to overcome the difficulties in this more general situation.

2. Notation and auxiliary statements

We first give the notation and results that we need in our exposition.
We deal with real Banach spaces. As usual, for a Banach space E we denote by SE

and BE the unit sphere and the closed unit ball of E, respectively. A map F : U → V
between metric spaces U and V is called nonexpansive if ρ(F(u1), F(u2)) ≤ ρ(u1, u2)
for all u1, u2 ∈ U, so in the case of a nonexpansive map F : BX → BZ we have
‖F(x1) − F(x2)‖ ≤ ‖x1 − x2‖ for x1, x2 ∈ BX .

For a convex set M ⊂ E, we denote by ext(M) the set of extreme points of M. Recall
that z ∈ ext(M) if, for every nontrivial line segment [u, v] containing z in its interior,
at least one of the endpoints u, v does not belong to M. A space E is called strictly
convex when SE = ext(BE). In strictly convex spaces, the triangle inequality is strict
for all pairs of vectors with different directions, that is, ‖e1 + e2‖ < ‖e1‖ + ‖e2‖, for all
nonzero e1, e2 ∈ E such that e1 , ke2 with k ∈ (0,+∞).

Let I be an index set and let Zi, i ∈ I, be a fixed collection of strictly convex Banach
spaces. We consider the sum of Zi by `1 and denote it by Z. According to the definition,
this means that Z is the set of all points z = (zi)i∈I , where zi ∈ Zi for i ∈ I, such that the
support supp(z) := {i : zi , 0} is at most countable and

∑
i∈I ‖zi‖Zi <∞. The space Z is

equipped with the natural norm

||z|| = ‖(zi)i∈I‖ =
∑
i∈I

‖zi‖Zi . (2.1)

Even if I is uncountable, the sum in (2.1) reduces to a countable sum
∑

i∈supp(z) ‖zi‖Zi

which does not depend on the order of its terms, so there is no need to introduce an
ordering on I and to appeal to any definition for uncountable sums when we speak
about the space Z.

We regard each Zi as a subspace of Z by Zi = {z ∈ Z : supp(z) ⊂ {i}}. It is well known
and easy to check that in this notation

ext(BZ) =
⋃
i∈I

SZi .

Also, with this notation, each z ∈ Z can be written uniquely as a sum z =
∑

i∈I zi, zi ∈ Zi,
with at most countably many nonzero terms and where the series converges absolutely.

Definition 2.1. Let E be a Banach space and let H ⊂ E be a subspace. The linear
projector P : E → H is strict if ‖P‖ = 1 and for any x ∈ E \ H we have ‖P(x)‖ < ‖x‖.
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Lemma 2.2. Every strict projector P : E → H possesses the following property: for
every x ∈ E \ H and every y ∈ H, we have ‖P(x − y)‖ < ‖x − y‖.

Proof. If x < H, then x − y < H, and since the projector P is strict, it follows that
‖P(x − y)‖ < ‖x − y‖. �

Consider a finite subset J ⊂ I and an arbitrary collection z = (zi)i∈J with zi ∈ SZi

for i ∈ J. For each of these zi, pick a supporting functional z∗i ∈ SZi
∗ , that is, a norm-

one functional with z∗i (zi) = 1. The strict convexity of Zi implies that z∗i (x) < 1 for all
x ∈ BZi \ {zi}, i ∈ J. Set z∗ = (z∗i )i∈J and define the map

Pz,z∗ : Z → span{zi, i ∈ J}, Pz,z∗((yi)i∈I) =
∑
i∈J

z∗i (yi)zi.

Lemma 2.3. The map Pz,z∗ is a strict projector onto span{zi, i ∈ J}.

Proof. According to the definition, we have to check that:

(1) Pz,z∗ is a projector on span{zi, i ∈ J};
(2) ‖Pz,z∗‖ = 1; and
(3) if (yi)i∈I < span{zi, i ∈ J}, then ‖Pz,z∗((yi)i∈I)‖ < ‖(yi)i∈I‖.

Proof of (1). This is true since

P2
z,z∗((yi)i∈I) = Pz,z∗

(∑
i∈J

z∗i (yi)zi

)
=

∑
i∈J

z∗i (z∗i (yi)zi)zi

=
∑
i∈J

z∗i (yi)z∗i (zi)zi =
∑
i∈J

z∗i (yi)zi = Pz,z∗((yi)i∈I).

Proof of (2). Observe that

‖Pz,z∗((yi)i∈I)‖ =

∥∥∥∥∥∑
i∈J

z∗i (yi)zi

∥∥∥∥∥ =
∑
i∈J

|z∗i (yi)| ≤
∑
i∈J

‖yi‖ ≤
∑
i∈I

‖yi‖ = ‖(yi)i∈I‖. (2.2)

Proof of (3). If there is N ∈ I \ J such that yN , 0, the statement is obvious by (2.2).
If yN = 0 for all N ∈ I \ J, then, since y =

∑
i∈J yi < span{zi, i ∈ J}, there is a j ∈ J such

that y j < span{z j} and, consequently, |z∗j(y j)| < ‖y j‖ for this j. Thus, the first inequality
in (2.2) is strict. �

Proposition 2.4 (Brower’s invariance of domain principle [1]). If U is an open subset
of Rn and f : U → Rn is an injective continuous map, then f (U) is open in Rn.

Proposition 2.5 [3, Proposition 4]. Let X be a finite-dimensional normed space and let
V be a subset of BX such that V is homeomorphic to BX and V ⊃ SX . Then V = BX .

Proposition 2.6 (Mankiewicz [4]). If X,Y are real Banach spaces and A ⊂ X and B ⊂ Y
are convex with nonempty interior, then every bijective isometry F : A→ B can be
extended to a bijective affine isometry F̃ : X → Y.
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Proposition 2.7 (Extracted from [2, Theorem 2.3] and [6, Theorem 2.1]). Suppose
F : BX → BY is a nonexpansive bijection. Then:

(1) F(0) = 0;
(2) F−1(SY ) ⊂ SX; and
(3) if F(x) is an extreme point of BY , then F(ax) = aF(x) for all a ∈ (−1, 1).

Lemma 2.8 [6, Lemma 2.3]. Let X, Y be Banach spaces and let F : BX → BY be a
bijective nonexpansive map such that F(SX) = SY . Suppose that V ⊂ SX is such that
F(av) = aF(v) for all a ∈ [−1, 1] and v ∈ V. If A = {tx : x ∈ V, t ∈ [−1, 1]}, then F|A is
a bijective isometry between A and F(A).

Lemma 2.9. Let X, Y be real Banach spaces. Let F : BX → BY be a bijective
nonexpansive map such that F(tv) = tF(v) for every v ∈ F−1(SY ) and every t ∈ [−1, 1].
Then F is an isometry.

Proof. By Proposition 2.7, F(0) = 0 and F−1(SY ) ⊂ SX . We show first that F(SX) ⊂ SY ,
that is, F(SX) = SY .

For arbitrary x ∈ SX , consider the point y = F(x)/‖F(x)‖ ∈ SY and define x̂ = F−1(y).
Then, with t = ‖F(x)‖,

F(x) = ty = tF(x̂) = F(tx̂).

By injectivity, this implies x = tx̂. Since ‖x̂‖ = 1 = ‖x‖, it follows that ‖F(x)‖ = t = 1,
that is, F(x) ∈ SY .

Now we may apply Lemma 2.8 to V = F−1(SY ) = SX and

A = {tx : x ∈ SX , t ∈ [−1, 1]} = BX .

Since F(A) = BY , Lemma 2.8 shows that F is an isometry. �

3. Main result

Theorem 3.1. Let X be a Banach space, let Zi, i ∈ I, be a fixed collection of strictly
convex Banach spaces, let Z be the `1-sum of the collection Zi, i ∈ I, and let F : BX →

BZ be a nonexpansive bijection. Then F is an isometry.

The crux of the proof is Lemma 3.2 below which analyses the behaviour of F on
typical finite-dimensional parts of the unit ball.

Under the conditions of Theorem 3.1, consider a finite subset J ⊂ I with |J| = n
and pick collections z = (zi)i∈J , zi ∈ SZi , i ∈ J, and z∗ = (z∗i )i∈J , where each z∗i ∈ S Zi

∗ is
a supporting functional for the corresponding zi. Set xi = F−1(zi) ∈ SX . Denote by Un

and ∂Un the unit ball and the unit sphere, respectively, of span{xi}i∈J . Let Vn and ∂Vn

be the unit ball and the unit sphere of span{zi}i∈J .

Lemma 3.2. For every collection (ai)i∈J of reals with
∑

i∈J aixi ∈ Un,∥∥∥∥∥∑
i∈J

aixi

∥∥∥∥∥ =
∑
i∈J

|ai| (3.1)
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(which means, in particular, that Un is isometric to the n-dimensional unit ball of `1)
and

F
(∑

i∈J

aixi

)
=

∑
i∈J

aizi. (3.2)

Proof. We will use induction on n. Since zi ∈ ext BZ , the case n = 1 of the Lemma
follows from Proposition 2.7(3). We assume the validity of the Lemma for index sets
of n − 1 elements and prove it for |J| = n. Fix m ∈ J and write Jn−1 = J \ {m}. We claim
that

F(Un) ⊂ Vn. (3.3)
To see this, consider r ∈ Un. If r is of the form amxm, the statement follows
from Proposition 2.7(3). So we must consider r =

∑
i∈J aixi with

∑
i∈J |ai| ≤ 1 and∑

i∈Jn−1
|ai| , 0. Denote the expansion of F(r) by F(r) = (vi)i∈I . For the element

r1 =
∑

i∈Jn−1

ai∑
j∈Jn−1

|a j|
xi,

by the induction hypothesis,

F(r1) =
∑

i∈Jn−1

ai∑
j∈Jn−1

|a j|
zi.

On the one hand, ∥∥∥∥∥∑
i∈J

aixi

∥∥∥∥∥ ≤∑
i∈J

|ai|,

and on the other hand,∥∥∥∥∥∑
i∈J

aixi

∥∥∥∥∥ =

∥∥∥∥∥ ∑
i∈Jn−1

aixi − (−amxm)
∥∥∥∥∥ ≥ ∥∥∥∥∥F

( ∑
i∈Jn−1

aixi

)
− F(−amxm)

∥∥∥∥∥
=

∥∥∥∥∥ ∑
i∈Jn−1

aizi − amzm

∥∥∥∥∥ =
∑
i∈J

|ai|.

Thus, (3.1) is demonstrated and we may write the following inequalities.

2 =

∥∥∥∥∥F(r1) −
am

|am|
zm

∥∥∥∥∥ ≤ ∥∥∥∥∥F(r1) −
∑
i∈J

vi

∥∥∥∥∥ +

∥∥∥∥∥∑
i∈J

vi − F
( am

|am|
xm

)∥∥∥∥∥
= ‖F(r1) − F(r)‖ +

∥∥∥∥∥F(r) − F
( am

|am|
xm

)∥∥∥∥∥ − 2
∥∥∥∥∥∑

i∈I\J

vi

∥∥∥∥∥
≤ ‖F(r1) − F(r)‖ +

∥∥∥∥∥F(r) − F
( am

|am|
xm

)∥∥∥∥∥
≤

∥∥∥∥∥ ∑
i∈Jn−1

ai∑
j∈Jn−1

|a j|
xi −

∑
i∈J

aixi

∥∥∥∥∥ +

∥∥∥∥∥∑
i∈J

aixi −
am

|am|
xm

∥∥∥∥∥
≤

∑
i∈Jn−1

∣∣∣∣∣ai −
ai∑

j∈Jn−1
|a j|

∣∣∣∣∣ + |am| +
∑

i∈Jn−1

|ai| +

∣∣∣∣∣am −
am

|am|

∣∣∣∣∣
=

∑
i∈Jn−1

|ai|

(
1 +

∣∣∣∣∣1 − 1∑
j∈Jn−1

|a j|

∣∣∣∣∣) + |am|

(
1 +

∣∣∣∣∣1 − 1
|am|

∣∣∣∣∣) = 2.
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So all the inequalities in this chain are in fact equalities, which implies that

F(r) =
∑
i∈J

vi and ‖F(r1) − F(r)‖ +

∥∥∥∥∥F(r) − F
( am

|am|
xm

)∥∥∥∥∥ = 2.

Our goal is to show F(r) ∈ Vn. Suppose, by contradiction, that F(r) =
∑

i∈J vi < Vn

and, for convenience, set s =
∑

j∈Jn−1
|z∗j(v j)|. Using the notation of Lemma 2.3,

2 =

∥∥∥∥∥F
( ∑

i∈Jn−1

z∗i (vi)
s

xi

)
− F(r)

∥∥∥∥∥ +

∥∥∥∥∥F(r) − F
( z∗m(vm)
|z∗m(vm)|

xm

)∥∥∥∥∥
=

∥∥∥∥∥ ∑
i∈Jn−1

(z∗i (vi)
s

zi − vi

)
− vm

∥∥∥∥∥ +

∥∥∥∥∥ ∑
i∈Jn−1

vi + vm −
z∗m(vm)
|z∗m(vm)|

zm

∥∥∥∥∥
>

∥∥∥∥∥Pz,z∗

( ∑
i∈Jn−1

(z∗i (vi)
s

zi − vi

)
− vm

)∥∥∥∥∥ +

∥∥∥∥∥Pz,z∗

( ∑
i∈Jn−1

vi + vm −
z∗m(vm)
|z∗m(vm)|

zm

)∥∥∥∥∥
=

∥∥∥∥∥ ∑
i∈Jn−1

(z∗i (vi)
s
− z∗i (vi)zi

)
− z∗m(vm)zm

∥∥∥∥∥ +

∥∥∥∥∥ ∑
i∈Jn−1

z∗i (vi)zi + x∗m(vm) −
z∗m(vm)
|z∗m(vm)|

zm

∥∥∥∥∥
=

∑
i∈Jn−1

∣∣∣∣∣z∗i (vi) −
z∗i (vi)

s

∣∣∣∣∣ + |z∗m(vm)| +
∑

i∈Jn−1

|z∗i (vi)| +
∣∣∣∣∣z∗m(vm) −

z∗m(vm)
|z∗m(vm)|

∣∣∣∣∣
=

∑
i∈Jn−1

|z∗i (vi)|
(
1 +

∣∣∣∣∣1 − 1
s

∣∣∣∣∣) + |z∗m(vm)|
(
1 +

∣∣∣∣∣1 − 1
|z∗m(vm)|

∣∣∣∣∣) = 2.

Observe that we have written the strict inequality in this chain because of
Lemmas 2.3 and 2.2. The above contradiction means that our assumption was wrong
and establishes the claim (3.3).

Further, we are going to prove the inclusion

∂Vn ⊂ F(Un). (3.4)

We will argue by contradiction. Suppose there is a point
∑

i∈J ti ∈ ∂Vn \ F(Un) and
write τ = F−1(

∑
i∈J ti). Then ||

∑
i∈J ti|| = 1 and τ < UN . Rewrite∑

i∈J

ti =
∑
i∈J

‖ti‖ t̂i, t̂i ∈ S Zi .

Pick supporting functionals ti∗ for the points t̂i, i ∈ J, and write t = (t̂i)i∈J and t∗ =

(ti∗)i∈J . We claim that F(ατ) ∈ Vn for all α ∈ [0, 1]. Indeed, if F(ατ) < Vn for some α
and F(ατ) =

∑
i∈I wi, we deduce from Lemmas 2.3 and 2.2 the following contradiction:
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1 = ‖0 − ατ‖ + ‖ατ − τ‖ ≥

∥∥∥∥∥0 −
∑
i∈I

wi

∥∥∥∥∥ +

∥∥∥∥∥∑
i∈I

wi −
∑
i∈J

ti
∥∥∥∥∥

= 2
∥∥∥∥∥∑

i∈I\J

wi

∥∥∥∥∥ +

∥∥∥∥∥∑
i∈J

wi

∥∥∥∥∥ +

∥∥∥∥∥∑
i∈J

wi −
∑
i∈J

ti
∥∥∥∥∥

>

∥∥∥∥∥Pt,t∗

(∑
i∈J

wi

)∥∥∥∥∥ +

∥∥∥∥∥Pt,t∗

(∑
i∈J

wi

)
−

∑
i∈J

ti
∥∥∥∥∥

=

∥∥∥∥∥∑
i∈J

t∗i (wi)t̂i
∥∥∥∥∥ +

∥∥∥∥∥∑
i∈J

t∗i (wi)t̂i −
∑
i∈J

ti
∥∥∥∥∥

=
∑
i∈J

|t∗i (wi)| +
∑
i∈J

|‖ti‖ − t∗i (wi)| ≥
∑
i∈J

‖ti‖ = 1.

Note that F(Un) contains a relative neighbourhood of zero in Vn (by Propositions 2.7(1)
and 2.4), so the continuous curve {F(ατ) : α ∈ [0, 1]} connecting zero with

∑
i∈J ti in Vn

has a nontrivial intersection with F(Un). This implies that there is an a ∈ [0, 1] such
that F(aτ) ∈ F(Un). Since aτ < Un, this contradicts the injectivity of F and establishes
(3.4).

Now, (3.3) and (3.4) together with Lemma 2.5 imply F(Un) = Vn. Observe, that Un
and Vn are isometric to the unit ball of the n-dimensional `1, so they can be considered
as two copies of the same compact metric space. The expand-contract plasticity of
totally bounded metric spaces [5] implies that every bijective nonexpansive map from
Un onto Vn is an isometry. In particular, F maps Un onto Vn isometrically. Finally, by
Lemma 2.6, the restriction of F to Un extends to a linear map from span{xi, i ∈ J} to
span{zi, i ∈ J}, which evidently implies (3.2). �

Proof of Theorem 3.1. Our aim is to apply Lemma 2.9. To satisfy the conditions of
the lemma, for every z ∈ SZ we must consider y = F−1(z) and show that

F(ty) = tz (3.5)

for every t ∈ [−1, 1]. To this end, let Jz = supp(z) and write

z =
∑
i∈Jz

zi =
∑
i∈Jz

‖zi‖z̃i,

where z̃i ∈ S Zi . Also, for i ∈ Jz, set

xi := F−1(z̃i) ∈ SX .

If Jz is finite, formula (3.2) of Lemma 3.2 implies that

y = F−1(z) = F−1
(∑

i∈Jz

‖zi‖z̃i

)
=

∑
i∈Jz

‖zi‖xi,

and
F(ty) = F

(∑
i∈Jz

t‖zi‖xi

)
=

∑
i∈Jz

t‖zi‖z̃i = tz,
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which gives (3.5) in this case. It remains to prove (3.5) if Jz is countable. In this case,
Jz = {i1, i2, . . .} and we consider the finite subsets Jn = {i1, i2, . . . , in}. For these finite
subsets,

∑
i∈Jn
‖zi‖ ≤ 1, so

∑
i∈Jn
‖zi‖xi ∈ Un := Bspan{xi}i∈Jn

and, by Lemma 3.2,

F
(∑

i∈Jn

‖zi‖xi

)
=

∑
i∈Jn

‖zi‖z̃i.

Passing to the limit as n→∞,

F
(∑

i∈Jz

‖zi‖xi

)
=

∑
i∈Jz

‖zi‖z̃i = z, that is, y = F−1(z) =
∑
i∈Jz

‖zi‖xi.

One more application of formula (3.2) of Lemma 3.2 gives

F
(∑

i∈Jn

t‖zi‖xi

)
=

∑
i∈Jn

t‖zi‖z̃i,

which after passing to the limit ensures (3.5) since

F(ty) = F
(

lim
n→∞

∑
i∈Jn

t‖zi‖xi

)
= lim

n→∞

∑
i∈Jn

t‖zi‖z̃i =
∑
i∈Jz

t‖zi‖z̃i = tz.

Thus we can apply Lemma 2.9 to F which completes the proof of the theorem. �
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