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Introduction.

It is well-known that a general net of quadric surfaces cannot be
obtained as the net of polar quadrics of the points of a plane in
regard to a cubic surface; in order that it may be so obtained it must
have various properties that a general net of quadrics does not have.
The locus of the vertices of the cones which belong to the net of
quadrics is a curve &—the Jacobian curve of the net of quadrics,
and the trisecants of & generate a scroll. Any plane which contains
two trisecants of # is a bitangent plane of the scroll and, for a general
net of quadrics, there are eighteen of these bitangent planes passing
through an arbitrary point. When however the net of quadrics is a
net of polar quadrics it is found that any plane which contains two
trisecants of & contains two other trisecants also; it thus contains four
trisecants in all and counts six times as a bitangent plane of the scroll.
The bitangent developable of the scroll, which is, for a general net of
quadrics, of class eighteen, degenerates, in the special case when the net
of quadrics is a net of polar quadrics, into a developable of class three
counted six times; the planes of the developable are therefore the
osculating planes of a twisted cubic y. The plane which, together with
a cubic surface, gives rise to the net of polar quadrics must be one
of the osculating planes of y. It is also found, further, that the
osculating planes of y are grouped into pentahedra, the vertices of
all these pentahedra lying on &.

When a net of quadrics consists of the polar quadrics of the
points of a plane in regard to a cubic surface, this same net of quadrics
can arise from different planes and different cubic surfaces. It was
found by Schur1 that the net can be obtained from any osculating

1 Math. Annalen, 18 (1881); see in particular pp. 23-27. See also Toplitz : Math.
Annalen, 11 (1877), 434-463 ; Toplitz proves that the oo x planes which give rise to the
net of quadrics all osculate the same twisted cubic. There is also a paper by A. C.
Dixon : Proa. London Math. Soc. (2), 7 (1909), 150-156, in which he gives an algebraical
proof that the faces of the pentahedra all osculate the twisted cubic obtained by
Toplitz, but he seems unaware of Schur's work.
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plane of y and that, when any osculating plane of y has been chosen,
there is a singly-infinite set of cubic surfaces in regard to all of which
the same net of polar quadrics is obtained; thus a given net of polar
quadrics can be obtained from oo1 planes and co2 cubic surfaces, each
of the planes being associated with oo1 of the cubic surfaces. Each of
the cubic surfaces has for its Sylvester pentahedron one of the penta-
hedra, already noticed, whose faces osculate y and whose vertices lie
on #; given any one of the pentahedra and any osculating plane of
y there is in fact one cubic surface having this pentahedron for its
Sylvester pentahedron and such that the polar quadrics, of the points
of the given osculating plane of y in regard to the cubic surface,
are the members of the net from which we started. When a net of
polar quadrics is given it is therefore not possible to specify a unique
plane and cubic surface that give rise to it; but the twisted cubic y
is unique, and it is in some ways more satisfactory to define the net of
quadrics by means of y than by means of a plane and a cubic surface.
An osculating plane of y belongs to one and only one of the penta-
hedra, so that these pentahedra are sets of an involution of sets of
five osculating planes of y. The net of polar quadrics is indeed
completely defined when a g\ is given on y; the osculating planes of
y at the points of a set of the g\ form a pentahedron and, as can easity
be shown and as will appear explicitly below, there is a unique net of
quadrics in regard to each member of which all the pentahedra so
arising from the different sets of the g\ are self-conjugate. This net
is a net of polar quadrics, and its Jacobian curve is the locus of the
vertices of the pentahedra.

It is easy to give algebraic equations of the planes and cubic
surfaces that give rise to the same net of polar quadrics. Let us
write

so that the plane Pt = 0 osculates a twisted cubic, whatever the value
of 0j. Then it is easily verified that, if we take the polar quadrics of
the points of the plane

x0 + axx + a2x2 + a3x3 = 0

-with respect to any cubic surface of the pencil

aa — o-L a — a2 a. — os a — 0i a—a5

where the different surfaces of the pencil are obtained by varying A,
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the net of quadrics that is obtained does not depend on A. Further-
more1 : this net of quadrics does not depend on a, being in fact the net
determined by the three quadrics

a, P\ + a2P\ + a3P
2

3 + a±P\ + abP% = 0,

' aJ\P\ + a2elP\ + az6\Pl + a,B\P\ + ah6\P\ = 0.

That the faces of the Sylvester pentahedra, of the cubic surfaces
obtained by giving different values to A in the equation

A, P\ + A2Pi + A3 P
3
3 + A, Pi + A5 P\ + XA6 Pi

osculate the same twisted cubic, and that their points of contact
with the curve are the sets of a g\ thereon, is quite clear when we
refer to the usual algebraical process of reducing the left-hand side' of
the equation of a cubic surface from the sum of six to the sum of
five cubes.2

The choice of a twisted cubic and a g\ thereon, rather than of a
plane and a cubic surface, as a means of defining a net of polar
quadrics, has certainly one very important advantage, since it can
be extended immediately to space of higher dimensions; we have only
to take in [n] a rational normal curve of order n and a g^+2 thereon.
This paper is concerned with the properties of that net of quadrics in
[n] which arises from a rational normal curve of order n and a <7*+2

thereon in the same way as a net of polar quadrics arises from a g\ on
a twisted cubic. It is shown how the curve # is obtained as the locus
of the vertices of the (n + 2)-hedra which are formed by the osculating
primes of the rational normal curve, and how there arise certain
families of secant spaces of &. It is also shown how & can be put into
birational correspondence with a special form of plane curve of order
n + 1. The net of quadrics is introduced in §4, the equations of the

1 The equation of the doubly-infinite family of cubic surfaces contains the para-
meter A. to the first degree and the parameter a to degree 14. Toplitz states, in the
footnote to p. 449 of his paper, that this second parameter enters to degree 8. I believe
however that the word achten is a misprint for achtzehnten, since it seems, on reading
carefully through his work, that the second parameter enters to degree 18 in his
equation (9). He goes on to say that it does not seem possible to lessen this degree,
but I have not been able to account for the discrepancy between his 18 and the degree
14 to which a enters iu the above equation. This equation, with a entering to degree
14, is also implied in Dixon's work on pp. 154-155 of his paper.

2 See, for example, Baker, Principles of Geometry 3 (Cambridge, 1933), 206-208.
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quadrics being given explicitly in §5. §§6-9 are concerned with the
calculation of the classes of certain developables associated with the
set of oo1 (n + 2)-hedra; these developables are contravariants of the
net of quadrics. In §§10-13 the orders of the scrolls generated by the
secant spaces of & are obtained; these results afford another means
of calculating the classes of the developables just mentioned, and this
brief calculation is given in §14. In §§15-16 the genera of the scrolls
and developables are calculated, and finally the results obtained are
stated explicitly for the smaller values of n.

Before commencing the work it may not be out of place to point
out the extent to which this net of quadrics is specialised.

The quadrics in [n] are members of a linear system of dimension
\n (n + 3), so that the "freedom" of nets of quadrics in [ri] is the
same as that of planes in a space [Jw (n -\- 3)]; this freedom is
equal to

3 {£»(» +3) _ 2} = f {n — l)(n + 4).

Now the special net of quadrics is determined by a rational normal
curve of order n and a g\+2 thereon; since the freedom of a rational
normal curve of order n is {n — 1) (n -f 3), and that of a g£+2 on a
rational curve is 2 ( » + l ) , the freedom of the specialised net of
quadrics is

(n + 3) (n - 1) + 2 (n + 1) = n2 + 4TC - 1.
But f (n - 1) (n + 4) - (n2 + 4n - 1) = \ (n2 + n - 10).

Hence if a general net of quadrics in [ri] is so specialised that it-
becomes one of the special nets that we are to consider, it must be
subjected to £ (n2 + n — 10) conditions. When n = 3 this gives the
known fact that a net of polar quadrics in [3] can be obtained by
imposing one condition on a general net of quadric surfaces.

When n = 4 we have a net of quadrics arising from a g\ on a
rational normal quartic curve. A detailed study of this net, together
with other special nets of quadrics in [4], is now in the press.1

The curve & and its properties.

1. The homogeneous coordinates [x0, xx, xz xr, .. . . , xn} of a
point on a rational normal curve G of order n in [n] may be taken
to be

- n P - i , ^ ) * "~ 8 . • • • • ( - "-' ' ( - 1)"}.
Ada mathematica 66 (1936), 253-332.
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A SPECIAL NET OF QUADBICS 189

where 6 is a parameter giving the position of the point on C. Every
prime meets C in n points, and the equation of the osculating prime
at the point whose parameter is 6 is

x0 + 0zl + f?2^ + . . . . + 6rxr + . . . . +9nzn = 0.

The parameters of any set of re + 2 points on C are the roots of
some equation of degree re + 2 in 0; let us then consider the singly-
infinite family of sets of n + 2 points on G given by the equation

A (ao9
n+2+a19

n+l+ .. +an+19+an+2) + n (bo9
n+2+b,9n+1 + . . +bn+10+bn+z) = 0,

where the a's and 6's are fixed coefficients and A : /* is a variable
parameter; each value of the ratio A : /x gives one set of n + 2 points
on C. It is supposed that the two polynomials

a0 0"+2 + ax 0K+1 + . . - . + an+1 0 + an+2)

b0 0"+ 2 4- 6i O'l+1 + . . . . + bn+1 9 + bn+2

have no common factor. If 0 is given the equation determines the
value of A : p uniquely; in other words, a given point of C belongs to
one and only one of the sets of re + 2 points. We therefore say that
the sets of points form an involution of sets of re + 2 points on C.
Call the involution J.

Suppose now that we take the osculating primes of C at the
points of a set of J, and omit any two of them; the remaining n
primes have a common point, and we obtain in this way, by omitting
different pairs of the re + 2 osculating primes, \ (re -f- 1) (re + 2) points
associated with each set of J. The locus of these points, as the set
varies in the involution J, is a curve &, some of whose properties it is
proposed to obtain.

Through any point {£0) £i, . - . . , £n) of [n] there pass re osculating
primes of G, the parameters of their points of osculation being the
roots of the equation

If then {£0, & £„} is on & we must have an identity

A (a,, 9n+2+a19
n^1 +.... +an+1 0+an+2)+/x (bo6

n+2 + b1 0"+*+ .. . . + 6 , + 1 8+bH+2)

= (a02 + 00 + y) (fo + 0& + . . • • + *" L).

Equating the coefficients of the different powers of 9 in this identity
we obtain re + 3 equations, linear and homogeneous in the five
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quantities A, p, a, /}, y. If these equations are simultaneously
satisfied the point $ must be such that its cordinates satisfy

= 0;

all determinants, of five rows and columns, of this matrix of five
rows and n + 3 columns are to vanish. The locus given by the
simultaneous vanishing of these determinants is a curve1, and its
order, being the coefficient of tn~x in the expansion of (1 — t)~s, is
\n{n+ 1).

a0
b0
xn
0
0

a i

h
Xn-l

*n

0

Q>2

b2
*n-2

xn

a3
63 ..

: «n-3 • •

Xn-2 ••

Xn_1 . .

• • « » - l

.. XX

.. x2
• • X3

an

bn
X0

xx
Xo

0

X,

L an + 2

1 bn+z

0
0
Xn

2. We have therefore found that & is a curve of order \n{
it has properties which curves in [n.] do not in general have, and one
set of these properties, relating to secant spaces of the curve, can be
pointed out immediately. If we take any set of J and omit three of
its points, the osculating primes at the remaining n — 1 points have
a line in common; each of the three omitted primes meets this line,
and the point of intersection, being common to the primes which
osculate C at n points belonging to the same set of J, is on #; hence
the line is a trisecant of &. Thus & has an infinity of trisecants.
Again, if we take any set of J and omit four of its points, the
osculating primes at the remaining n — 2 points have a plane in
common; each of the four omitted primes meets this plane in a
trisecant of &, and the intersection of any two of these four trisecants
is on #. Thus the plane meets & in six points, these being the vertices of
a quadrilateral. There is a singly-infinite family of these secant planes
of &. Similarly we obtain a family of secant solids of #; each secant
solid meets t? in the ten vertices of a pentahedron whose five faces are
all secant planes of &, and the secant solid is the intersection of n — 3
primes osculating C at points which all belong to the same set of J;

1 Suppose we have a matrix of p rows and q columns (p < q), the elements of the
matrix being homogeneous polynomials in the coordinates of a point in [n], all those
elements in the ith row being of degree ri. Then the locus given by the simultaneous
vanishing of all the determinants of p rows and columns belonging to the matrix is of
dimension n-(q-p + l), and its order is the coefficient of t9~P+1 in the expansion of
{ ( l - r j i ) ^ -r2t) (1 -rpt)}—1. See Baker: Principles of Geometry 6 (Cambridge,
1933), 109. Herep = 5; r 1 = r 2 =0, rs = r 4 =r 6 =l .
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and so on. A secant [p] of #, where 0 < p <n — 1, meets & in
\(p + l)(p + 2) points and contains p + 2 secant [p — l]'s; the
points in which the secant [p] meets & are the points of intersection
of the sets of p of the p + 2 secant [p — l]'s. If >̂ < n — 2 the
secant [p] is itself contained in n—p secant [p + l]'s. Through each

( n \
) secant [pi's.

P J

The secant spaces of dimension p generate a scroll Bp+1 on

which # is of multiplicity ( J; in particular the trisecants of #
generate a ruled surface on which & is of multiplicity n. If r < p the
scrolls Rr+i all lie on Rp+\ and are multiple loci thereon, the actual

(n — r\
degree of multiplicity of Br+1 on Mp+1 being ( J. All the scrolls

Rp+i lie on the primal Bn_x which is generated by the secant spaces
of dimension n — 2.

3. The rational normal curve C can be put in (1, 1) corre-
spondence with a conic y; the involution J on C then gives rise to a
corresponding involution j on y. Moreover, any point of # is the
intersection of the primes which osculate C at n points belonging to
a set of J; there are two other points belonging to this set of J, and
we can suppose that the point of & from which we started corresponds
to that point in the plane of y which is the intersection of the
tangents of y at the two points which correspond to these two
remaining points of the set. Conversely: through any point of the
plane of y there pass two of its tangents, and the points of contact
of these tangents will not, in general, belong to the same set of the
involution j . If they do the points of C to which they correspond
belong to the same set of the involution J, and the osculating primes
of G at the remaining n points of the set meet in a point of #. This
point of & may then be regarded as corresponding to the point in the
plane of y. The curve & is therefore in (1, 1) correspondence with
the plane curve £ which is the locus of intersections of those pairs of
tangents of y whose points of contact belong to the same set of the
involution j . An intersection of £ and y must be a double point of a
set of j , and also every point of y which is a double point of a set of
j is on £; thus the curve £ meets y in the points of the Jacobian set
of j , and only in these points. The number of points in the Jacobian
set of j , being the degree of the discriminant of a polynomial of order
n + 2, is 2 (n + 1); hence £ must be a curve of order n + 1. Through
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any point of £ there pass two tangents of y, their points of contact
belonging to the same set of j ; the two points of contact cannot
belong simultaneously to any other set of j , and there are no further
tangents of y passing through the point; hence £ has no multiple
points, and is therefore of genus \n (n — 1). Since the curves £ and #
are in (1, 1) correspondence &• must also be of genus \n (n — 1).

The tangents of y at the points of a set of j form an (n + 2)-gram
whose \(n + 1) (n + 2) vertices are all on £; the curve £ is therefore
circumscribed to a singly-infinite set of (n + 2)-grams, which are
themselves circumscribed to y. The \(n + 1) (n + 2) vertices of an
(n + 2)-gram correspond, in the (1, 1) correspondence between £ and #,
to the J (n + 1) (n + 2) vertices of an (n + 2)-hedron, the n + 2 faces
of this being the osculating primes of C at the points of a set of J.
The sides of the (n + 2)-gram correspond to the faces of the (n + 2)-
hedron, and the vertices of the (n + 2)-gram correspond to those of the
(n+2)-hedron, in such a way that those vertices which do not lie on
a particular side of the (n -\- 2)-gram correspond to those vertices
which do lie in that face of the (n -f 2)-hedron which corresponds
to the particular side. If a side of an (n + 2)-gram is omitted the
vertices of the remaining (n + l)-gram are |ra(ra+ 1) in number;
they correspond to the vertices of the (n + 2)-hedron which lie in that
face corresponding to the omitted side of the (n + 2)-gram; these are
the \n{n + 1) intersections of the face of the (n -\- 2)-hedron with #.

The locus of the vertices of (n + 2)-grams which are circumscribed
to y, and whose sets of n + 2 points of contact with y belong to an
involution of sets of n-\- 2 points, has been seen to be a curve of order
n + 1; similarly the locus of the vertices of (n + l)-grams which are
circumscribed to y, and whose sets of n + 1 points of contact with y
belong to an involution of sets of n + 1 points, is a curve of order n.
Take now any two of the (n + 2)-grams which are inscribed in £, and
omit one side of each; we obtain two (n + 1) grams whose vertices
lie on £. Moreover the two sets of n + 1 points on y which are the
points of contact of the sides of these two (n + l)-grams determine
a unique involution of sets of n + 1 points on y; the locus of vertices
of the (n+ l)-grams arising from this involution is a curve of order
n. Since each (n + l)-gram has \n (n + 1) vertices, the vertices of the
two (n + l)-grams by which the involution was determined account
for all the n(n + 1) intersections of £ with this curve of order n;
wherefore if any two (n + l)-grams are obtained from any two
inscribed (n + 2)-grams of £ by omitting one side of each, their

https://doi.org/10.1017/S0013091500027450 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027450


A SPECIAL NET OF QUADRICS 193

n (n + 1) vertices form the complete intersection of £ with a curve of
order n. If, for the moment, we keep one of these (n + l)-grams
fixed and allow the other to vary continuously (as we may do since it
is determined by the tangent of y which is omitted from an (n -\- 2)-
gram), we see that if any side is omitted from an inscribed (n -f- 2)-gram
of £, the \n(n + 1) vertices of the resulting (n + \)-gram are the points
of contact of £ with a curve of order n; this curve of order n therefore
touches £ wherever it meets it. There is thus obtained a singly-
infinite set of contact-curves of order n of £; any two curves of the set
being such that their two sets of contacts together constitute a set of
points which is the complete intersection of £ with a curve of order n.
The set of \n(n + \) contacts of £ with one of these contact-
curves corresponds, in the (1, 1) correspondence between & and £, to
the set of \n (n + 1) intersections of # with an osculating prime
of C.

The net of quadrics.

4. The equation of an osculating prime of C is

P = x0 + fei + 62 x2 + . . . . + 0" xn = 0.

Suppose now that 9lt d2, . . . . , 8n+2 are the roots of

a0 0»+2 + ox 0"+1 + . . . . + an+2 = 0,

and so are the parameters of the points of a set of J, while
0«+3> 0»+4 , #2n+4 are the roots of

and so are the parameters of the points of a second set of J. Write
p i = x0 + eix1 + e2

ix2 + .... + en
iXn (i = i , 2 , 3 , . . , i n + 4 ) .

Then the In + 4 expressions Pf, since they depend linearly on only
2n + 1 quadratic functions of the coordinates x, must be connected by
three linearly independent linear relations; suppose these are

2n + i 2ra + 4

f
There thus arise the three linearly independent quadric primal s with
equations

M+2 »+2 «+2

S AiP* = Q, S B{Pl = 0, S C{Pl = 0,
i = l i = l i = l

these being, respectively, the same equations as
2n + 4 2n + 4

S AfP
2 = 0, 2 ^ P f = 0, S
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These three quadrics determine a net of quadric primals. Consider
now the first form for the three equations of the quadrics; the left
hand side of each of the three equations is the sum of constant
multiples of the n + 2 squares Pf, P\ , P*+2. It follows at once
that every point of the [n — s] common to any s of the n + 2 primes
Pi = 0, P2 = 0, . . . . , Pn+2 = 0 is conjugate to every point of the
[s •— 2] common to the remaining n + 2 — s primes in regard to every
quadric of the net; we may say that the n + 2 primes form a self-
conjugate (n + 2)-hedron in regard to all the quadrics of the net. In
particular, putting s = 2, or n, every vertex of the (n + 2)-hedron,
being common to n of its bounding primes, is conjugate to every
point of the [n — 2], which is the intersection of the two remaining
bounding primes, in regard to every quadric of the net. But if the
polar primes of a point in regard to all the quadrics of a net in \n\
have an [n — 2] in common the point1 must be the vertex of a cone
belonging to the net of quadrics and so lie on the Jacobian curve of
the net; hence all the vertices of the (n -+ 2)-hedron bounded by the
primes Px = 0, P2 = 0,.. . ., Pn+2 = 0 are vertices of cones belonging to
the net of quadrics. This is verified at once from the equations
of the quadrics; for the three equations can be combined linearly
in such a way that the coefficients of any two of the n + 2 squares
vanish; the particular quadric obtained is then linearly dependent
on the squares of n primes, and is therefore a cone whose
vertex is the common point of these n primes. Hence if we
take that set of J the parameters of whose points are 8X, 92, . . , 9n+%,
the \ (n + 1) (n + 2) points of & arising from this set are on the
Jacobian curve of the net of quadrics. It follows similarly, by
considering the second form for the equations of the quadrics of the
net, that if we take the set of J the parameters of whose points are
0«+3= #»+4> • • • • >02»+4, the \ (n + 1) (n + 2) points of & arising from
this set are also on the Jacobian curve of the net of quadrics.

We have obtained the net of quadrics by considering two sets of
the involution J; we can similarly obtain a net of quadrics by
considering any other pair of sets of / , and it follows similarly that
its Jacobian curve meets & in the (n + 1) (n + 2) vertices of the two
associated (n + 2)-hedra. The fact is, however, that all the nets of

1IfFo =0, Fj =0, F2 =0 are the equations of three independent quadrics of the net,
the coordinates of such a point must cause all the three-rowed determinants of the matrix

h T1 II
-—* , of three rows and n + 1 columns, to vanish.
dx ||
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A SPECIAL NET OF QTJADRICS 195

quadrics so obtained are one and the same net of quadrics, and it
then follows tha t the Jacobian curve of this net of quadrics is #
itself.

5. Suppose that fa, fa , <f>,,+2 are the roots of
A (OQ 0«~2+ ax 0»+ 1+ . . . . +an+2) + M(60 fl»+2+61fl»

+1+ . . . . +bHJ.s) = 0,
and write

Qi = x0 + fax1+faix2 + .... + t f x n , ( t = 1 , 2 , . . . n + 2 ) .
Then we have three identities
n + 2 n + 2 n + 2

S (A-tPf+A\ Ql) s 0, S (£,.P? + £',.g?) = o, S (0,P,2 + C'( Q\) = 0,
1=1 j^l i = l

where the rt + 2 expressions Pt are those previously defined. If it can
now be shown that the mutual ratios of the 3n + 6 quantities

Alt A2. .. . . , An+2, Bx, B2 -Sn+2i C-y, C2, .. .. , Cn+2,

occurring in these identities are the same as the ratios of the corre-
sponding quantities, denoted by the same symbols, occurring in the
previous identities, the truth of the statement that the net of quadrics
arising from a pair of sets of J is the same, no matter which pair of
sets is taken, will follow without further argument.

The identities connecting the 2n + 4 squares P? and Q\ can be
written down explicitly. Let us write

/ ( 0 ) = ( 0 - 0 i ) ( 0 - 0 2 ) . . . . (e-en+2),

g (6) & (0 - fa) (8 - fa) . . . . ( 0 - f a + 2 ) .
Then it can immediately be verified that the three identities are1

<-i \ftfi)g(Oi)+f(fa)g'\fa)J °'
n + 2

f(fa)9'(fa)j
Thus we have

A = 1 E = 6i P - _
f{0t)g(ot)-

Now

. . . . +6n+2)

1 When m = 3 the forms of the equations of the three quadrics arising from these
identities are equivalent to the less symmetrical set of three equations given by Dixon,
loc. c.it., p. 154.
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Thus, except for a factor of proportionality (A a0 + n bo)/n, which is
the same for all of them, the quantities Ait Bit Ct are independent
of the choice of the set (<j>u <f>2, . . .., <f>n+2) among the sets of J. Thus
we always obtain the same net of quadrics.

The developables D.

6. Suppose we take the space [s] which is common to any n — s
faces of one of the self-conjugate (n + 2)-hedra, and the space
[n — s — 2] which is common to the remaining s + 2 faces; these two
spaces determine a unique prime which contains them both. There
is associated in this way with each of the (n + 2)-hedra a finite
number of primes, and when all the primes associated with the
different (n + 2)-hedra are taken we obtain a singly-infinite family of
primes generating a developable; we may denote this developable by
either Ds + 1 or Z)n_s_3; it is a combinantal contravariant of the net
of quadrics. The number of generating primes of De+1 associated

with any one of the (n + 2)-hedra is ( J, except in the particular

case when n is even and s = \n — 1, in which case the number is only
one half of this. We propose to obtain the class ds+i of the develop-
able Ds+i, this being the number of its generating primes which pass
through an arbitrary point of [n\.

The n + 2 expressions

Qt = x0 + & *! + tfxz + .... +^xn (i = 1,2,.. ,n + 2)

satisfy the identity

il l • ( * ) = 0 >

this being the only linear identity which they do satisfy. Thus
the equation of the prime which joins the space [s] common to the
primes

61 = 0, Q2 = 0, Qn-s = 0,

to the space [n — s — 2] common to the primes

Qn-s + l = 0. Qn-s + 2 = 0» • • • • . Qn + 2 = 0J

can be written in either of the two forms
n-s Q, n + 2 f)

i-l 9 (<f>i) i - n - . + l 9 (<f>i)

The question now to be considered is—how many of these primes pass
through an arbitrary point of [n] ?
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7. We will first, before obtaining dl+1, obtain dx and d2, for the
sake of simplicity and illustration; indeed, to simplify the matter
still further, we will first obtain dx for the net of quadric surfaces in
[3] with an infinity of self-conjugate pentahedra. In [3] Dx is the
only developable which exists.

Suppose then that we take an involution of sets of five points on
a twisted cubic: the parameters <f>i, fa, fa, fa, fa of the points of a set
are the roots of the quintic

different values of the ratio A : /* giving different sets of the
involution. If

Qi = XQ -\- fa X\ -f- fax2 -\- fa Xt}, (i = 1, 2, 3, 4, 5)
g (9) = ( 9 - fa) (9 - fa) (9 -fa) (9 - fa) (9 - fa),

then

& g' (fa) ~ U>

and the equation of the plane which joins the line of intersection of
the osculating planes of the twisted cubic at the points whose para-
meters are fa and fa to the point of intersection of the osculating
planes at the three points whose parameters are fa, fa, fa is

XQ -}- <pi X± -\- (pi X2 -\- <pi X$ XQ -f- <p2 X~i -f- <p2 X2 -f- <p2 X$ ,.

(01 — fa) (01 — 03) (01 — fa) (01 — fa) (02 — 03) (02 — fa) (02 — fa) (02 — 0l)

When this is cleared of fractions it can be written

*0 {01 + 01 02 + 02 — (01 + 02) (03 + 04 + fa) + (fa fa + 05 03 + fa fa)}

+ #1 {01 02 (01 + 02) — 01 02 (03 + fa + 05) + 03 04 05}

+ X2 {01 02 — 01 02 (04 05 + 05 03 + fa fa) + (01 + 02) 03 04 0s}

~T~ Xo{(p-i fp2(rS ~i~ T*4~I *r 5/ T*l*r2\01 ~l *r 2) (^P4^Pb~i^r5rS~^'rS^P^) ~T~ (rl "101 *r 2 l~ 9 2/'r3(p4*r 5( —- 0 .

The left-hand side of this equation is a symmetric function of fa and
02, and also a symmetric function of fa, fa, fa; but it is not a
symmetric function of the five parameters 0; suppose then that we
call this equation

{12} = 0.

The expression {12} is of the second order in each of fa and fa and of
the first order in each of fa, fa, fa.

We can form a symmetric function of fa, fa, fa-, fa, fa having {12}
as a factor; such a function is

{12} {13} {14} {15} {23} {24} {25} {34} {35} {45}.
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When equated to zero this represents ten planes associated with
one of the pentahedra; we may call them the diagonal planes of the
pentahedron. Moreover, being a symmetric function, it is a rational
function of the coefficients of the quintic equation whose roots are
<£i> ̂ 2. 4>zi 04> 05- Since fa occurs squared in each of the four factors
{12}, {13}, {14}, {15}, and to the first degree only in the remaining six
factors, the highest power of fa which occurs in the symmetric
function is fau. If then the symmetric function is multiplied by
(Aa0 + fj-bo)1* the resulting product is a homogeneous binary form of
degree 14 in A and /u; when equated to zero it gives 14 values for the
ratio A: JX, and hence there are 14 pentahedra for which a plane of Z)x

passes through (x0, xx, x2, xz). Hence, for the net of quadrics in [3],
dx = 14.

The value of dx for the net of quadrics in [n] is found by an
exactly similar argument. The equation of a generating prime of
Z>! is now

X0 + (f>1X1 + 4>\X2 + +4>iXn | Xo + fa Xx + 4>\ X2 +
(fa — fa)(fa — fa) . . (fa — fa + ljifa—fa + z) (4>2 — fa){fa — <l>i) • • (^2
Multiplying by the product of the two denominators, and then
removing the factor (fa — ^2)2, this equation becomes

{12} = 0,

where {12} is a symmetric function of the pair of variables fa, <f>2 and
also of the set of n variables fa, fa, .. .., fa+2; the two variables fa and
fa occur in {12} to the (n — l)th but no higher power, while the
remaining variables occur only to the first power. Then the product

{12} {13} {14}. . . {1 n+1} {1 71+2} {23} {24}... {2 w + 2}{34}. . . {n+1 n+2}

in a symmetric function of all the n + 2 variables fa, fa, .. . ., <f>n+2.
The number of factors {rs} in which the digit 1 occurs is n + 1, while
the number in which the digit 1 does not occur is \n (n + 1); hence
the degree to which fa occurs in the whole product is

(n + 1) (n - 1) + in (n + 1) = \ (n + 1) (3n - 2).

Whence the value of dx is l(n + 1) (3n — 2).

The property of having a singly-infinite family of secant [n —2]'s
in (1, 1) correspondence with its points is also possessed by the
Jacobian curve of a general net of quadrics in [ri], and the formula
%(n+l)(3n — 2) for the class of the developable Dx has been
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obtained previously in a different way1. But the other developables
D2, D3, . . . . do not exist for a general net of quadrics.

8. We next obtain the class of the developable D2. A generating
prime of D2 joins a trisecant of & to a secant [n — 3] of &, and its
equation is

Z0 + ^l_?lJL • • :_!_+ ^" ?2 Xo + (f>2Xl + . . . . +4>2xn _
(01 ~ 4>z) (01 — 03) • • • • (01 — 0n + 2) (02—03) • • • • (02 — 0n + 2) (02 ~ 0l)

% + 03 Xi_+_•_.. • + 03*tt _ = 0
(03 — 04) • • • • (03 — 0l) (03 — 02)

Multiplying by the product of the three denominators, and then
dividing by (0.2 — 03)

2 (03 — fa)2 (0! — 02)
2, we obtain an equation

{123} = 0.

The expression {123} is a symmetric function of fa, 02, 03; the highest
power of each of these which occurs in the symmetric function is
n — 2; also {123} is a symmetric function of fa, 05 , 0n+2, these
occurring squared. We then form the symmetric function

{123} {124} {125} {12 n+ 2}{134} {nn+ln + 2}.

The number of symbols {rst} occurring in this function, which is a
symmetric function of the whole set of n+ 2 quantities fa, 02, . . . , 0n+2,

(n+2\
is ( „ ]; the number of symbols which contain the digit 1 is

( o ) and the number which do not contain this digit is

( o ) ~ ( o ) = ( o )• -^^e highest power to which 0X occurs\ 6 / \ z J \ 6 /
in this symmetric function is therefore

n ~ 2) + ̂  t V) 2 = * {% + 1} n {n ~ 2) + * (n + 1} n {n ~ 1]

The class of D2is therefore given by the equation d2=^n(n+l)(on—S).
There is, however, one exception to this statement, and this is

an additional reason why it is perhaps worth while to obtain d2

separately before proceeding to obtain the general formula for ds+:.
In the case when ?i=4, and the net of quadrics is in four-dimensional
space, there are six quantities 0l5 <f>2, <f>3, fa, <f>5, <£6; and the expression
{123} is exactly the same as {456}. Thus, in this particular case, we

oc. Edinburgh Math. Soc. (2), 3 (1933), 263.
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do not need to take the product of the twenty expressions {r s t} in
order to form a symmetric function; these expressions are equal in
pairs, and we need only take the product of ten of them. We can
take the ten symbols containing any given digit; for example the
product

{123}{124}{125}{126}{134}{135}{136}{145}{146}{156}

is a symmetric function. The class of D2 is therefore 20, half the
value given by the above formula for d2, in the particular case
when n = 4.

9. We may now obtain the value of de+1; after these preparatory
illustrations it will be sufficient to give only the main steps of the
argument. The equation of a generating prime of Ds+1 is

*t? xo + <f>ix1+<f>2
ix2-{- .... + tfxn

«X vw) = °-
Multiplying by the continued product of the s + 2 denominators, and
then dividing by

we denote the quotient by the symbol

{123 . . . . s + 2}.

This is a symmetric function of the set of s+2 variables <f>u <f>2, . . , <f>e+2>
each of these occurring to a power n — s — 1; it is also a symmetric
function of the set of n — s variables <f>8+z, <f>s+i, . . . ., <f>n+z, each of
these occurring to a power s + 1. We now form a symmetric function
of the set of n + 2 variables <j>lt <f>2, . . . . , <f>n+2 by multiplying together

the ( ) expressions, like {123 . . . . 5 + 2}, obtained by taking all

possible combinations of s + 2 of the first n + 2 integers; the number

of these expressions which contain the digit 1 is ( ), and the

number which do not contain this digit is ( ) . Hence the
Vs + ZJ

highest power to which <j>x occurs in the complete symmetric
function is

This then is the value of de+1; when s = 0 and s = 1 it agrees with
those values previously found for d1 and d2.
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There is an exception to this result (as already noticed in the
case 5 = 1 ) ; namely when s + 1 = \n. If n = 2p and s = p — 1 the
value of dp is one-half of that given by this formula; hence, in this
special case, the value of dp is

+ l\2p(2p+l)-2pt /2p+
P ) FT l ~p\ P

The scrolls R.

10. We will now obtain, by elementary correspondence theory,
a formula for the order NP+1 of the scroll Rp+X which is generated by
the secant [p]'s of &.

It is to be expected that, of the singly-infinite family of trisecants
of ft, a finite number will touch &; we first obtain this number, since
it is of great importance in the calculation of Np + 1. Suppose that
a trisecant touches & in T and meets it again in 0; this trisecant, like
any other trisecant of &, is the line common to TO — 1 primes which
osculate C at points all belonging to the same set of J. Those
primes which osculate C at the three remaining points of this set of
J are such that one of them meets the trisecant in 0 while the other
two both meet it in T. But it is impossible for n -f- 1 different
osculating primes of C to pass through T', since G is only of class n;
hence those two osculating primes of C which meet the trisecant in
T must coincide with one and the same prime S, and the point in
which £ osculates C must be a double point of the involution J.
The (n + 2)-hedron arising from this set of J consists of n primes,
whose point of intersection is 0, and of the prime 2 counted twice,
and it follows that each of the n trisecants through 0 touches & at
its point of intersection with S. Thus the point of contact of & with
any one of its trisecants which is also a tangent lies in a prime
which osculates G at a double point of J while, conversely, any
prime which osculates C at a double point of J contains n points on
& at which the tangents meet & again; the n tangents in fact are
concurrent in a point of &. Now the involution J, being a gr̂ +2 on a
rational curve, has 2% + 2 double points; hence there are 2n (n + 1)
trisecants of # which are also tangents of &, and they are distributed in
2w + 2 concurrent sets of n.

11. We can now find the order N2, of the ruled surface R2

generated by the trisecants of &, immediately. Suppose that two
points of & correspond to one another when the line joining them is
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a trisecant of &; then to any given point of & there correspond 2n
other points of #. The correspondence is clearly symmetrical, and
we have seen that the number of its united points is 2n(n + 1). But
the order of the ruled surface generated by the joins of pairs of
points which correspond to one another in a symmetrical (2n, 2n)
correspondence, with 2n(n-\- 1) united points, between the points of
a curve of order \n (n -j- 1), is equal to1

\{2n.\n{n + 1) + 2n . \n (n + 1) - 2n(n+ 1)} = n(n+l){n— 1),

the factor \ occurring before the bracket because of the symmetry of
the correspondence. For the particular ruled surface R2, however,
each generator joins three distinct pairs of corresponding points, so
that this result must be divided by 3. The order of R2 is therefore
}n (n2 — 1). We can obtain a difference equation for Np+1, and this
can be solved once the order of R2 has been found.

We make use of the following general result. Suppose there is
an (a, /J) correspondence between the points of a curve # of order N1

and the generating spaces of a scroll Rv of order Np\ i.e. to every
generating space of the scroll there correspond a points of #, while
to every point of # there correspond /3 generating spaces of RP.
Suppose, further, that there are i points of & which lie in generating
spaces of Rp that correspond to them. Then those spaces which
join points of & to corresponding generating spaces of Rp generate a
scroll Rp+i whose order Np + 1 is given by

aNp + pNi-i~ fiNp+1,

ix being, the number of corresponding pairs, of generating spaces of
Np and points of &, that lie in a general generating space of Np + 1.
In the applications which we shall make of this formula /x will in
fact always be greater than 1.

12. For the sake of greater clearness we first obtain the order
of R3 before proceeding to obtain the general formula for NP+1. In
order to do this we set up a correspondence between the points and
trisecants of &, a point not lying in general on any trisecant that
corresponds to it; we say that a point and trisecant of # correspond
when the plane joining them is a secant plane of &. Since each
trisecant lies in n — 1 secant planes, each of which contains three

-n See, for example, Edge: The Theory of Buled Surfaces (Cambridge, 1931),
pp. 17-18 ; or Baker, Principles of Geometry, 6 (Cambridge, 1933), p. 16.
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points corresponding to the trisecant, the number of points of # that
correspond to a given trisecant is 3 (n — 1). Also through each

point of & there pass ( J secant planes each of which contains two

trisecants corresponding to the point; hence the number of trisecants
corresponding to a given point of & is n{n— 1), Moreover each
secant plane is obtained in 12 different ways as the join of a corre-
sponding point and trisecant. There remains only the question of
how many points of # there are which lie on trisecants that corre-
spond to them. Now, when any trisecant t is given, a secant plane
through t contains three further trisecants tlt t2, t3; if then a vertex
of the triangle formed by these three further trisecants, say the
vertex t2t3, lies on t, then either t2 or t3, say t2, must coincide with t;
this causes the vertex tx t2 also to lie on t; the trisecants frs and tx are
then tangents of &, both of them meeting # in their point of inter-
section. Thus when a trisecant t passes through a corresponding
point of # the tangent at this point is one of those trisecants which
touch t?, and there is on t also a second point of # that corresponds
to it; the tangents of # at these two points of t intersect, and their
point of intersection is on #. Conversely: take any pair of tangents
of # which both meet # again in a point 0; let Tx and T2 be their
points of contact. Then the line Tt T2 is a trisecant of &, and both
Tj and T2 are points of & which correspond to this trisecant. Now
each concurrent set of n tangents gives rise to \n(n— 1) pairs of
points Tx and T2'- also there are In + 2 of these concurrent sets of
n tangents; the number of points of # lying on trisecants which
correspond to them is therefore In (n + 1) (n — 1). We may obtain
this number either by considering 2n + 2 sets of \n(n — 1) trisecants
and counting each trisecant twice as containing two corre-
sponding points, or else we may obtain it by considering 2w + 2
sets of n points and counting each point n — 1 times as lying on
n — 1 corresponding trisecants. The trisecants being generators of
B2, whose order N2 has been found to be \n (n2 — 1), we may now
write down the equation

3 (n - 1) N2 + n{n - \). \n (n + \) - 2n{n + 1) (n — 1) = 12iV3)

giving iV3 = In (n2 — 1) (n — 2).

I t is now noticeable that the order JV3 of R3 is 3 ( j . the

order N2 of R2 is 2 ( ), and the order N1 of & is ( ); it is
\ >* / \ ^ /
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natural then to surmise that the order Np+1 of BP + ̂  is (p+l) f „J,

and this will indeed prove to be so.

13. To obtain the order of Bp + 1 we establish a correspondence
between the points and the secant [p — l]'s of #, a point of & not
lying, in general, in a corresponding secant [p—1]; a point and
secant [p — 1] are to correspond when the [p] which joins them is a
secant [p]. When a secant [p— 1] is given there are, since the [p— 1]
is the intersection of primes which osculate C at n — p + 1 points
belonging to a set of J, n — p + 1 secant [p]'s passing through it.
Each of these secant [p]'s has \ (p + 1) (p + 2) intersections with & of
which \p (p + 1) are on the secant [p — 1]; there are p+l others
which correspond, in the sense above explained, to the secant [p— 1].
Hence to each secant [p — 1] there correspond (p + 1) (n — p-\- 1)

points of &. Also through any given point of # there pass ( )

secant [p]'s each of which contains two secant [p — l]'s that do not
pass through the point: for in any secant [p] there are p + 2
secant [p — l]'s, and any point in which the [p] meets # lies in p of

( n \j

secant [p — l] 's. Further: each secant |j>] may be obtained in
(p + 1) (p + 2) different ways as the join of a corresponding point
and secant [p — 1] of &. We have now to consider how many points
of & there are which lie in corresponding secant [p — l]'s; this can
be found exactly in the same way as in the special case p = 2. For
if we take any secant [p — 1], any secant [p] passing through it
meets & in p + 1 further points, these being the vertices of a simplex
in the [p]. A vertex of this simplex cannot lie in a, the secant [p — 1]
from which we started, unless a bounding prime of the simplex
coincides with a; this causes p of the vertices of the simplex to lie
in a, and the tangents of & at these p points must all meet & again in
the remaining vertex of the simplex. Hence, when a point of & lies
in a corresponding secant [p — 1], the tangent at this point meets #
again; furthermore the secant [p — 1J contains altogether p corre-
sponding points of &, the tangents at these p points all meeting #
again in the same point. Conversely: take any set of p tangents all
passing through the same point 0 of # and touching & in Tu T2, .., Tv

respectively. Then the [p — 1] determined by these p points of
contact must be a secant [p — 1], and each of the points of contact
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corresponds, in the correspondence we are now considering, to this
secant [p — 1]. Since there are 2n + 2 sets of n concurrent tangents

/ n \
of &, each set giving rise to ( 1 sets of p tangents, it follows that

the number of times a point of ft lies in a corresponding secant

)p. We may obtain this number either by

( n \
) secant [p — l]'s and counting each

secant [p — 1] p times as containing p corresponding points, or we
may obtain it by considering 2n + 2 sets of n points and counting

each point f ) times as lying on this number of corresponding

secant [p — l]'s. The secant [p — l]'s being generating spaces of
i2p we have the difference equation

(p + 1) (n-p + 1) Np+2 (^ ) . \n (n+1) - 2

and it can be verified immediately that it is satisfied if
n +

It therefore follows, by induction, that this is actually the order of
the scroll Bp. In particular the order of the primal Rn_^ is n2 — I.

14. The result that has just been obtained for the order of the
scroll JRP affords another means of obtaining the class of the
developable Ds+1, thus corroborating the value already found for
ds+\- We have seen that a generating prime of Ds+i is defined as
the join of a generating [s] of i?s+1 to a generating [n — s — 2] of
i?,j_,_i; since the [s] is common to n — s of the faces of an (n + 2)-
hedron, and the [n — s — 2] is common to the remaining s + 2 faces,
the primes of the developable Ds+i join corresponding spaces in a
(1, 1) correspondence between the generating spaces of Rs+i and
those of .#„_„_!. Moreover no pair of corresponding spaces can
intersect, for any point common to two corresponding spaces would
be common to all the faces of an (n + 2)-hedron, and there cannot be
more than n osculating primes of C passing through the same point.
Hence we have the formula1

d,+i= Ns+1 + Nn-.t_lt

1 Edge : Proc. London Math. Soc. (2), 33 (1932), 53-54.

https://doi.org/10.1017/S0013091500027450 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027450


206 W. L. EDGE

giving
n(2s+3)-2(s+lf

as before. There is again the exception when s+l=n — s— 1; i.e.
when n is even and s = \n — 1. In this case da+1 is generated by
joining generating spaces of N, + 1 which correspond to one another in
a symmetrical (1, 1) correspondence, so that the value of d,+1 given
by the formula must be halved in this particular case.

The genera of the scrolls and developables.

15. We can obtain, by means of Zeuthen's correspondence
formula1, a relation connecting the genera TTP and TTP+I of the scrolls
Bp and Bp+1, and hence, since we know the genus TTX of #, we
can obtain TTP. Since there is a (1, 1) correspondence between the
generating spaces of Rp + 1 and those of Rn_p_lt TTP + I and Trn_P_x must
be equal to one another, and also to the genus of the developable
Dp+1.

Let us set up a correspondence between the points of i? and its
trisecants —the generators of R2; a point and a trisecant of & are to
correspond to one another when the point lies on the trisecant.
Then to any point of & there correspond n trisecants. Suppose now
that 0 is a point of t? such tha t two of the n trisecants which pass
through it coincide with the trisecant O 1\ T2. The plane containing
any pair of intersecting trisecants of # contains also another pair,
and meets & in the six vertices of the quadrilateral formed by the
four trisecants; in the limiting case of the two intersecting trisecants
coinciding with 0 Tx T2 the other two trisecants which lie in the
plane must be the tangents of # at T1 and T2, and these two tangents
therefore intersect in a point of &. Conversely: if the tangents of &
at two points Tx and T2 intersect in a point of #, the plane 'containing
them must be a secant plane of &; the line TA T2 meets & again in a
point O, and two of the n trisecants through 0 coincide with 0 Tx T2.

1Zeufchen : Lehrbuch der abziihlenden Methoden der Geotnetrie (1914), 104-107 ; or
Math. Annalen 3 (1871), 150. See also Baker : Principles of Geometry 6 (Cambridge
1933), 19. The formula for an (a, a ) correspondence between two curves of generap
and p' is

r,-V' = 2a(p' - l ) - 2 a ' ( p - 1),
where rj, rj are the numbers of branch points of the correspondence on the two curves.
The formula applies not merely to curves, but to any loci generated by singly-infinite
sets of elements.
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We have seen however that trisecants which are also tangents of &•
are distributed in 2ra + 2 concurrent sets of n; hence the number of
points 0 on # which are such that two of their n corresponding

/ n \
trisecants coincide is {2n + 2) I ). Also, to any trisecant there

\ l J
correspond three points of &, and there are n (2n + 2) trisecants for
which two of these three points coincide. Hence, if n2 is the genus
of R-2, Zeuthen's formula gives, since the genus of &• is \n (n — 1),

= 6 (TT2 - 1) - 2n{\n (n - 1) - 1},

so that TT2 = 1 + l-w {n + 1) (2n — 5).

16. Having obtained the genus of R2 we can proceed to obtain
the genus of i?3. We set up a correspondence between the trisecants
and secant planes of &, the trisecants being the generators of J?2 and
the secant planes the generating planes of R3; a trisecant and a
secant plane correspond when the trisecant lies in the secant plane.
To a given trisecant there correspond n — 1 secant planes. If t is a
trisecant of # for which two of the n — 1 corresponding secant planes
coincide with a plane through t which meets # again in Tx, T%, T3,
then the tangents of & at Tlt T2, T3 must be concurrent in a point of
&; it follows that the number of trisecants of # for which two of the

f n\
n — 1 corresponding secant planes coincide is (2n + 2) ( I. Also,

\ ^ /
to a given secant plane there correspond four trisecants. If the
plane is such that two of these four trisecants coincide then it must
be a bitangent plane of #, the other two trisecants in the plane, apart
from the two which coincide, being tangents which meet in a point of

( n \
)• -ft2 /

now apply Zeuthen's formula to this correspondence between
trisecants and secant planes of & we obtain

- (2n + 2) ) = 8 (773 - 1) - 2 (ra - 1) (,r2 - 1).
/ \ /

This equation gives, after substituting its value for n2,
1

It is now seen that for p = 1, 2, 3 we have
fn + 2\ pn — p2 — 1

we
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It may therefore be suspected that this formula holds for all values
of p, and this suspicion is strengthened when it is observed that this
value for TTP fulfils the condition 7Tj,+1 = 7rn_p_x. To make the
suspicion into a certainty we obtain the relation between -np and
TTP+I by considering a correspondence between the scrolls Rp and
Rp+i, the former scroll being generated by the secant [p — l]'s of &
and the latter by the secant [p]'s of &.

Suppose then that a secant [p — 1] and a secant [p] of &
correspond to one another when the secant [p — 1] lies in the secant
[p]; then to a given secant [p — 1] there correspond n — p + 1
secant [p]'s; while to a given secant [p] there correspond p + 2
secant [p — l]'s. Also, by using arguments similar to those above,

( n \
J secant [p — l]'s of & for

which two of the corresponding secant [p]'a coincide, while there are

( n \
J secant [p]'s of # for which two of the corresponding

secant [p — l]'s coincide. Zeuthen's formula therefore gives

(2n+2)

and it is easily verified that this difference equation is satisfied by
the above formula for TTP.

It has been stated that the genus of the developable Dp is the
same as that of the scrolls Rp and B,n_v, this being so because there
is a (1, 1) correspondence between the primes of Dp and the
generating [p — l]'s of Rp. There is however an exception to this
statement, for if n is even and equal to 2p there is not a (1, 1)
correspondence but a (1, 2) correspondence between the primes of
Dp and the generating spaces of Rp. The genus of Rp is still that
given by the formula for TTP ; that of Dp can be deduced at once by
Zeuthen's formula. If zo is the genus of Dp the formula gives

4 (cr - 1) = 2 (Wp - 1),

for it is not possible for the two generating spaces of Rp that
correspond to a prime of DP ever to coincide, so that rj = rf = 0.
Hence, when p = \n,
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The cases n = 3, 4, 5.

17. The results that we have obtained include, in particular, the
following.

If we take a g\ on a twisted cubic in [3] the osculating planes
of the curve at the five points of a set of the g\ form a pentahedron,
the locus of whose vertices is a curve & of order 6 and genus 3. The
curve & has a scroll i?| of trisecants on which it is a triple curve,,
while the planes which join the points of & to their conjugate
trisecants form a developable of class 14. This developable and the
scroll R\ are alsoof genus 3. There are 24 generators of i?| which
touch &, and these are distributed in eight concurrent sets of three.

A g\ on a rational normal quartic curve in [4] gives rise to an
infinity of hexahedra the locus of whose vertices is a curve & of order
10 and genus 6. The trisecants of # generate a scroll -K|° on which #
is a quadruple curve, while the secant planes of #, each of which
meets & in six points, generate a scroll S\5 on which i?|° is a triple
surface and & a sextuple curve. The primes which join the points
of & to their conjugate secant planes give a developable D± of class
25, while the primes which join conjugate pairs of generators of Rf
give a developable Z>2 of class 20. The scroll Rf and the developable
Z)x are, like &, of genus 6; the developable D2 is also of genus 6,
while Rf is of genus 11. There are 40 generators of Rf which touch
&, and these are distributed in ten concurrent sets of four.

A g\ on a rational normal quintic curve in [5] gives rise to a curve
& of order 15 and genus 10. The trisecants of & generate a scroll Rf
on which # is a quintuple curve; there are 60 generators of Rf which
touch &, these being distributed in twelve concurrent sets of five. The
secant planes of & generate a scroll Rf on which # is of multiplicity
10 and Rf of multiplicity 4. The secant solids of & generate a
scroll -Rf4 on which #, Rf and Rf are of respective multiplicities 10,
6 and 3. The primes which join conjugate points and secant solids
of & give a developable Dx of class 39, while the primes which join
conjugate trisecants and secant planes of # give a developable D2 of
class 85. The scroll i?|4 and the developable Dx are, like &, of genus
10, while the scrolls Rf and Rf, and the developable D2, are all of
genus 26.
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