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Abstract

The recent progress of deep learning techniques has produced models capable of achieving high scores on
traditional Natural Language Inference (NLI) datasets. To understand the generalization limits of these
powerful models, an increasing number of adversarial evaluation schemes have appeared. These works
use a similar evaluation method: they construct a new NLI test set based on sentences with known logic
and semantic properties (the adversarial set), train a model on a benchmark NLI dataset, and evaluate it
in the new set. Poor performance on the adversarial set is identified as a model limitation. The problem
with this evaluation procedure is that it may only indicate a sampling problem. A machine learning model
can perform poorly on a new test set because the text patterns presented in the adversarial set are not well
represented in the training sample. To address this problem, we present a new evaluation method, the
Invariance under Equivalence test (IE test). The IE test trains a model with sufficient adversarial exam-
ples and checks the model’s performance on two equivalent datasets. As a case study, we apply the IE
test to the state-of-the-art NLI models using synonym substitution as the form of adversarial examples.
The experiment shows that, despite their high predictive power, these models usually produce different
inference outputs for equivalent inputs, and, more importantly, this deficiency cannot be solved by adding
adversarial observations in the training data.
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1. Introduction

Rapid progress in Natural Language Processing (NLP) has strongly influenced text classification
tasks. After the introduction of the recent deep learning methods, many text classification bench-
marks are either solved or close of being solved (Howard and Ruder 2018; Devlin et al. 2019;
Radford et al. 2019; Liu et al. 2019b). By “solved,” we mean that the classification task can be
performed by a computer with the same (or better) level of proficiency than humans. This phe-
nomenon is exemplified by attempts of creating hard text categorization tasks like the GLUE and
SuperGLUE datasets (Wang et al. 2018, 2019). Both datasets were created with the purpose of
being robust datasets for language understanding. But just after a couple of years, both datasets
have been surpassed by Transformer-based models (He et al. 2020).

Natural Language Inference (NLI) is a classification task centered on deduction. In this task,
a machine learning model determines the logical relationship between a pair of sentences P and
H (referred to as premise and hypothesis, respectively). The model must assert that either that P
entails H, P, and H are in contradiction, or P and H are neutral (logically independent) (Bowman
et al. 2015). Similar to other text classification tasks, NLI seems to be a solved problem. Computer
performance has surpassed the human baseline in the traditional NLI datasets (SNLI and MNLI)
(Bowman et al. 2015; Williams, Nangia, and Bowman 2018; Wang et al. 2022).
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To challenge the inference capacity of the deep learning models, the NLI field has used adver-
sarial techniques in different ways. A new wave of dynamic datasets adds humans and models
during the data-collecting phase, transforming the static data acquisition process in an adversarial
setting with multiple rounds. This process yields more challenging datasets that are far from being
solved by deep learning models (Nie et al. 2020; Kiela et al. 2021; Ma et al. 2021).

Another line of work is a collection of adversarial evaluation schemes that propose different
approaches, and, still, the core method is the same: define a new NLI set of examples (the
adversarial set), train a model on a benchmark NLI dataset, and evaluate it on the adversarial
examples (Glockner, Shwartz, and Goldberg 2018; Nie, Wang, and Bansal 2018; Dasgupta et al.
2018; Zhu, Li, and de Melo 2018; Naik et al. 2018; McCoy, Pavlick, and Linzen 2019; Yanaka
et al. 2019; Liu, Schwartz, and Smith 2019a; Richardson ef al. 2020). In all these papers, there is a
significant drop in performance on the new test data. But, in almost all cases, this problem can be
solved by using the appropriate training data. For example, Glockner et al. (2018) observe that a
statistical model is capable of learning synonym and antonym inference when sufficient examples
were added in training.

The present article will address a methodological flaw in the adversarial evaluation literature.
Instead of using adversarial test sets to highlight the limitations of the benchmark NLI datasets, we
propose to use some adversarial techniques to investigate whether machine learning models, when
trained with sufficient adversarial examples, can perform the same type of inference for different
text inputs with the same intended meaning. For this purpose, we define a class of text transfor-
mations that can change a NLI input without altering the underlying logical relationship. Based
on such transformations, we construct an experimental design where a percentage of the training
data is substituted by its transformed version. We also define different versions of the test set:
the original one obtained from a benchmark dataset, and the one where some observations are
transformed. Then, we propose an adaptation of the paired ¢-test to compare the model’s per-
formance on the two versions of the test set. We call the whole procedure the Invariance under
Equivalence test (IE test). This approach provides two direct advantages: we substitute the expen-
sive endeavor of dataset creation by the simpler task of constructing an adequate transformation
function, and since the proposed hypothesis test is carefully crafted to account for the variety
of ways that a transformation can affect the training of a machine learning model, we offer an
evaluation procedure that is both meaningful and statistically sound.

As a case study, we examine the sensibility of different state-of-the-art models using the tradi-
tional NLI benchmarks Stanford Natural Language Inference Corpus (SNLI) (Bowman et al. 2015)
and MultiGenre NLI Corpus (MNLI) (Williams et al. 2018) under a small perturbation based on
synonym substitution. Two main results have been obtained:

o Current deep learning models show two different inference outputs for sentences with the
same meaning. After applying the IE test using both datasets and different percentages of
transformation in the training data, we have observed that the deep learning models fail the
IE test in the vast majority of cases. This result indicates that by just adding transformed
examples in the fine-tuning phase we are not able to remove some biases originating in the
pre-training stage.

o Some NLI models are clearly more robust than others. By measuring each model’s perfor-
mance on the non-transformed test set when altered examples are present in training,
we have observed that BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019b) are
significantly more robust than XLNet (Yang et al. 2019) and ALBERT (Lan et al. 2020).

The article is organized as follows: in Section 2 we show how to define logical preserving trans-
formations using the notion of equivalence; in Section 3 we introduce the IE test; in Sections 4
and 5, we present one application of the IE test for the case of synonym substitution and com-
ment on the experimental results; in Section 6, we discuss the related literature, and, finally, in
Section 7, we address open issues and future steps.
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2. Equivalence

The concept of equivalence, which is formally defined in logic, can also be employed in natural
language with some adjustments to take into account its complex semantics. Once we establish an
equivalent relation, we define a function that maps sentences to their equivalent counterpart and
extend this function to any NLI dataset.

2.1. Equivalence in formal and natural languages

In formal logic, we say that two formulas are equivalent if both have the same truth value. For
example, let p denote a propositional variable, A the conjunction operator, and T a tautology
(a sentence which is always true, e.g., 0 = 0). The truth value of the formula p A T depends only
on p (in general, any formula of the form p A T A... AT has the same truth value as p). Hence,
we say that p A T and p are equivalent formulas.

Together with a formal language, we also define a deductive system, a collection of transforma-
tion rules that govern how to derive one formula from a set of premises. By I' - p, we mean that
the formula p is derivable in the system when we use the set of formulas I' as premises. Often
we want to define a complete system, that is a system where the formulas derived without any
premises are exactly the ones that are true.

In a complete system, we can substitute one formula for any of its equivalent versions without
disrupting the derivations from the system. This simply means that, under a complete system,
equivalent formulas derive the same facts. For example, let q be a propositional variable, and —
is the implication connective. It follows that

ipp—alra and PAT.p—>qlFqAT. (1)

The main point in Expression (1) is that, under a complete system, if we take p — q and any
formula equivalent to p as premises, the system always derives a formula equivalent to q. This
result offers one simple way to verify that a system is incomplete: we can take an arbitrary pair of
equivalent formulas and check whether by substituting one for the other the system’s deductions
diverge.

We propose to incorporate this verification procedure to the NLI field. This is a feasible
approach because the concept of equivalence can be understood in natural language as mean-
ing identity (Shieber 1993). Thus, we formulate the property associated with a complete deductive
system as a linguistic competence:

If two sentences have the same meaning, it is expected that any consequence based on them
should not be disrupted when we substitute one sentence for the other.

We call this competence the invariance under equivalence (IE) property. Similar to formal logic,
we can investigate the limitations of NLI models by testing if they fail to satisfy the IE property.
In this type of investigation, we assess whether a machine leaning model produces the same clas-
sification when faced with two equivalent texts. And to produce equivalent versions of the same
textual input, we employ meaning preserving textual transformations.

2.2. Equivalences versus destructive transformations

In NLP, practitioners use “adversarial examples” to denote a broad set of text transformations.
Such examples can refer to some textual transformations constructed to disrupt the original
meaning of a sentence (Naik et al. 2018; Nie et al. 2018; Liu et al. 2019a). However, some mod-
ifications can transform the original sentence, making it completely lose its original meaning.
Researchers may employ such destructive transformations to check whether a model uses some
specific linguistic aspect while solving an NLP task. For example, Naik et al. (2018) aimed at testing
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whether machine learning models are heavily dependent on word-level information, and defined a
transformation that swaps the subject and object appearing in a sentence. Sinha et al. (2021)
presented another relevant work in that line, in which, after transforming sentences by a word
reordering process, showed that transformer-based models are insensitive to syntax-destroying
transformations. And more recently, Talman et al. (2021) applied a series of corruption transfor-
mations to NLI datasets to check the quality of those data.

Unlike the works mentioned above, the present article focuses only on the subset of textual
transformations designed not to disturb the underlying logical relationship in an NLI example
(what we refer to as “equivalences”). Note that there is no one-to-one relationship between logical
equivalence and meaning identity. Some pragmatics and commonsense reasoning are obstructed
when we perform text modification. For example, two expressions can denote the same object, but
one expression is embedded in a specific context. One well-known example is the term “the morn-
ing star,” referring to the planet Venus. Although both terms refer to the same celestial object, any
scientific-minded person will find it strange when one replaces Venus with the morning star
in the sentence Venus is the second planet from the Sun.Such discussions are relevant,
but we will deliberately ignore them here. We focus on text transformations that can preserve
meaning identity and can be implemented in an automatic process. Hence, as a compromise, we
will allow text transformations that derange the pragmatic aspects of the sentence.

So far, we have spoken about equivalent transformations in a general way. It is worthwhile to
offer some concrete examples:

Synonym substitution: the primary case of equivalence can be found in sentences composed of
constituents with the same denotation. For example, take the sentences: a man is fishing,and
a guy is fishing. This instance shows the case where one sentence can be obtained from the
other by replacing one or more words with their respective synonyms while denoting the same
fact.

Constituents permutation: since many relations in natural language are symmetric, we can per-
mute the relations’ constituents without causing meaning disruption. This can be done using
either definite descriptions or relative clauses. In the case of definite descriptions, we can freely
permute the entity being described and the description. For example, Iggy Pop was the lead
singer of the Stooges is equivalent to The lead singer of the Stooges was Iggy
Pop. When using relative clauses, the phrases connected can be rearranged in any order. For
example, John threw a red ball that is large is interchangeable with John threw a
large ball that is red.

Voice transformation: one stylistic transformation that is usually performed in writing is the
change in grammatical voice. It is possible to write different sentences both in the active and pas-
sive voice: the crusaders captured the holy city can be modified to the holy city
was captured by the crusaders, and vice-versa.

In the next section, we will assume that there is a transformation function ¢ that map sentences
to an equivalent form. For example, ¢ could be a voice transformation function:

P =Galileo discovered Jupiter’s four largest moons.
P? = Jupiter’s four largest moons were discovered by Galileo.

3. Testing for invariance

In this section, we propose an experimental design to measure the IE property for the NLI task: the
IE test. Broadly speaking, the IE test is composed of three main steps: (i) we resample an altered
version of the training data and obtain a classifier by estimating the model’s parameters on the
transformed sample; (ii) we perform a paired ¢-test to compare the classifier’s performance on the
two versions of the test set; (iii) we repeat steps (i) and (ii) M times and employ the Bonferroni
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method (Wasserman 2010) to combine the multiple paired ¢-tests into a single decision procedure.
In what follows, we describe in detail steps (i), (ii), and (iii). After establishing all definitions, we
present the IE test as an algorithm and comment on some alternatives.

3.1. Training on a transformed sample

First, let us define a generation process to model the different effects caused by the presence of a
transformation function on the training stage. Since we are assuming that any training observation
can be altered, the generation method is constructed as a stochastic process.

Given a transformation ¢ and a transformation probability p € [0, 1] we define the (¢, p) data-
generating process, DGP,, ,(‘Dr, Dy), as the process of obtaining a modified version of the train
and validation datasets where the probability of each observation being altered by ¢ is p. More
precisely, let D € {D, Dy} be one of the datasets and denote its length by |D| = n. Also, con-
sider the following selection variables Ly, . .., L, ~ Bernoulli(p). An altered version of D is the
set composed of the observations of the form (P;*¢", H;**", Y;), where:

new new (P¥,H¥,Y;) ifLi=1,
(Pi > Hi 5 Yl) = i (2)
(Pi, Hi, Y;) otherwise

and Y; is the ith label associated with the NLI input (P;, H;). This process is applied indepen-
dently to Dt and Dy. Hence, if | D| = n; and | Dy| = ny, then there are 2(m+n2) Jistinct pairs of
transformed sets (D71, Dy’) that can be sampled. We write

D1, Dy’ ~ DGPy o (D1, Dy) (3)

to denote the process of sampling a transformed version of the datasets D and Dy according to
@ and p.

Second, to represent the whole training procedure we need to define the underlying NLI model
and the hyperparameter space. For d, s € N, let M = {f(x; 0) : 6 € © C R?} be a parametric model,
and let J(y; € IR be the associated hyperparameters space, where s is the number of hyperparam-
eters, required by the model. By search, we denote any algorithm of hyperparameter selection, for
example random search (Bergstra and Bengio 2012). Thus, given a number of maximum search
B, a budget, this algorithm chooses a specific hyperparameter value h € Hor:

h =search(Dr, Dy, M, Hye, B). (4)

A classifier g is attained by fitting the model M on the training data (D7’, Dy’) based on a
hyperparameter value k and a stochastic approximation algorithm (train):

g = train(M, D1’, Dv/, h). (5)

The function g is a usual NLI classifier: its input is the pair of sentences (P, H), and its output
is either —1 (contradiction), 0 (neutral), or 1 (entailment).

3.2. Abootstrap version of the paired t-test

Let D, be the test dataset, and let @? be the version of this dataset where all observations are
altered by . The IE test is based on the comparison of the classifier’s accuracies in two paired sam-
ples: D, and D‘f« .- Pairing occurs because each member of a sample is matched with an equivalent
member in the other sample. To account for this dependency, we perform a paired ¢-test. Since
we cannot guarantee that the presuppositions of asymptotic theory are preserved in this context,
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we formulate the paired t-test as a bootstrap hypothesis test (Fisher and Hall 1990; Konietschke
and Pauly 2014).

Given a classifier g, let A and B be the variables indicating the correct classification of the two
types of random NLI observation:

A=I(g(P,H)=Y), B=Ig(P* H?)=Y), (6)

where I is the indicator function, and Y is either —1 (contradiction), 0 (neutral), or 1 (entailment).
The true accuracy of g for both versions of the text input is given by

E[A]=P((P,H)=Y),  E[B]=P(g(P,H*)=Y). 7)

We approximate these quantities by using the estimators A and B defined on the test data
Dre={(P;, H;, Y;):i=1,...,n}

N

1
|-
™

ES

1
B=;ZBi, (8)

where A; and B; indicate the classifier’s correct prediction on the original and altered version of
the ith observation, respectively. Let match be the function that returns the vector of matched
observations related to the performance of g on the datasets D, and D,:

match(g, Dre, DF,) = (A1, B1), . . ., (An, By)) (matched sample). 9)

In the matched sample (Equation 9), we have information about the classifier’s behavior for
each observation of the test data before and after applying the transformation ¢. Let § be defined
as the difference between probabilities:

s =E[A] — E[B]. (10)

We test hypothesis Hy that the probabilities are equal against hypothesis H; that they are
different:

Hy:8=0versus Hy : 6 #0. (11)

Let Si =A; — B;and 8 =A — B. We test Hj by using the paired ¢-test statistic:
,_0-0_ JVaA-B)

h— A - bl (12)
se(8) S
such that s(8) = § /+/n is the estimated standard error of §, where

1 n

=Y G- (13)
n

i=1

In order to formulate the IE test in a suitable manner, we write X = (X1,...,X,) to denote

the vector of paired variables (Equation 9), that is X; = (A;, B;) for i€ {1,...,n}. We also use
t = fpaired t-test(X) to refer to the process of obtaining the test statistic (Equation 12) based on the
matched data X. The observable test statistic is denoted by 7.

The test statistic  is a standardized version of the accuracy difference A — B. A positive value
for t implies that A > B (the classifier is performing better on the original data compared to the
transformed data). Similarly, when ¢ takes negative values we have that B > A (the performance
on the modified test data surpasses the performance on the original test set).

https://doi.org/10.1017/51351324923000268 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324923000268

Natural Language Engineering 799

According to statistical theory of hypothesis testing, if the null hypothesis (Hp) is true, then
it is more likely that the observed value f takes values closer to zero. But we need a probability
distribution to formulate probability judgments about 7.

If the dependency lies only between each pair of variables A; and B;, then (A}, By), . . ., (A5, By)
is a sequence of indepent tuples. And so, 8y,...,8, are n independent and identically dis-
tributed (IID) data points. Moreover, if we assume the null hypothesis (Hp), we have that E[§] =
E[A] — E[B] = 0. By a version of the Central Limit Theorem (Wasserman 2010, Theorem 5.10),
t converges (in distribution) to a standard normal distribution and, therefore, we can use this
normal distribution to make approximate inferences about # under Hy.

However, it is well-documented in the NLI literature that datasets created through crowdsourc-
ing (like the SNLI and MNLI datasets) present annotator bias: multiple observations can have a
dependency between them due to the language pattern of some annotators (Gururangan et al.
2018; Geva, Goldberg, and Berant 2019). Thus, in the particular setting of NLI, it is naive to assume
that the data are IID and apply the Central Limit Theorem. One alternative method provided by
statistics is using the bootstrapping sampling strategy (Fisher and Hall 1990).

Following the bootstrap method, we estimate the distribution of t under the null hypothesis
through resampling the matched data (Equation 9). It is worth noting that we need to generate
observations under Hy from the observed sample, even when the observed sample is drawn from a
population that does not satisfy Hp. In the case of the paired ¢-test, we employ the resampling strat-
egy mentioned by Konietschke and Pauly (2014): a resample X* = (X7, . . ., X};) is drawn from the
original sample with replacement such that each X" is a random permutation on the variables A;
and B; within the pair (A}, Bj) for j € {1, ..., n}. In other words, X* is a normal bootstrap sample
with the addition that each simulated variable X} is either (A}, Bj) or (Bj, A;), with probability 1/2,
for somej € {1, ..., n}. This is done to force that the average values related to the first and second
components are the same, following the null hypothesis (in this case, E[A] = E[B]).

We use the simulated sample X* to calculate the bootstrap replication of £, t* = fpaired t-test(X™).
By repeating this process 8 times, we obtain a collection of bootstrap replications t7, . . ., 5. Let

F* be the empirical distribution of £*. We compute the equal-tail bootstrap p-value as follows:

p-value =2 min(F*(3), 1 — F*(3))

(1S N .
=2mm(g > oI <, S oI > t)). (14)

s=1 s=1

In (14), we are simultaneously performing a left-tailed and a right-tailed test. The p-value is
the probability of observing a bootstrap replication, in absolute value |t*|, larger than the actual
observed statistic, in absolute value |f|, under the null hypothesis.*

3.3. Multiple testing

We make use of the (¢, p) data-generating process to produce different effects caused by the pres-
ence of ¢ in the training stage. This process results in a variety of classifiers influenced by ¢ in
some capacity. Using the paired ¢-test, we compare the performance of all these classifiers on sets
D, and D? . (as illustrated in Figure 1).

To assert that a model fails to satisfy the IE property, we check whether at least one classifier
based on this model presents a significantly different performance on the two versions of the test
set. There is a methodological caveat here. By repeating the same test multiple times the likelihood

2Since we do not assume that  is symmetrically distributed around zero, we use this equation to calculate the p-value instead
of the symmetric bootstrap p-value: é Zle I(e5] > |2)).
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(\ P
/ p-valuep,

tm

— 1 . /‘

Xm = matCh(gm- Dre. D»'IJ'E)
tr;v.l“ Xl;'fl f T
cle— | ] 1 &m = train(M, D, DY), h)

xS
Xm

£

m,S

bootstrap simulations under Hy

/ /transformed samples
DGP,, ,(Dr.Dy)

Figure 1. The bootstrap version of the paired t-test applied multiple times. Form=1, ..., M, gn is a classifier trained on the
transformed sample (D7, D). The p-value py, is obtained by comparing the observable test statistic associated with g,
tm, with the bootstrap distribution of t under the null hypothesis.

of incorrectly rejecting the null hypothesis (i.e., the type I error) increases. One widely used cor-
rection for this problem is the Bonferroni method (Wasserman 2010). The method’s application
is simple: given a significance level «, after testing M times and acquiring the p-values p1, ..., pum,
we reject the null hypothesis if p,, < «/M for atleastone m e {1,..., M}.

3.4. Invariance under equivalence test

We call Invariance under Equivalence test the whole evaluating procedure of resampling multiple
versions of the training data, acquiring different p-values associated with the classifiers’ perfor-
mance, and, based on these p-values, deciding on the significance of difference between accuracies.
The complete description of the test can be found in Algorithm 1.

Many variations of the proposed method are possible. We comment on some options.

Alternative 1. As an alternative to the paired f-test, one can employ the McNemar’s test
(McNemar 1947), which is a simplified version of the Cochran’s Q test (Cochram 1950). The
McNemar statistic measures the symmetry between the changes in samples. The null hypothe-
sis for this test states that the expected number of observations changed from A; =1 to B; =0 is
the same as the ones changed from A; = 0 to B; = 1. Thus, the described strategy to resample the
matched data (Equation 9) can also be used in this case. The only difference is in the calculation
of the p-value, the McNemar’s test is an one-tailed test.

Alternative 2. By the stochastic nature of the training algorithm used in the neural network
field, there can be performance variation caused only by this algorithm. This is particularly true
for deep learning models used in text classification (Dodge et al. 2020). The training variation can
be accommodated in our method by estimating multiple classifiers using the same transformed
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Algorithm 1: Invariance under Equivalence test (IE test)

(1) Select all basic variables: D7, Dy, Dre, M, Ho, B, ¢, p, M, 8 and «.
(2) Obtain a hyperparameter value
h=search(Dt, Dy, M, H, B).
(3)Form=1,...,M:
(a) Generate a transformed training and validation sets
DT, D ~ DGPy,,(D7, Dy).
(b) Train a classifier on the new pair of sets using the selected hyperparameters
gm =train(M, DT, D7, h).
(c) Evaluate gm on the two versions of the test data to obtain the matched sample X,
Xm = match(gm, Dre, DY,).
(d) Obtain the observable value for the test statistic
tm= foaired t-test (Xm)-

(e) Fors=1,..., 8, obtain the bootstrap sample generated under the null hypothesis X;i* and compute
the bootstrap replication of ¢, t7;, ¢ = fpaired ttest (X))

(f) Using the empirical distribution of the simulated test statistics tj‘nys and the observable value iy,
compute the bootstrap p-value pn, as described in Equation 14.

(4) Reject the null hypothesis if py, < /M for at leastonem e {1, ..., M}.

sample and hyperparameter value. After training all those classifiers, one can take the majority
vote classifier as the single model g,.

Alternative 3. Since we have defined the hyperparameter selection stage before the resampling
process, one single hyperparameter value can influence the training on difference M samples.
Another option is to restrict a hyperparameter value to a single sample. Thus, one can first obtain
a modified sample and then perform the hyperparameter search.

All alternatives are valid versions of the method we are proposing and can be implemented
elsewhere. It is worth noting that both alternatives 2 and 3 yield a high computational cost, and,
in these cases, it is required to train large deep learning models multiple times.

4. Case study: verifying invariance under synonym substitution

As a starting point to understand the effects of equivalent modifications on a NLI task, we have
decided to concentrate our focus on transformations based on synonym substitution, that is any
text manipulation function that substitutes an occurrence of a word by one of its synonyms.

4.1. Why synonym substitution?

There are many ways to transform a sentence while preserving the original meaning. Although
we have listed some examples in Section 2, we will only work with synonym substitution in this
article. We explicitly avoid any logical-based transformation. This may sound surprising given the
logical inspiration that grounds our project, but such a choice is an effort to create sentences close
to everyday life.

It is straightforward to define equivalent transformations based on formal logic. For example,
Liu et al. (2019a) defined a transformation that adds the tautology “and true is true” to the hypoth-
esis (they even define a transformation that appends the same tautology five times to the end of
the premise). Salvatore et al. (2019) went further and create a set of synthetic data using all sorts
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A dog is sleeping.

¢ [domestic dog, Canis familiaris] = WordNet synonyms
¢ [0,0] = corpus frequency

¢ [9,16] = edit distance

@

A domestic dog is sleeping.

Figure 2. Toy example of sentence transformation (not related to a real dataset). In this case, there are two synonyms asso-
ciated with the only noun appearing in the source sentence (dog). Since both synonyms have the same frequency in the
corpus (zero), the selected synonym is the one with the lower edit distance (domestic dog).

of logic-based tools (Boolean coordination, quantifiers, definite description, and counting opera-
tors). In both cases, the logical approach generates valuable insights. However, the main weakness
of the latter approach is that the sentences produced by logic-based examples do not adequately
represent the linguistic variety of everyday speech.

To illustrate this point, take the NLI entailment P= A woman displays a big grin, H=
The woman is happy. We can modify it by creating the new pair (P, H or Q), where Q is a new
sentence. From the rules of formal logic, (P, H) implies (P, H or Q). However, when we create
sentences using this pattern, they sound highly artificial, for example P’ = A woman displays
a big grin, H' = The woman is happy, or a couple is sitting on a bench. Note
that, using the same original example (P, H), we can create a new, and more natural, NLI
entailment pair by just substituting smile for grin.

We mainly use automatic synonym substitution as an attempt to create more spontaneous sen-
tences. As the reader will see in this section, this is far from being a perfect process. The best choice
to ensure the production of natural sentences is still a human annotator. Although it is possible
to think of a crowdsource setting to ensure the production of high-quality transformations, this
comes with some monetary costs. On the other hand, automatic synonym substitution is a cheap
and effective solution.

4.2. Defining a transformation function

Among the myriad of synonym substitution functions, we have decided to work only with the
ones based on the WordNet database (Fellbaum 1998). One of the principles behind our analysis
is that an equivalent alteration should yield the smallest perturbation possible, hence we have
constructed a transformation procedure based on the word frequency of each corpus. We proceed
as follows: we utilize the spaCy library (Explosion 2020) to select all nouns in the corpus, then for
all nouns we use the WordNet database to list all synonyms and choose the one with the highest
frequency. If no synonym appears in the corpus we take the one with the lower edit distance.
Figure 2 shows a simple transformation example.

We expand this function to a NLI dataset applying the transformation to both the premise and
the hypothesis. In all cases, the target Y remains unchanged.

4.3. Datasets

We have used the benchmark datasets Stanford Natural Language Inference Corpus (SNLI)
(Bowman et al. 2015) and MultiGenre NLI Corpus (MNLI) (Williams et al. 2018) in our analysis.
The SNLI and MNLI datasets are composed of 570K and 433K sentence pairs, respectively.
Since the transformation process described above is automatic (allowing us to modify such large
datasets), it inevitably causes some odd transformations. Although we have carefully reviewed the
transformation routine, we have found some altered sentence pairs that are either ungrammatical
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or just unusual. For example, take this observation from the SNLI dataset (the relevant words are
underlined):

1. P= An old man in a baseball hat and an old woman in a jean jacket are
standing outside but are covered mostly in shadow.
H=An oldwomanhas alight jean jacket.

Using our procedure, it is transformed on the following pair:

1. P = An old adult male in a baseball game hat and an old adult female in
adenim jacket are standing outside but are covered mostly in shadow.
H? = An old adult female has avisible light denim jacket.

As one can see, the transformation is far from perfect. It does not differentiate the word
light from adjective and noun roles. However, unusual expressions as visible light denim
jacket form a small part in the altered dataset and the majority of them are sound. To mini-
mize the occurrence of any defective substitutions we have created a block list, that is a list of
words that remain unchanged after the transformation. We say that a transformed pair is sound
if the modified version is grammatically correct and the original logical relation is maintained.
Sometimes due to failures of the POS tagger, the modification function changes adjectives and
adverbs (e.g., replacing majestic with olympian). These cases produce modifications beyond
the original goal, but we also classify the result transformations as sound if the grammatical struc-
ture is maintained. To grasp how much distortion we have added in the process, we estimate the
sound percentage for each NLI dataset (Table 1). This quantity is defined as the number of sound
transformations in a sample divided by the sample size. In Appendix A, we display some examples
of what we call sound and unsound transformations for each dataset.

As can be seen in Table 1, we have added noise in both datasets by applying the transformation
function. Hence, in this particular experiment, the reader should know that when we say that two
observations (or two datasets) are equivalent, this equivalency is not perfect.

4.4. Methodology

The parameter p is a key factor in the IE test because it determines what is a “sufficient amount”
of transformation in the training phase. Our initial intuition was that any machine learning model
will not satisfy the IE property when we select extreme values of p. We believe that the samples
generated by those values are biased samples: by choosing low values for p there are not enough
examples of transformed sentences for the machine learning model in training; similarly, when
we use high values for p there is an over-representation of the modified data in the training phase.
Hence, in order to find meaningful values for the transformation probability, we utilize a baseline
model to select values for p where it is harder to refute the null hypothesis. As the baseline, we
employ the Gradient Boosting classifier (Hastie, Tibshirani, and Friedman 2001) together with
the Bag-of-Words (BoW) representation.

The main experiment consists in applying the IE test to the recent deep learning models used
in NLI: BERT (Devlin et al. 2019), XLNet (Yang et al. 2019), RoBERTa (Liu et al. 2019b), and
ALBERT (Lan et al. 2020). In order to repeat the test for different transformation probabilities
and altered samples in a feasible time, we utilize only the pre-trained weights associated with the
base version of these models. The only exception is for the model RoBERTa. Since this model has a
large version fine-tuned on the MNLI dataset, we consider that it is relevant for our investigation
to include a version of this model specialized in the NLI task. We use “RoBERTa;srgr” to denote
this specific version of the RoOBERTa model. For the same reason, we work with a smaller version
of each training dataset. Hence, for both SNLI and MNLI datasets we use a random sample of
50K observations for training (this means we are using only 8.78% and 11.54% of the training
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Table 1. Sound percentages for the transformation function based on the WordNet database.
The values were estimated using a random sample of 400 sentence pairs from the training set.

95% confidence interval

Dataset Lower bound Upper bound Observable value
SNLI 78.5% 85.9% 82.2%
MNLI 80.6% 87.8% 84.2%

data of the SNLI and MNLI, respectively). Although this reduction is done to perform the test-
ing, the transformation function is always defined using the whole corpus of each dataset. The
MNLI dataset has no labeled test set publicly available. Thus, we use the concatenation of the two
development sets (the matched and mismatched data) as the test dataset.

Because the change in transformation probabilities does not affect the hyperparameter selec-
tion stage, we perform a single search for each model and dataset with a budget to train 10 models
(B =10). In Appendix B, we detail the hyperparameter spaces and the selected hyperparame-
ter values for each model. For each value of p, we obtain 5 p-values and perform 1K bootstrap
simulations (M =5, 8 = 10%). We set the significance level to 5% (o = 0.05); hence, the adjusted
significant level is 1% (/M = 0.01). All the deep learning models were implemented using the
HuggingFace Transformer Library (Wolf et al. 2019). The code and data used for the experiments
can be found in (Salvatore 2020).

5. Results

In this section, we present the results and findings of the experiments with the synonym substi-
tution function on SNLI and MNLI datasets. First, we describe how changing the transformation
probability p affects the test for the baseline model. Second, we apply the IE test for the deep learn-
ing models using the evenly distributed values for p. We comment on the test results and observe
how to utilize the experiment outcome to measure the robustness of the NLI models.

5.1. Baseline exploration

To mitigate the cost of training deep learning models, we have used the baseline (the Gradient
Boosting classifier with a BoW representation) to find the intervals between 0 and 1 where
rejecting the null hypothesis is not a trivial exercise. Figure 3 shows the test results associated
with the baseline for each dataset using 101 different choices of p (values selected from the set
{0,0.01,0.02, . . .,0.98,0.99, 1}).

The results for the SNLI data are in agreement with our initial intuition: on the one hand,
choosing extremes values for p (values from the intervals [0, 0.2] and [0.8, 1.0]) yields p-values
concentrated closer to zero, and so rejecting the null hypothesis at 5% significance level. On the
other hand, when choosing a transformation probability in the interval [0.4, 0.6], we are adding
enough transformed examples for training, and so we were not able the reject the null hypothesis.
The same phenomenon cannot be replicated in the MNLI dataset. It seems that for this dataset the
introduction of transformed examples does not change the baseline performance—independently
of the choice of p. Although we are able to obtain p-values smaller than 1% in five scenarios
(namely for p € {0.01, 0.6, 0.74, 0.85, 0.87}), the SNLI pattern does not repeat in the MNLI dataset.

By taking a closer look at the sentences from both datasets, we offer the following explanation.
SNLI is composed of more repetitive and simple sentence types. For example, from all modifica-
tions we can perform on this dataset, 12% are modifications that substitute man with adult male.

https://doi.org/10.1017/51351324923000268 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324923000268

Natural Language Engineering 805

SNLI
06
@ Smaller than 1%
0.5 Greater than 1%
04
g
E 03
d o2
01
00 setsgse o Ll *
00 02 04 06 08 10
Transformation Probability (p)
MNLI
0.7
0.6
0.5
Sos
203
da
0.2
01
0.0 . . . O
0.0 0.2 0.4 0.6 0.8 10

Transformation Probability (p)

Figure 3. Baseline results. In the x-axis, we have different choices of transformation probabilities used in training. The
y-axis displays the minimum value for the p-values acquired in five paired t-tests. We reject the null hypothesis if the
minimum p-value is smaller than 1%.

This phenomenon corresponds to the excessive number of sentences of the type P=A man VERB
. ... On the other hand, when we look at MNLI sentences, we do not see a clear predominance of
a sentence type. A more detailed analysis is presented in Appendix C.

The baseline exploration gives us the following intuition: the synonym substitution transfor-
mation changes the inference of a classifier on the SNLI dataset for extreme p values. But, we do
not expect the same transformation to change a classifier’s outputs for the MNLI dataset.

5.2. Testing deep learning models

The baseline has helped us to identify the interval of transformation probabilities where the per-
formances on the two versions of the test set might be similar: the interval [0.4, 0.6]. Based on that
information, we have chosen three values from this interval for the new tests, namely, 0.4, 0.5, and
0.6. To obtain a broader representation, we have also selected two values for p in both extremes.
Hence, we have tested the deep learning models using seven values for p: 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.

According to the test accuracies (Figures 4 and 5), we observe that ROBERTA[ 4rgk is the best
model. This is an expected result. ROBERTA 4rgE is the larger version of the ROBERTA model
with an architecture composed of more layers and attention heads. Not only does ROBERTA [ ArGE
outperform ROBERTAg4sf in different language understanding tasks (Liu ef al. 2019b), but also
the specific version of the ROBERTA[ srge model used in our experiments was fine-tuned on the
MNLI dataset.

Each model is affected differently by the change in p. On the SNLI dataset (Figure 4), all mod-
els, except for ALBERT, continue to show a high accuracy even when we use a fully transformed
training dataset. We have a similar picture on the MNLI dataset (Figure 5). However, in the lat-
ter case, we notice a higher dispersion in the accuracies for the models ALBERT, XLNet, and
ROBERTA pAsE.

In the majority of cases, we also observe that the performance on the original test set is superior
compared to the transformed version as expected. As seen in Figures 4 and 5, in almost all choices of
p and for all deep learning models, the black line (the accuracy on the original test set) dominates
the gray line (the accuracy on the transformed version of the test set). This difference becomes
more evident for the test statistic (Figure 6). For almost every choice of p, all deep learning models
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Figure 4. SNLI results. In the x-axis, we have different choices of transformation probabilities in training. The y-axis displays
the accuracy. Each point represents the average accuracy in five runs. The vertical lines display the associated standard
deviation. The black and gray lines represent the values for the original and transformed test sets, respectively.
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Figure 5. MNLI results. In the x-axis, we have different choices of transformation probabilities in training. The y-axis displays
the accuracy. Each point represents the average accuracy in five runs. The vertical lines display the associated standard
deviation. The black and gray lines represent the values for the original and transformed test sets, respectively.
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Figure 6. Test statistics from the IE test for all models. In the x-axis, we have different choices of transformation probabilities
used in training. The y-axis displays the values for the test statistic. Each point represents the average test statistics in five
paired t-tests. The vertical lines display the associated standard deviation. And the baseline is a Bow model.

have generated test statistics with extremely positive values. When we compare these statistics with
the empirical distribution generated under the null hypothesis we obtain p-values smaller than
10~* for the majority of cases. The exceptions are related to the models ALBERT and BERT on the
SNLI dataset using p = 1. In these cases, the minimal p-values are 0.008 and 0.156, respectively.
Hence, for all IE tests associated with the deep learning models, we reject the null hypothesis in 69
tests out of 70.
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Table 2. Ranked models according to the SNR metric. In this case, the
noise is the synonym substitution transformation.

Signal-to-noise ratio

Model SNLI MNLI Average
RoOBERTa arGE 393.1 569.3 481.2
BERT 151.1 151 151.1
ROBERTagase 222.6 16.5 119.5
Baseline 24.8 212.6 118.7
XLNet 16.7 12.8 14.8
ALBERT 10.8 10.7 10.8

The empirical evidence shows that the deep learning models are not invariant under equivalence.
To better assess the qualitative aspect of this result, we have added in Appendix C an estimation of
the sound percentage of the test sets and comment on some particular results. Most sentences in
the tests set of SNLI and MNLI are sound. Hence, it seems that the difference in performance is not
just a side effect of the transformation function. This indicates that although these models present
an impressive inference capability, they still lack the skill of producing the same deduction based
on different sentences with the same meaning. After rejecting the null hypothesis when using
different transformation probabilities, we are convinced that this is not a simple data acquisition
problem. Since we are seeing the same pattern for almost all models in both datasets, it seems that
the absence of the invariance under equivalence propriety is a feature in the Transformer-based
models.

5.3. Experimental finding: model robustness

We now concentrate on a notion of prediction robustness under a transformation function. One
possible interpretation of the transformation function is that this alteration can be seen as a noise
that is imposed to the training data. Although this type of noise is imperceptible for humans,
it can lead the machine learning model to make wrong predictions. By this interpretation, the
transformation function is an “adversary,” an “attack,” or a “challenge” to the model (Liu et al.
2019a). Along these lines, a robust model is one that consistently produces high test accuracy even
when we add different proportions of noised observations in training; in other words, a robust
model should combine higher prediction power and low accuracy variation. Given a model M
and a dataset, we train the model using the (¢, p) data generation process for different values of p
(as before p € [0, 1]) and obtain a sample of test accuracies (accuracies associated with the original
test set). In this article, we use the signal-to-noise ratio (SNR) as a measure of robustness. Let fLyy
and 67y be the sample mean and standard deviation of the accuracies, respectively, we define:

A

SNRy = =M (15)

oM
This statistical measure has an intuitive interpretation: the numerator represents the model’s
overall performance when noise is added, and the denominator indicates how much the model’s
predictive power changes when different levels of noise are present. Hence, the larger, the better.
Since this score can be given for each model and dataset, we rank the models by their robustness
under a transformation function by averaging the model’s SNR on different datasets (Table 2).
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Figure 7. Models’ accuracy on the original test set. In the x-axis, we have different choices of transformation probabilities
used in training. The y-axis displays the accuracy. Each point represents the average accuracy in five runs. The vertical lines
display the associated standard deviation. And the baseline is a Bow model.

From the perspective of robustness—based only on the SNR metric—the networks XLNet and
ALBERT are worse than the baseline. Although both deep learning models present, on average,
a higher accuracy compared to the baseline; they are not able to maintain high accuracy when
different quantities of altered sentences are included in the training data. In contrast, the baseline
produces a low yet consistent test accuracy (Figure 7). Among all models, BERT and ROBERTA
appear to be the most robust ones. As seen in Table 2, BERT shows consistent performance in both
datasets, and ROBERTAp4sg shows an almost unchanged behavior on the SNLI dataset. Clearly,
ROBERTA [ srGE stands out when compared to the rest. This model was not only able to obtain a
higher accuracy on both datasets but also it had maintained a high performance regardless of the
choice of p.

5.4. Discussion and limitations

The result of the IE tests applied to the deep learning models shows that these models can have
different inferences for sentences with the same meaning. What is surprising about the deep learn-
ing models is that they perform very differently in the test sets Dy, and DY, even when sufficient
amount of transformed observations are added in training. We offer a possible explanation for this
phenomenon. All transformed-based models are trained in two stages: they are pre-trained using
unlabeled text and fine-tuned for the NLI task. The (¢, p) data generation process only affects the
fine-tuning phase. Hence, we believe that it is possible to reduce the accuracy difference between
the two versions of the test data by allowing the addition of transformed sentences in the pre-
training stage. However, since pre-training these large models is a computationally expensive
endeavor, the results presented here are relevant. It seems that we cannot correct how these models
perform inference by just adding examples in the fine-tuning phase.

There is a limitation in the present analysis. As stated in the methodological considerations
(Section 4.4), we have used a small random sample of the training data (small compared to the
original size of the SNLI and MNLI dataset). Hence, one can argue that the results associated with
the deep learning models are restricted to small NLI datasets. Further research is needed to verify
this claim. We can take bigger samples (samples with more than 50K observations) and apply
the IE test to verify if there is a minimum training size needed to correct the biases of the deep
learning models in the fine-tuning phase. Even if such minimum size exists, our results expose
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some limitations of the current NLI models. The results presented here may serve as motivation
for a broader exploration on those limits.

Our battery of experiments does not include the recently released dynamic datasets (Nie et al.
2020; Kiela et al. 2021; Ma et al. 2021). Hence, a natural extension of our work will be the inclu-
sion of these new data sources. It should be noted that the dynamic datasets are still an open
challenge for the transformer-based models, and both SNLI and MNLI are solved inference tasks.
Our results show that even in tasks where machine learning models surpass human performance,
it is possible to find logical blind spots.

6. Related work

There is an established line of work in NLI that uses adversarial techniques. They all show the
limitations of the machine learning models when trained in the classical inference datasets.

Glockner et al. (2018) developed a new test set based on different types of lexical knowledge
(e.g., hypernymy and hyponymy relations). They showed that machine learning models trained
on the datasets SNLI and MNLI perform substantially worse on their new lexical test set.

Nie et al. (2018) created a new test set where the logical relations do not depend on lexical
information alone (e.g., it is possible to obtain a new contradiction observation (P, P’) from the
pair (P, H), where P’ is the result of swapping the subject and object in P). They showed that
models trained on SNLI perform poorly on their new adversarial test sets.

Dasgupta et al. (2018) constructed a test set based on word composition (e.g., some entailment
examples have the form: P=X is more cheerful than Y, and H=Y is less cheerful
than X). They have observed that different models trained on the SNLI dataset perform badly on
their adversarial test set; however, they also noted that performance can be corrected when the
models are trained with observations similar as the ones from the new test set.

Naik et al. (2018) offered three new adversarial test sets (they have called them “stress tests”)
based on different linguistic phenomena (e.g., antonymy relation, sentences containing numerals,
etc.). After training different models on the MNLI dataset, they have observed that the models
show a significant performance drop on their new test sets.

McCoy et al. (2019) observed three “syntactical heuristics” presented on the benchmark
datasets: lexical overlap heuristic (the logical relation can be guessed solely based on word over-
lap); subsequent heuristic (the logical relation can be guessed solely based on the fact that H is a
subsequence of P); and constituent heuristic (the logical relation can be guessed from the fact that
H is a constituent of P). In order to understand how much a machine learning model rely on such
heuristics, McCoy et al. (2019) constructed an adversarial test set where those heuristic fail. They
showed that different models trained on the MNLI dataset perform very poorly on their adver-
sarial test set. Similar to Dasgupta et al. (2018), they also noted that it is possible to obtain good
performances on the new test set when similar observations are introduced in the training stage.

Yanaka et al. (2019) constructed a new test set based on monotonicity inference (this term
includes different linguistic phenomena that can cause entailment, e.g., the removal of modifiers—
I bought a movie ticket entails I bought a ticket). After training different models on
the SNLI and MNLI datasets, they have observed that the performance of the machine learning
models on their adversarial test set was unsatisfactory. They have also noted that the performance
of the models can be improved when monotonicity inference examples are added when training
those models.

Similar to the present article, Liu et al. (2019a) proposed an analysis of the limitation of
datasets and models from the NLI literature by defining a collection of transformation functions
(“challenges to benchmarks”) and a training procedure that includes transformed observations
(“inoculation by fine-tuning”). Note that, the IE test can be seen as a generalization of this type of
analysis. In the process of inoculation, the authors fix a “small number” of transformed examples
for training and compare model performance on two test sets ignoring any statistical significance
test. By contrast, our method allows any portion of the training data to be altered.
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Our analysis was directly influenced by Geiger et al. (2019). The authors of that work have used
the notion of fairness to argue that an evaluation method is not fair if the model was not trained
on a sample that does not support the required generalization. The IE test is an alternative tool
to approach the fairness problem. In our experiment, we performed an exploratory analysis to
select some particular values for p that could generate non-biased samples (our version of “fair
datasets”). Through experimentation, we selected the values 0.4, 0.5, and 0.6. But other researchers
may take an alternative route. They can pre-define some values for p that they judge “fair” (e.g.,
0.25, 0.5, 0.75) and run all the comparisons.

Although it is a work in machine translation literature, Hupkes et al. (2020) defined a consistent
score to measure how consistent models’ predictions are—correct or incorrect—when a word is
replaced with a synonym. Similar to our results on robustness, they observed that, compared to
other models, the Transformer-based models show a high consistency score.

7. Conclusions

In this article, we have developed the IE test, a method to evaluate whether an NLI model can make
the same type of inference for equivalent text inputs. By using an equivalent transformation func-
tion based on synonym substitution we have tested the state-of-the-art models and observed that
these models show two different inferences for two sentences with the same meaning. We have
also ranked these models by their performance robustness when transformed data is introduced.

The results presented here show only a partial picture of the limitations of the current NLI
models. The present analysis can be improved using the IE test in a broader study to investigate
whether the IE property is violated for other models and datasets. There are already new powerful
models to be analyzed, for example DeBERTa, DeBERTaV3, and T5 (He et al. 2020; He, Gao, and
Chen 2021; Raffel ef al. 2020). And as mentioned before, the recent trend of dynamic models will
keep providing good data sources for the NLI community (Nie et al. 2020; Kiela et al. 2021; Ma
et al. 2021).

Moreover, we have used only English corpora, but our analysis can be extended to other lan-
guages, with a caveat. We assume the language being studied has the same tools as those used
here. For example, it is possible to perform the same synonym substitution analysis for Portuguese
because there are NLI datasets in Portuguese (Real et al. 2018; Fonseca et al. 2016), and there is
a counterpart of the WordNet in Portuguese (De Paiva et al. 2016). Crowdsource labor is needed
for any language that does not already have these tools.

From the theoretical side, there is still space for improvement. The IE test is based on resam-
pling an altered version of the dataset multiple times. When combining this strategy with models
with hundreds of millions of parameters, we can quickly encounter hardware and time limitations.
Thus, a natural continuation of this research path is to combine the resampling method with the
reduction techniques that can increase training and inference speed.

The IE test is a tool to comprehend the deficiency of machine learning models. Since equiva-
lence in natural language is based on the general phenomenon of meaning identity, extending this
test for any text classification task is reasonable. This extension should be carefully established
because the definition of an adequate transformation function is task-dependent. After selecting
a transformation, the IE test can be used to check for any biases in the transformer-based models’
pre-training. We hope that our evaluation procedure encourages and facilitates such limitation
analysis.
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The distinction between sound and unsound transformations is based on subjective judgments.
What has guided us to determine an alteration as sound is how the transformation affects the
associated label. Hence, we have allowed modifications that produce minor grammatical errors
(e.g., “a adult male”). Tables 3-6 show some examples of sound and unsound transformations.

Table 3. Sound transformations for SNLI.

Original pair

Transformed pair

A man and his son riding bikes down the
sidewalk.

The man and the boy were in town.

A adult male and his boy riding bikes down
the pavement.

The adult male and the male child were in
town.

A male and female are asleep on a couch with
a large black dog as four people sit at a table
behind them.

The male and female that are asleep on the

couch are in a relationship.

A male and female are asleep on a sofa with a
large black domestic dog as four people sit at

atable behlnd them.

The male and female that are asleep on the

sofa are in a human relationship.

Awoman in a blue winter jacket is pushing a
shopplng cart through snow.

A homeless woman is eatlng a amburge

A adult female in a blue wintertime jacket is
pushmg a shopplng cart through snowfall

A homeless person adult female is eatlng a

burger.

Dark image of two people inside a fish market.

There are fish.

Dark mental image of two people inside a fish

marketglac

There are f|sh

Table 4. Unsound transformations for SNLI.

Original pair

Transformed pair

Awoman and child are on a boat and the
woman is looking out into the ocean through
ascope.

A lady and a child are on a boat and the lady is

looking out into the ocean through a scope.

A adult female and kid are on a boat and the
adult female is looking out into the ocean

through arange.

Alady and a kid are on a boat and the lady is
looking out into the ocean through a range.

A man in a white sh|rt holds a mlcroghon

A band is playlng ona tag

Aadult male ina wh|te sh|rt holds a m|ke

A band is playmg ona phas

A cattle dog nips the leg of an animal.

A dog nips a cow.

A cows domestic dog shot the leg of an
creature.

A domestic dog shot a moo-cow.

A band of people playing brass instruments is
performlng out5|de

A]ﬂfuneral is takmg place

A band of people playing brass instruments is
performmg outslde

Awind funeral is takmg place
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Table 5. Sound transformations for MNLI.

Original pair

Transformed pair

Another majestic view of the city is from a
charming park Miradouro de Santa Luzia just
down the hill from the castle.

The castle is on the highest hill in the city.

Another olympian view of the metropolis is
from a charming parkland Miradouro de Santa
Luzia just down the hill from the palace.

The palace is on the highest hill in the
metropolis.

The agency cites the clean air act 42 usc.

The agency discusses the clean air act in
chapter 3 of the book.

The office cites the clean air enactment 42 usc.

The office discusses the clean air enactment in
chapter 3 of the book.

Renovated in 2000 this full-service resort
fronts a tremendous swimming and
snorkeling beach with dozens of turtles.

The resort was renovated in 2000.

Renovated in 2000 this full-service resort hotel
fronts a tremendous swimming and
snorkeling beach with lots of turtles.

The resort hotel was renovated in 2000.

Bolstered by a new influx of immigrants to
meet the rubber and tin booms of the 1920s,
non-malays now slightly outnumbered the
indigenous population.

The population of malays to non-malays was
equal and all the work was shared.

Bolstered by a new inflow of immigrants to
meet the India rubber and tin booms of the
twenties, non-malays now slightly

outnumbered the indigenous population.

The population of malays to non-malays was
equal and all the work was shared.

Table 6. Unsound transformations for MNLI.

Original pair

Transformed pair

They might as well steal it then they don’t
have to pay taxes on it.

Taxes are entirely irrelevant.

have to salary taxes on it.

They power as well steal it then they don’t

Taxes are entirely irrelevant.

You know you writers are coming you know
you’re having a hard time here.

The writers are having a hard time keeping the
show interesting.

You know you author are coming you know
you’re having a difficult time here.

The author is having a difficult time keeping
the show interesting.

Pigs are sociable loving and a hell of a lot
brighter than Dalmatians.

Pigs are very smart.

Pigs are sociable loving and a inferno of a lot
brighter than Dalmatians.

Pigs are very smart.

2 billion in benefits to over 13 million
recipients.

A couple of billion in benefits for the public to
do whatever they want with.

Deuce billion in benefits to over 13 million

recipients.

A duo of billion in benefits for the public to do
whatever they want with.

Appendix B: Hyperparameter search

We present all the hyperparameters used in training, the associated search space, and the selected
value for each dataset in Tables 7-12. The hyperparameter values were selected using the random

search algorithm.
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Gradient boosting

Table 7. Best hyperparameter assignments for the Gradient Boosting classifier.

Hyperparameter Search space Value for SNLI Value for MNLI

Number of estimators {10,...,30} 26 29
Max depth {2,...,20} 15 8
Reg alpha [0.05,1.0] 0.65 0.75
Reg gamma [0.05, 1.0] 0.15 0.7
Learning rate [0.05,1.0] 0.55 0.4
Subsample [0.05,1.0] 1.0 1.0

Col sample by tree [0.05,1.0] 0.95 0.9

ALBERT

Table 8. Best hyperparameter assignments for ALBERT.

Hyperparameter Search space Value for SNLI Value for MNLI

Number of epochs {1,2,3} 2 2
Max input length {50, 60, . ..,200} 90 130

[5x1075,1x 1074] 6.7%x 107> 6.7x 107>

Learning rate

Weight decay [0, 0.01] 1.1x1073 6.6 x 1073

Adam epsilon [1x1078,1x1077] 3x10°8 2x10°8

Max grad norm [0.9,1.0] 0.91 0.97

BERT

Table 9. Best hyperparameter assignments for BERT.

Hyperparameter Search space Value for SNLI Value for MNLI

Number of epochs {1,2,3} 3 2

Max input length {50, 60, ...,200} 130 90

Learning rate [5x1075,1x 1074 7.7%x107° 7.2x107°
22x1073 33x1073

Weight decay [0,0.01]

Adam epsilon [1x1078,1x1077] 1x1077 3x10°8

Max grad norm [0.9,1.0] 0.94 1.0
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XLNet
Table 10. Best hyperparameter assignments for XLNet.
Hyperparameter Search space Value for SNLI Value for MNLI
Number of epochs {1,2,3} 1 2
Max input length {50, 60, ...,200} 100 100
Learning rate [5x1075,1x1074] 6.7 x 107° 6.1x 107>
Weight decay [0,0.01] 0.01 4.4 %1073
Adam epsilon [1x1078,1x1077] 4x10°8 1x1077
Max grad norm [0.9,1.0] 1.0 0.9
ROBERTagsse
Table 11. Best hyperparameter assignments for ROBERTagssk.
Hyperparameter Search space Value for SNLI Value for MNLI
Number of epochs {1,2,3} 3 1
Max input length {50, 60, . ..,200} 140 150
Learning rate [5x1075,1x1074] 32x107° 6.1x 107>
Weight decay [0,0.01] 8.8x 1073 3.3x 1073
Adam epsilon [1x1078,1x1077] 2x10°8 1x 1077
Max grad norm [0.9,1.0] 0.9 0.93
ROBERTA srgE

Table 12. Best hyperparameter assignments for ROBERTa, 4rgE-

Hyperparameter Search space Value for SNLI Value for MNLI
Number of epochs {1,2,3} 1 2

Max input length {50, 60, ...,200} 140 150
Learning rate [5x1075,1x 1074] 5x 1073 5x 107>
Weight decay [0, 0.01] 8.8x 1073 8.8 x 1073
Adam epsilon [1x1078,1x1077] 4x10°8 5x 1077
Max grad norm [0.9,1.0] 0.93 0.9

https://doi.org/10.1017/51351324923000268 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324923000268

Natural Language Engineering 817

Appendix C: Qualitative analysis

To give the reader a holistic view of the modifications, we describe in more detail the different
effects caused by the synonym substitution function.

Most frequent tranformations

The SNLI training data contains 550K sentence pairs. Among these observations, 93% can be
transformed using our synonym substitution function. On average, 3.25 words were transformed
per sentence pair. Similarly, the MNLI training dataset comprises 392K sentence pairs. When we
apply the synonym substitution function to all the dataset, we modify 91% of the data. On average,
4.23 words were transformed per sentence pair in this dataset.

Domain difference affects the behavior of the transformation function. Since the SNLI dataset
contains more generic phrases, we observe that an expressive number of transformations in this
dataset are based on modifying the words men, woman, boy, and person. As displayed in Figure 8,
the substitution of man by adult male is responsible for more than 12% of all sentence modifi-
cations. On the other hand, since the MNLI data are composed of more domain-specific terms,
we do not see a clear pattern in the transformation. As can be seen in Figure 8, the modification
on the MNLI test set is not strongly influenced by a few words.

Sentence length

In both datasets, the transformation increases the size of the sentences. In the SNLI’s training data,
the original text input (the concatenation of premise and hypothesis) contains, on average, 20.27
words. After applying the transformation function, the average size of a transformed text input is
23.61 words (an increase of 16.4%). The numbers for the test set are similar (the average number
of words in the original and transformed test set is 21.44 and 24.8, respectively). We observe a
similar increase in size when we break the training data by the different labels (Table 13).

SNLI MNLI
by > mae chi wa e [
o> open ]
bike > matorcyce part > porion
00% 20% 0% 60% 8% 00% 2o% 00% 0%  04%  06% 08%  10% 12 1 1
Frequency Frequency

Figure 8. Plot with the twenty most frequent transformations of each dataset. The x-axis displays the word substitution
frequency. The y-axis displays the content of each substitution.
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Table 13. Average text input length for the different partitions of the SNLI training data. The
NLI labels define the partitions.

Contradiction Neutral Entailment
Original size 20.21 21.11 16.48
Transformed size 23.59 24.49 22.77
Relative increase 16.7% 16.0% 16.9%

Table 14. Average text input length for the different partitions of the MNLI training data. The
NLI labels define the partitions.

Contradiction Neutral Entailment
Original size 29.30 30.66 29.82
Transformed size 31.64 33.04 32.19
Relative increase 8.0% 7.8% 7.9%

Table 15. Frequency transformation of the terms selected from Gururangan et al. (2018). We
only show words where the synonym substitution function has affected the frequency. By
X% — Y% we refer to the frequency transformation of the word in the partition of the dataset
(the NLI label defines the partition). X% refers to the original frequency, while Y% represents
the word frequency on the transformed dataset.

Contradiction Neutral Entailment

SNLI tv 0.9% — 0% Competition 0.8% — 1.1% Outdoors 3.2% — 0%
Outside 9.8% — 10.4%
Animal 0.8% — 0%

MNLI Also 3.9% — 0% Various 0.4% — 0%

For the MNLI dataset, we also see an increase in sentence length. The original text input con-
tains, on average, 29.93 words. And this number increases to 32.29 words after the transformation.
Breaking the dataset into labels, we also see an similar increase among all label (Table 14).

Annotation artifacts

One notorious problem associated with the classical NLI datasets is the presence of annotation
artifacts. These artifacts are unintended patterns created by the crowdworkers that constructed
those datasets (Gururangan et al. 2018). One artifact that is relevant to us is the correlation
between some specific words and the NLI labels. For example, the heavy presence of negation
words (no, never, and nothing) in the contradiction examples.

To assess whether the synonym substitution function adds more artifacts to the transformed
dataset, we analyzed the frequency of all words mentioned by Gururangan et al. (2018) in the
original and transformed datasets. In both datasets, the frequency of most of the selected words
remains the same after the transformation. But we have observed that the synonym substitution
function both adds and removes different artifacts. The summary of these changes can be seen in
Table 15.

From the 30 words mentioned by Gururangan et al. (2018), we only see a change in frequency
for 7 terms. The majority of the changes are a reduction in frequency. We only see an increase in
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Table 16. Sound percentages for the transformation function based on the WordNet
database. The values were estimated using a random sample of 400 sentence pairs
from the test set.

95% confidence interval

Dataset Lower bound Upper bound Observable value
SNLI 78.8% 86.2% 82.5%
MNLI 76.6% 84.4% 80.5%

frequency for the words competition and outside (both on SNLI). It seems that the synonym
substitution function only marginally changes the occurrences of annotation artifacts.

Test data quality

The SNLI test set is composed of approximately 9.8K sentence pairs. Using the synonym substi-
tution function, we can modify 92% of observations. As stated before, the MNLI test set is the
combination of the public matched and mismatched versions of the development set. This test
set is composed of approximately 19.6K sentence pairs, and it is possible to modify 91% of exam-
ples. As before, we estimate the quality of the transformation on the test sets by analyzing random
samples (Table 16).

Hard cases

It is worthwhile to check some examples that challenge all the deep learning models. Here we
select observations correctly predicted by the models in their original form, but, after the trans-
formation, all the models made wrong predictions about them (regardless of how much we added
modified data in the training phase).

The SNLI test set has 249 observations of such type (2.5% of the test set). The label distribution
in this sample is 45.4%, 32.5%, and 22.1% for the label’s entailment, neutral, and contradiction,
respectively.

In Table 17, there are cherry-picked examples highlighting some interesting points. The first
example shows how a wrong synonym substitution can disrupt the logical connection. The word
punk is substituted for hood, this makes it hard for the model to connect to the fact in the premise
3 young adult male in hoods. The second example shows a case where the inference rela-
tionship should not be disrupted (moving ridge here has the sense of a ridge that moves across
the surface of a liquid, i.e., a wave). And the third example shows how the overall context is rele-
vant for the inference task. In this case, the contradiction arises when we compare soccer with
football. In other contexts, the act of replacing soccer with association football is rea-
sonable. But here, the fact that the word football appears both in the hypothesis and in the
premise can, understandably, confuse the model.

Similarly, the MNLI test set has 531 hard cases (2.7% of the test set). The label distribution
in this sample is 59.9%, 21.3%, and 18.8% for the label’s entailment, neutral, and contradiction,
respectively.

Again, Table 18 shows some interesting cherry-picked examples. The first example presents
a case where a minor and acceptable text modification (the act of replacing woman with adult
female) causes all models to classify the entailment instance incorrectly. The second example
shows how this particular synonym substitution function can add unnecessary noise. Since we
are not controlling for named entities, the organizations “Washighton Post” and “South Park”
are wrongly modified. In this particular case, the association between press and Washighton
Post is disrupted by the transformation, making this specific NLI observation more difficult than
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Table 17. Examples of hard cases for SNLI. Here a “hard case” is an observation that all deep learning
models predict correctly in the original form, but they all make wrong predictions after the synonym

substitution transformation.

Original observation

Transformed observation

Three young man in hoods standing in the
middle of a quiet street facing the camera.

Three hood wearing people pose for a picture.

Y = Entailment.

Three young adult male in hoods standing in
the center of a quiet street facing the

photographic camera.

Three punk wearing people pose for a image.

Y = Entailment.

Boys with their backs against an incoming
wave.

A group of people play in the ocean.

Y = Neutral.

Boys with their backs against an incoming

moving ridge.

A group of people play in the ocean.

Y = Neutral.

Five children playing soccer chase after a ball.

They are playing football.

Y = Contradiction.

Five child playing association football pursuit
after a ball.

They are playing football game.

Y = Contradiction.

Table 18. Examples of hard cases for MNLI. Here a “hard case” is an observation that all deep learning
models predict correctly in the original form, but they all make wrong predictions after the synonym

substitution transformation.

Original observation

Transformed observation

The sacred is not mysterious to her.

The woman is familiar with the sacred.

Y = Entailment.

The sacred is not mysterious to her.

The adult female is familiar with the sacred.

Y = Entailment.

Some predict the jokes will wear thin soon,
while others call it definitively depraved (Tom
Shales, the Washington Post). (Download a
clip from South Park here.)

Press has taken interest in South Park jokes.

Y = Neutral.

Parkland here.)

Some predict the jokes will wear thin soon
while others phone call it definitively
depraved (Tom Shales, The Washington
Station). (Download a magazine from South

Pressure has taken involvement in South

Parkland jokes.

Y = Neutral.

The last 12 years of his life are a blank.

He can’t remember the last 12 years of his life.

Y = Entailment.

The last 12 years of his life are a space.

He can’t think the last 12 years of his life.

Y = Entailment.

it should be. The third example also shows a case where context matters. Using space with the
meaning of a “blank character” undermines the association between can’t remember and blank

that defines this particular entailment case.
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