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SEMI-SIMPLE ARTINIAN RINGS OF FIXED POINTS 

BY 

MIRIAM COHEN AND SUSAN MONTGOMERY 

Let G be a finite group of automorphisms of the ring R9 and let RG denote the 
ring of fixed points of G in R; that is, RG={x GR\X9 = x,Vge G}. Let \G\ 
denote the order of G. In this note, we prove the following: 

THEOREM. Assume that R has no nilpotent ideals and no \G\-torsion. Then if 
R° is semi-simple Artinian, R is semi-simple Artinian. 

The proof uses a recent theorem of G. Bergman and I. M. Isaacs, which we state 
here for convenience: 

PROPOSITION 1 ([1], p. 76). Let G be a finite group of automorphisms acting on R, 
and assume that R has no \G\-torsion. Then ifR°=(0), R is nilpotent. 

In all that follows, we will assume that R is semi-prime (i.e., has no nilpotent 
ideals) and has no | G|-torsion. 

LEMMA 1. Ifl^ (0) is a right (left) ideal ofR invariant under G, then I C\R°j£ (0). 

Proof. Since / is G-invariant, G acts as a group of automorphisms of /. Thus, 
if J n R°=(0), I is nilpotent by Proposition 1. This is impossible since R is semi-
prime. 

LEMMA 2. If R° has a unit element e, then e is a unit for R. 

Proof. Consider I={y—ey\ye R}. Since e e RG, lis a right ideal of R invariant 
under G. Hence by lemma 1, J n R°?£0 if 7^0. But if 0^y-ey eRG, then 
0=e(y—ey)=y—ey, a contradiction. Thus 7=0, and so y=ey, Vy e R. Similarly 
y=ye,vyeR. 

LEMMA 3. If R° is semi-simple, then R is semi-simple. 

Proof. Let J(R) denote the Jacobson radical of R. Now J(R) is invariant under 
any automorphism of R, so in particular it is G-invariant. Thus if J(R)^09 J(R) n 
R°^é0 by lemma 1. But if x £J(R) is fixed by all g e G, its quasi-inverse must 
also be fixed, so is in RG. Hence J(R) n RG is a quasi-regular ideal in RG, which is 
semisimple. This is a contradiction unless J(R)=0. 
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Proof of the Theorem. Since R is (right) Artinian, we may choose a finite 
family of maximal right ideals of R, pl9. .. , pm9 so as to minimize I=RG n 
(f)T=i PÙ- We claim that 7=(0). For if not, since RG is semi-simple, we may write 
I=eR°, where e is a non-zero idempotent of R°. Then (1— e)R will be a proper 
right ideal of R, and we can find a maximal right ideal pm+1 aR containing \—e. 
Clearly e $ pm+1, hence RG n ( D I 2 1 Pi) is properly smaller than J, contradicting 
the assumption that / i s minimal. Thus J=(0). 

Now consider the right ideal of R given by p=f)i<m pf. p is G-invariant, and 
geO 

p n RG^I=(0)9 hence by Lemma 1, />=(0). But since (0) is the intersection of 
finitely many maximal right ideals of R, R has finite composition length as a right 
module over itself (since there is a natural i?-module embedding of R in the finite 
sum of simple modules S=^itg@Rlp%). Hence R is Artinian as a right i?-module, 
hence as a ring. 

By Lemma 3, R is semi-simple since RG is, and thus the theorem is proved. 
The proof of the theorem shows a little more. Namely, if length R(R) denotes 

the length of a composition series for R as a right i^-module, then m can be chosen 
<length oiR6). Thus, we have: 

COROLLARY. Let R and RG be as in the theorem. Then length R(R)<\G\ length 

In the special case when G is a solvable group, Cohen has used the Theorem 
to prove that if R is semi-prime with no |(z|-torsion and R° is Goldie, then R 
must also be a Goldie ring [2]. It has recently been announced by V. K. Harchenko 
[3] that this result is true for any finite group G. 
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