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Abstract

This paper studies topological upper and lower semicontinuity of the minimal value multifunction and
the solution multifunction for optimization problems, which are defined in terms of cones, subject to
perturbations in constraints. It extends the results of Tanino and Sawaragi to finite dimensions and
one of Berge to multiple objective optimization problems.

1980 Mathematics subject classification (Amer. Math. Soc): 46 A 40, 49 A 50, 49 B 30, 54 C 60, 90 C
30.

1. Introduction

Throughout the paper we let Y be a real topological, Hausdorff, vector space.

DEFINITION 1.1. A set C in Y is a cone if X^ e C for all y e C and X > 0. A
convex cone C is one for which Xlyl + X2y2

 e ^ f°r a&y1,y2 ^ C and Xx, X2 > 0.
A pointed cone is one for which C O ( - C ) = { 0 } , where 0 denotes the zero
element in Y.

DEFINITION 1.2. Let C be a pointed cone in Y. Then C induces a partial
ordering < in Y, namely, for j>1; jy2 e Y we say^ < y2 ify2 - _yx e C.

More details about ordered topological vector spaces are in [15].

DEFINITION 1.3 [9, 14]. Let B be a subset of Y. The point y0 e B is a vector
minimal point of B with respect to C, denoted j ^ e min B, if there exists noy e B
for which y < y0 and yQ ¥= y.
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184 Alicja Sterna-Karwat [2 ]

Let B c Y; B denotes closure in the topology of Y, and Bc denotes complemen-
tation.

DEFINITION 1.4. Let C be a cone in Y. A subset B is said to be C-semicompact if
every open cover of B of the form {(C +yj)c: }>j ^ Y,j e J) has a finite subcover.

Let us note that this definition is slightly different to that in [6, Definition 2.5],
where the elements yt are assumed to be in B. We have decided to change the
definition because, according to the previous one, no compact set in the space of
real numbers with the usual ordering has such a kind of open cover.

Motivation for the notion of C-semicompactness is given in [18].
The following theorem is still valid with our definition of C-semicompactness;

however, the proof given in [6] has a mistake which can easily be removed, and
therefore we do not prove the theorem here.

THEOREM 1.1 [6]. If C is a pointed, convex cone in Y, and if B c Y is a
non-empty (-C)-semicompact set, then min B is nonempty.

LEMMA 1.1. Let C and B be as in Theorem 1.1. Then for every b0 e B there is
y e min B such thaty < b0.

PROOF. Let us consider a nonempty set Bo = {y e B: y s£ b0). If Bo c
\JJeJ(-C +yj)c for some y} e Y, then B c U,-e/(-C +.y,)c U (-C +bo)

c. B is
(-C)-semicompact, so

U •••u(-C+yp)
Cu(-C + bn)

c

for some>>!,.. .,yp taken from the set {^}7-e/. Since Bo n (-C +bo)
c = 0 , we get

that

*oc u{-c+yny,
«=i

which implies that Bo is (-C)-semicompact. By Theorem 1.1 there exists y0 e
min Bo, and it can be shown that y0 e min B as well.

Let T, X be topological Hausdorff spaces,/: X -> Y & function and F: T -» Xa.
multifunction. Consider the family of minimization problems {P,},eT, P,:
mm{f(x): x e T(/)}, which can be considered as perturbations in constraints
from Pt in some neighbourhood of t0. Problem P, can be studied from two sides:

(a) we can extend the notion of the minimal value function for / a real-valued
function to the minimal value multifunction, namely, Mf: T -» Y will be defined
as Mf(t) = min f(T(t)), for t e T; and
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[3] Semicontinuity of multifunctions 185

(b) the solution multifunction will be defined as

Sf.T^X, Sf(t)= {xeT(t):f(x)eMf(t)},

for ( e j 1 , the set of all solutions to Pt.
If/ = id (the identity function o n l = Y), then Sid = Mid, and this multifunc-

tion we shall call the minimal multifunction and denote it be M; so for a
multifunction T: T -* Y, the minimal multifunction M: T -* Y is defined by
M(t) = min T(t) for t e T.

Let us note that x e Sf(t) if and only if there exists no x e T(t) for which
/(3c) < f{x) and /(3c) # f(x). This means that Sf(t) is the well-known set of
Pareto optimal elements for the vector optimization problem P, in Euclidean
space.

Optimization with respect to cones and generalizations of Pareto optimality
have been studied in a number of papers, [3, 5, 7, 8, 16] to name but a few. More
references can be found in the above mentioned papers.

Different types of stability of Sf and Mf, when Y = R and C = R+ is the
nonnegative half line, have been studied for years. An extensive bibliography on
this subject is given in [1].

Let us recall the definitions of topological lower and upper semicontinuity.

DEFINITION 1.5. A multifunction T: T -» X is said to be lower semicontinuous
(l.s.c.) at a point t0 e T if for every open set Q which meets T(t0) there exists a
neighbourhood V of t0 such that Q meets T(t) for every t e V.

A multifunction T: T -* X is said to be upper semicontinuous(u.s.c) at t0 if for
every open set Q which includes F(/o) there exists a neighbourhood V of t0 such
that Q includes T(t) for every / e V.

We say that F is continuous at t0 if it is both l.s.c. and u.s.c. at t0, T is continuous
if it is continuous at every point t e T.

2. Stability conditions for the minimal value multifunction
and the solution multifunction

Denote by R" the w-dimensional Euclidean space ordered by the nonnegative
orthant R"+.

The well known Berge's theorem states: if X, T are topological spaces, and if T:
T -* X is a continuous multifunction such that for every r e T, T(t) is nonempty
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and compact, then for every continuous, real-valued function/: X -* R1

(i) the minimal value function Mf is continuous,
(ii) the solution multifunction Sf is u.s.c.
The following simple example in R2 shows that the solution multifunction Sid

may not be u.s.c, when T is continuous and compact valued unless the pair
(Y, C) = (R, R+), and therefore Berge's theorem ceases to be valid in the general
case.

EXAMPLE 2.1. Let T: [0,1] -> R2 be defined as follows: T(t) = the closed line
segment between (-1 + t, t) and (0,0) for 0 < t < 1, so that T is compact valued
and continuous. Then

r ( - l ,0 ) , / = 0,

,(0,0), r - i .

Hence Sid is not u.s.c. at 0 and at 1, and thus Mid is not continuous as well.
But we can state the theorem for lower semicontinuity of the set of vector

minimal elements for T as follows:

THEOREM 2.1. Let T be a topological Hausdorff space, and let Y be a real
topological Hausdorff vector space, ordered by a pointed, convex closed cone C. Let
t0 be a point in T and T: T -> Y a multifunction continuous at t0. Then the minimal
multifunction

M:T->Y, M(t) = iaiaT(t) for t e T

is l.s.c. at t0,
(a) ifT(t) is nonempty, (-C)-semicompact and closed in some neighbourhood of

t0, and T(t0) is compact, or (b) if T fulfills the first countability axiom at t0, T(t) is
nonempty and {-C)-semicompact in some neighbourhood of t0, and T(t0) is com-
pact.

PROOF . Let A be a linear ordered set, and let { Va}asA be a nested base for the
neighbourhood system of the point t0. We can assume that T fulfills all assump-
tions of the theorem in every Va.

Suppose M is not l.s.c. at t0. Then we can find y0 e M(t0) and its neighbour-
hood Q in Y, and a net {ta}a^A converging to t0, such that

ta G Va for every a e A
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and
M(ta)DQ= 0.

Let <&•(()) be a local base in Y. Let us denote by {U'}Ue^(0) a base of the
neighbourhood system of the point y0 of the kind

U' = (yo+ U)nQ for U G <#(0).

Fix U'; since >>0 G T(t0) D [/' and F is l.s.c. at t0, we can find elements
a{U') e A and _>>a(fr) G F(/a(CO) n £/'. Let us note that the net ( j ^ d , ' ) } ^ ^ )
converges toj^.

Define a set

<2r(v4) = {«(£/'): t /e^(0)} c.4.
The first case is when (%(A) is a cofinal set in 4̂. Let us note that for part (b) of

Theorem 2.1 we can choose W(A) cofinal; and the closedness of F(/) will not be
necessary when ty(A) is a cofinal set, so the first case establishes the part (b) of
the theorem.

In this case {'„((/')}c/e*(O) is a subnet of {ta}aeA, so it converges to /0 as well.
By Lemma 1.1, one actually can find za(u

l) e ^('a(t/')) s u c n that zo(t/') < ya(u
r)

for every «((/') e ^C^).
Next, for every U e ^(0) let us define open sets

Gu=T(t0) + U.

By upper semicontinuity of T at t0, we obtain /?(£/) e A such that I\f) c Gv for
every r G V$(U).

Now we will construct a new set { y(U)} Ue^(0). Take U
(i) if 0(U) < a(f/') we put y(U) = a{U'\

(ii) if j8(f/) > a(t/ ') we can find a G <%(A) such that a > /8(f/) because
is a cofinal set in A, and then put y(U) = a. The set { y(U)} Uf=<#(A) is a cofinal in
<&(A). Indeed, if there exists a(f/0') G <2f(yl), such that a(f/0') > Y(f/) for every
U G #(0), then we consider y(U0); we have a([/0') > y(£/0), and by the definition
of the set { y(U)}Ue%(0) it must actually be true that P(UQ) > a(f/0'), whence

y(U0) > p(UQ) > a{U<;) > y(U0),

which is a contradiction. Since y(U) > P(U), so Vy{U) c ^ ( t / ) ) and therefore
T(0 c Gv for every r e Fy([/). Let us observe that zy(l/) G A/(iY(l/)) for every
1/ G #(0), because y{U) e <%'(̂ ). Hence

zr(f/) e Gt/ = r ( ' o ) + u for every f/ G <W(0)

and zY((/) can be written
zy(U) = xv+ u for some xv G r(f0) and u e ( / .

Since F(/o) is a compact set, we can choose a subnet of {xt/}(/<=#(0)> which is
convergent to x0 G F( / O ) , and consequently there exists a subnet of { zy(U)} Ue^^0)
which is convergent to x0. By the definition, zy(V) < yy(uy anc^ ^ is closed, so
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xo < ^c whence x0 = y0. Therefore

M(ty(U)) n Q # 0 for some U e <^(0),

which is a contradiction.
The second case is when *%(A) is not a cofinal set in A. The theorem is true if t0

is an isolated point; suppose t0 is not an isolated point. T is a Hausdorff space, so
for every a e A there exists y e A such that y > a. Indeed, if there is a a £ A
such that Y > « for any a & A, then we have Fy c Va for a e A. The point /0 is
not isolated, so we get tx e Vy such that tl =£ ?0. T is a Hausdorff space, so there
exist open sets Uo and Ux such that t0 e C/o, fx e C/j and t/0 O Ux = 0. {Va}aeA

is a neighbourhood system of f0, so we can find a e A for which Ka c f/0.
Therefore ^ G Vy c t/0, which is a contradiction.

Since ^(^4) is not a cofinal set now, there exists a0 ^ A such that a0 > a(£/')
for every U e <2C(0). Then

Fa c Vao c Fa(t/'} for every U e <^(0) and every a > a0

and

T(t) n £/' ¥= 0 for every r e Fa, for every a ^ a0 and for every U e *(0).

Hence, for every a ^ aQ and for every U e < (̂0) we can take y% G T(fa) n [/'.
Fix a > a0; the net {^Ji/e^o) is convergent to y0, and F(?a) is closed, so
y0 e T(t). By Lemma 1.1 we get za e M(ta) such that za < 70. Consider the net
{'<.}<*»<*„• Exactly as in the first case, we find a subnet of {za}a>ao which is
convergent to>>0.

This contradiction establishes lower semicontinuity of M.

COROLLARY 2.1. Let T and Y be as in Theorem 2.1. Let V: T -» Y be a
continuous multifunction with F(t) nonempty and compact for every t e T. Then the
minimal M is l.s.c. at every point t e T.

THEOREM 2.2. Let T and Y be as in Theorem 2.1. Let a multifunction T: T -» X
be continuous at t0 with T(t) nonempty and compact in some neighbourhood of t0.
Then for every function f: X -» Y which is continuous in some open set including
F(f 0), the minimal value multifunction My is l.s.c. at t0.

PROOF. Let / , T be as in the hypothesis: Then fT: T -» Y, defined by
(/T)(/) = / ( I \ 0 ) for every / e T, fulfills all of the assumptions of Theorem 2.1.
Hence Mf, which is the minimal multifunction for/F, must be l.s.c. at t0.

Theorem 2.2 extends part (i) of Berge's theorem to vector optimization, because
for a real valued function / the multifunction Mf is actually a function and its
lower semicontinuity as a multifunction is equivalent to the continuity.
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THEOREM 2.3. Let a multifunction T: T -> X be continuous at t0 andf: X -* Y be
a continuous and one-to-one function in some open set G including F(f0). Then the
solution multifunction Sf. T -* X is l.s.c. at t0

(a) ifT(t) is nonempty and compact in some neighbourhood of tQ, and the function
fis open [13] in G, or

(b) if T is first countable at t0, X is a vector topological space with a countable
local base, f(T(t)) is (-C)-semi-compact in some neighbourhood of t0, and I \ / o ) is
a compact set.

PROOF, (a) Let Q be an open set in X, and let x0 G Sf(t0) D Q. Since/is open
in G, then f(Q n G) is an open set and/(x0) e Mf(t0) n f(Q n G). By Theorem
2.2, Mf is l.s.c. at t0, thus there is a neighbourhood V of t0 such that Mf(t) n
f(Q n G)* 0 for every t e V. Let y, G Mf(t)nf(Q n G) for * e F. Hence
there exist elements xt G F(?) and <?, G Q n G such that

/ ( * , ) = >>,=/(<?,) f o r / e F ,
and one must actually have x, = qt for some neighbourhood V1 of /0 contained in
Fbecause/is one-to-one in G and T is u.s.c. at /0- Thus x, e r(f) n f~l(Mf{t))
C\ Q n G, and therefore S^(f) H g # 0 for every i G F1; which proves the lower
semicontinuity of Sf at /0.

(b) Suppose that Sf is not l.s.c. at /0. Because of the assumptions imposed on
the spaces T and X, this means that there exist a sequence {<„}"_! converging to
t0 and a point x0 G Sj(t0) and its neighbourhood Q such that S/(?n) n g = 0
for « = 1, 2, Since T is l.s.c. at f0, we can find {*}$?_! tending to x0 such that
xn = 1 G r( /n) for « > N. By Lemma 1.1, we get elements an G F(/n) with/(an) G
M/C/J and/(fln) < /(*„) for n > N.

Let {£/*}"_!, t 4 + 1 c t4, a local base in X Consider the open sets
Gk = T(t0) + Uk fork-1,2,....

By upper semicontinuity at t0 of T we must actually have T(rnt) c Gfc for some
subsequence {tn }"_! of {fn}"=1. Thus aB G Ck for /c = 1, 2, . . . , and since
T(t0) is compact, a sequence {an(fc}"_i possesses a convergent subsequence. Let
{ank}^=l itself tend to a0 G r(r0). Let us observe that ank, xHk e G for k > K
because T is u.s.c. at t0. The function / is continuous in G, f(an) < /(*„) for
n > N, and so / (a0) < /(xo)- Since /(x0) G Mf(t0), one must actually have
/(flo) = /(^o)- Both a0 and x0 belong to G,/is one-to-one in G, and so a0 = x0.
Hence an G Sj(tnk) n g for some /c, which is a contradiction.

Let us note that the assumption given for X in part (b) of Theorem 2.3 is
equivalent to the assumption that X is metrizable [12, page 49].

Theorems 2.1 and 2.3 are generalizations of results of Tanino and Sawaragi [17,
Theorems 5.2 and 7.2, respectively] for infinite dimensions as well as an extension
to a larger class of multifunctions. Tanino and Sawaragi have used slightly
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different sequential definitions of semicontinuities of multifunctions which, how-
ever, imply our definitions under their assumptions about the spaces (T is such
that the concept of convergence is defined in terms of sequences, and Y is a
Euclidean space), and with the additional condition imposed on F that U,e KF(0
be compact for some neighbourhood V of tQ. For details of the different kinds of
semicontinuity of multifunctions see [2, 4, 10, 11, 13]. The following example
shows a multifunction F with values in a Banach space which fulfills all of the
assumptions of Theorem 2.1, but fails to satisfy one of Theorem 5.2 [17].

EXAMPLE 2.2. Let Y be the space of continuous real functions on the interval
[0,1] with the sup norm, ordered by a closed, convex, pointed cone (even with
nonempty interior)

C= {f-f(t) > 0 for every <e [0,1]}.
Define a multifunction F: U^=1{l/n} U {0} -> Yby

F(0)={0}, r ( i j = B(O, ~\ HC forn = 1,2,...,

where B(0, \/n) denotes a closed ball centred at 0 with radius l /« . It is easy to
see that F satisfies every assumption of Theorem 2.1 except that, for any natural
number m, the set

is not a compact set, and thus we cannot apply either Theorem 5.2 or Theorem
7.2 of [17] to T.

Another remark on the paper of Tanino and Sawaragi [17] is that they consider
variations in the domination structure D, which is a generalization of a notion of
the order in a partially ordered space. Keeping the notation as in [17], we can
extend the definition of (-C)-semicompactness to the case of the domination
structure D by declaring that B c Y is Z)-semicompact if every open cover of B of
the form {(yj + D[yj])c: y} e Y,j e / } has a finite subcover.

Under the assumption about D in [17], and after replacing (-C)-semicompact-
ness by £>-semicompactness, Theorem 1.1 as well as our results in this paper
remain true, and the proofs are in fact the same. However, this approach is not
under consideration here, and for details of this subject the reader is referred to
[17].

3. Examples

The following examples show that the assumptions of Theorem 2.1 cannot be
weakened.
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EXAMPLE 3.1. We define a continuous multifunction T with T(t) closed and
bounded for every t and r(r0) compact for some t0, but such that M is not l.s.c. at
t0. Namely, let us take as Y the Banach space of all sequences of real numbers
converging to 0, with the sup norm, and let us order it by the pointed, closed,
convex cone C of all nonnegative sequences. Define T: [0,1] -» Y by •

Then

M{t) = min T(t) = 0 for t * 0 (for details see [6]),

and

Af(0) = minr(0) = {0},

whence M is not l.s.c. at 0.

EXAMPLE 3.2. We cannot reject the assumption that T is u.s.c. at t0 in Theorem
2.1. Indeed, let us define an l.s.c. multifunction

T: {f.t>0} -+ R2by

T(t)=fiu{(-i/t,o)}, t>o,

\l r 0
where / = {(-x, x): 0 < x < l}.Then T is compact valued but is not u.s.c. at 0,
and so

(I, t = 0,

is not l.s.c. at 0.
This example also shows that the minimal value function Mf may not be l.s.c.

when/is continuous, and when T is l.s.c. and compact valued.
The next example proves that we cannot omit the assumption about (-C)-semi-

compactness for T(t) in some neighbourhood of tQ in Theorem 2.1(b).

EXAMPLE 3.3. Let T: [0,1] -» R2 be the continuous multifunction defined by

t {(x, y: 1 - x <y < 2 - x] u{ ( l ,0 )} , 0 < t < 1,

\{{x,y:\ - x ^y ^ 2 - x), t = 0.

Then

{ ( 1 , 0 ) } , 0 < r < l ,

is not l.s.c. at 0, although F(0) is compact.
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Now we show that in Theorem 2.1(b), M may not be l.s.c. at /0 when F(/o) is
not a compact set.

EXAMPLE 3.4. Let T: [0,1] -» R2 be the continuous multifunction defined by

Then T(t) is (-/?5-)-semicompact for every / =t 0, T(0) is closed, and min T(0)
0, but

'{(1,0)}, / = 0,

is not l.s.c. at 0.
As a final example, it will be recalled that we cannot obtain lower semicontinu-

ity of Sy when / is a continuous function, even when / is linear and real valued,
and F is convex and compact valued. Indeed, let us define a continuous
multifunction T: [0,1] -> R2 by

m ( I n B ( t ) , , * o ,

where B(t) denotes the closed ball centred at (0,1//) and with radius 1/t for
/ # 0, and where / = {(x, y): x, y e [0,1]}.

Let/: R2 -> Rl be defined by/(x, y) = y for (x, y) e R2. Then Mf(t) = 0 for
every /, and

{(0,0)}, / * 0 ,

is not l.s.c. at / = 0.

References

[1] E. Bednarczuk, 'On upper semicontinuity of global minima in constrained optimization
problems', J. Math. Anal. Appl. 86 (1982), 309-318.

[2] C. Berge, Topological spaces (Macmillan Company, New York, 1963).
[3] J. Borwein, Optimization with respect to partial orderings (PhD Thesis, Oxford University, 1974).
[4] J. Borwein, 'Convex relations in analysis and optimization', pp. 335-377 in Generalized

concavity in optimization and economics, eds. S. Schaible and W. T. Ziemba (Academic Press,
London, 1981).

https://doi.org/10.1017/S1446788700027166 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027166


[11] Semicontinuity of multifunctions 193

[5] L. Cesari and M. B. Suryanarayna, 'Existence theorems for Pareto optimization; Multivalued
and Banach space valued functionals', Trans. Amer. Math. Soc. 224 (1978), 37-65.

[6] H. W. Corley, 'An existence result for minimizations with respect to cones', J. Optim. Theory
Appl. 31 (1980), 277-281.

[7] H. W. Corley, 'Duality theory for maximization with respect to cones', J. Math. Anal. Appl. 84
(1981), 560-568.

[8] B. D. Craven, 'Strong vector minimization and duality', Z. Angew. Math. Phys. 60 (1980), 1-5.
[9] B. D. Craven, 'Vector-valued optimization in generalized concavity', pp. 661-687 in Optimiza-

tion and economics, eds. S. Schaible and W. T. Ziemba (Academic Press, London, 1981).
[10] J. P. Delahaye and J. Denel, 'The continuities of the point-to-set maps, definitions and

equivalences', Math. Programming Stud. 10 (1979), 8-12.
[11] W. Hogan, 'Point-to-set maps in mathematical programming', SIAM Rev. 15 (1973), 591-603.
[12] J. L. Kelly, Linear topological spaces (Van Nostrand, Princeton, N.J., 1963).
[13] K. Kuratowski, Topology (Academic Press, New York and Polish Scientific Publishers, Warszawa,

1966).
[14] J. G. Lin,' Maximal vectors and multi-objective optimization', J. Optim. Theory Appl. 18 (1976),

41-64.
[15] A. L. Peressini, Ordered topological vector spaces (Harper and Row, New York, Evanston,

London, 1967).
[16] S. Rolewicz, 'On sufficient conditions of vector optimization', Methods of Oper. Res. 43 (1981),

151-156.
[17] T. Tanino and Y. Sawaragi, 'Stability of non dominated solutions in multicriteria decision-mak-

ing', J. Optim. Theory. Appl. 30 (1980), 229-253.
[18] D. H. Wagner, 'Semi-compactness with respect to Euclidean cone', Canad. J. Math. 29 (1977),

29-36.

Department of Mathematics
Monash University
Clayton, Victoria 3168
Australia

https://doi.org/10.1017/S1446788700027166 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027166

