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POLYNOMIAL RINGS WITH THE OUTER 
PRODUCT PROPERTY 

A. V. GERAMITA 

Note. W e shall assume throughout t h a t all rings R are noetherian. This 
proper ty is not used in some of the lemmas bu t it intercedes before the main 
theorem. We retain this assumption to ease the exposition. 

I n t r o d u c t i o n . In [3] Lissner defined a class of rings called outer product rings, 

(OP-rings). These are commuta t ive rings R with ident i ty for which every 

exterior vector v £ /\n~lRn is decomposable, i.e., v = Vi A . . . A vn-i with 
Vi G Rn, i = 1, . . . , n - 1. 

If we look only a t those vectors v G f\n~lRn whose co-ordinates with respect 
to any basis of /\n~1Rn generate the uni t ideal in R and consider those rings R 
for which all vectors of this type are decomposable, we obtain the class of 
rings which have been referred to as Her mite-rings (i7-rings, see also Lissner 
[3]). This class of iJ-r ings evidently contains the class of OP-rings. 

PROPOSITION A. R is an H-ring if and only if for any n elements of R, 
ai , . . . , anj such that the ideal they generate in R is R, there exists an invertible 
n X n matrix with first row (ai, . . . , an). 

Proof. T h e reader should refer to [3, § 2, Proposition 2.1 and Corollary] for 
a proof of this s ta tement . 

One of the major reasons for considering iJ-r ings is contained in the follow­
ing proposition. 

PROPOSITION B. The following two statements are equivalent. 
(i) R is an H-ring. 

(ii) If P is a finitely generated projective R-module such that P ® Rm ~ Rs 

for two integers m, s, then P ~ Rs~m. 

Proof. See [11, Proposition 12.2, p . 185]. 

In [7] Serre asked if every f.g. projective ^ -modu le , R = k[Xi, . . . , Xn] 
where k is a field, is necessarily free. Serre showed [7, Proposition 10] t h a t if 
P is a f.g. projective k[Xi, . . . , JVJ-module then P © Rm = Rs for some 
integers m, s, (depending on P). In view of Proposition B above, Serre's 
question amounts to asking whether k[Xi, . . . , Xn] is an H-r'mg. 
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In [10], Seshadri showed that for n = 2, finitely generated projective 
k[Xi, . . . , Xn]-modules are indeed free, while in [4] Lissner showed that 
R[X], when R is a principal ideal domain (P.I.D.), is an OP-ring, thereby 
obtaining Seshadri's theorem as a consequence. 

Our aim in this paper is to classify all those noetherian rings R such that 
R[X] is an OP-ring. This is accomplished via the following theorem. 

THEOREM. Let R be a noetherian ring. The following are equivalent: 
(i) R[X] is an OP-ring. 

(ii) R is a direct sum of rings of global dim _T and special principal ideal 
rings. 

In the second section we completely classify finitely generated projective 
R[X]-modules, when R[X] is an OP-ring. 

1. The outer product property. We recall a few lemmas. 

LEMMA 1. Let R be an OP-ring and <j> : R —» S be a surjection. Then S is an 
OP-ring. 

Proof. See [13, Proposition 1.3]. 

LEMMA 2. Let R be a ring and let S be a multiplicatively closed subset of R 
(0 g S, 1 G S). If R is an OP-ring then so is Rs-

Proof. See [5, Proposition 4.5]. 

COROLLARY Let R[X] be an OP-ring and p C R be a prime ideal. Then 
RP[X] is an OP-ring. 

Proof. The proof is clear from Lemma 2. 

In view of the corollary to Lemma 2 it is appropriate to begin considering 
OP-rings of the form R[X] in the case that R is local. 

The following lemma is probably well-known, but inasmuch as there appears 
no proof in the literature we shall include a proof here for completeness. 

We recall the following definition. 

Definition. Let (Rf m) be a local ring. The v-dimension (v-dim) of R is 
= dim R/mm/m2. 

It is well-known (see, e.g., [6, p. 189]) that the ^-dimension of R is equal to 
the minimal number of elements in a generating set for m. 

LEMMA 3. Let (R, m) be a local ring of v-dimension =s. Then there exists a 
maximal ideal in A = R[X], say p, such that Av has v-àim = 5 + 1 . 

Proof. We suppose m = (ui, . . . , us) and let p C A, p = {u\, . . . , us, X). 
It is clear that p is a maximal ideal of A. Let <j> : A —» Av be the canonical map, 
0 ( / (# ) ) = /O*0/l- Evidently 4>{p)Av is the maximal ideal of Av and is 
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generated by {ui/1, u2/l, . . . , us/l, x/1}. If we can show that this set of 
generators is minimal we will know that ^-dimension Ap = 5 + 1, since in a 
local ring all minimal generating sets have the same number of elements. 

Claim 1. x/1 (? (ui/1, u2/l, . . . , us/\) in Ap: Suppose 

1 gl 1 gs 1 

where/*, g* G i?|X], and g* g £. Then 

* = /lg2 . • . gsttl + glj^gs • • . gSU2 + » • . + glg2 . • . gs~lfSUs 

1 glg2 . . -gs 

From the definition of equality in Ap, there exists k 6 i^pT], k Q p, such that 

(*) &glg2 . • . gS0C = kfig2 • • • g8Ui + kgXf2gZ . . . gsU2 + • . . + kgig2 . . . gs-lfsUs. 

Since gz- $ £, the constant term of gt is not in m C R', similarly for k. Thus, 
on the left side of equation (*), the coefficient of x is (const, term of k) 'Y\i=i 
(const, term gt). Since all these factors are in R but not in m, and m is prime, 
the coefficient of x on the left side of (*) is an element of R not in m. Evidently 
all the coefficients on the right side of (*) are in m. This contradiction estab­
lishes the claim. 

Claim 2. U\/l Q (u2/l} . . . , us/l, x/1): (We shall observe that the argument 
given here does not depend on Ui, but would work for any ut.) Suppose 
Ui/l G (u2/l, . . . , us/l, x /1) ; then 

^ _ & * + £ . * * + . . . + £ . * /,,«,€*[*] and gtçp. 
1 gl 1 g2 1 gs 1 

Thus , 

2£l = /lg2 . • . gSX + gl / 2g 3 . • . gsU2 + . . . + glg2 . . • gs-lfsUs 
1 glg2 • • • gs 

Again by the definition of equality in Ap, there exists k Ç R[X], k g p such 
that 

( t ) ^l&glg2 • • • gs = &/lg2 . . . gsX + &gl/2g3 • • • g8U2 + . . . + &glg2 • • • gs-lfsU*. 

As before, the constant term of kgi . . . gs is in R not in m, call it t0. Now 
£0^i 9e 0, since wi is part of a minimal generating set for m and /o $ ^ -

The constant term on the right side of (f) is ^ 0 and £0^i = (const, term of 
^gi/2g3 • • . g8) ' U2 + . . . + (const, term of &gig2 . . . gs-ifs) • u8. 

This equation contradicts the minimality of the generating set {ui, . . . , us) 
of m, and establishes Claim 2. 

Thus (j)(p)Ap needs 5 + 1 generators and so ^-dimension Ap = s + 1. 

PROPOSITION 1. If (R, m) is a local ring of v-dimension ^ 2, then R[X] is 
not an OP-ring. 
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Proof. If R[X] is an OP-ring, then for any prime ideal p C R[X], R[X]P is 
an OP-ring [5, Proposition 4.5]. By Lemma 3, there exists maximal ideal 
p C R[X] such that ^-dimension R[X]V = (y-dimension R) + 1 > 2. But 
local OP-rings must have v-d\m S 2 [13]. 

Thus, R[X] is not an OP-ring. 

PROPOSITION 2. If R is a ring of Krull dimension ^ 2, then R[X] is not an 
OP-ring. 

Proof. If Krull dimension R ^ 2 there exists a maximal ideal m in R such 
that Krull dimension Rm ^ 2. Since Krull dimension Rm ^ ^-dimension i?m, 
we see by Proposition 1 that Rm[X] is not an OP-ring. Thus, R[X] is not an 
OP-ring by Lemma 2. 

In view of Proposition 2 we need only consider rings R of Krull Dimension 

If Krull dimension R = 0 then all prime ideals in R are maximal and R is 
a finite direct sum of primary rings, i.e., rings with exactly one prime ideal, 
(finite because R is noetherian). We recall the following proposition. 

PROPOSITION 3. If R = i?i 0 . . . 0 Rs then, R is an OP-ring <=> Rt is an 
OP-ring for each i = 1, . . . , s. 

Proof. See [5, Theorem 5.4]. 

So, if R has Krull dimension = 0, R = Ri © . . . 0 Rs, wThere the Rt are 
all primary rings and R[X] = R^X] 0 . . . ® RS[X]. By Proposition 3, R[X] 
is an OP-ring if and only if Ri[X] is an OP-ring for each i = 1, 2, . . . , s. 

PROPOSITION 4. Let R be a primary ring with prime ideal p. R[X] is an 
OP-ring <=> Ris a special principal ideal ring or R is afield. (Recall that R is a 
special principal ideal ring if R has a unique prime ideal, p = (u), which is 
nilpotent.) 

Proof. => : Since R[X] is an OP-ring so is R, by Lemma 1. A primary ring 
is a local ring and so by Proposition 1, v-dim R < 2. If ^-dimension R = 0 
then R is a field. So we may assume that y-dimension R — 1. In that case 
p = (u) and p is nilpotent, i.e., R is a special principal ideal ring. 

<= : If R is a field then R[X] is a principal ideal domain and so is an OP-ring 
[3, Theorem 2.2]. If R is a special principal ideal ring then R is a complete 
local ring and hence by a theorem of I. S. Cohen [2], R is the homomorphic 
image of a regular local ring of Krull dimension equal to the ^-dimension of R. 
Let A be such a regular local ring of Krull dimension = 1, and <j> : A —> R the 
surjection provided by the theorem. Now A is a principal ideal domain and so 
A [X] is an OP-ring [4]. We extend 0 to a homomorphism, which we will also call 
<£, <j> : A[X] —> R[X]. This new <t> is also a surjection. Since A[X] is an OP-ring, 
soisR[X]. 
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Thus, if R has Krull dimension 0, R[X] is an OP-ring if and only if R is a 
finite direct sum of fields and principal ideal rings. 

It remains only to consider rings R of Krull dimension = 1. We may as 
well assume that the prime spectra of the rings considered are connected, for 
if not then R is a finite sum of rings of Krull dimension ^ 1, whose prime 
spectra are connected. We have already considered the case of Krull dimen­
sion zero. Since the OP property is invariant under direct sums we are reduced 
to considering the problem in one summand. 

PROPOSITION 5. Let R be a ring with connected prime spectrum and Krull 
dimension one. 

R[X] is an OP-ring «=> R has global dimension one. 

Proof. <= : If R has global dimension one then R is a direct sum of Dedekind 
domains [1, Proposition 4.13]. Since the prime spectrum of R is connected, R 
is a Dedekind domain. That R[X] is an OP-ring follows from [12, Theorem 1.2]. 

=> : Let m be any maximal ideal of R. Suppose that m is also a minimal 
prime ideal of R. Since R is noetherian there are only finitely many minimal 
prime ideals of R, say m, pi, . . . , ps. In Spec(i^) we let 

F (21) = {prime g C R\% Q q] 

for any ideal SI. The F (SI) are all closed sets in Spec(i^) and Spec(R) = 
{{m))\J (UUiV(pt)). Clearly {m} H V(pt) = <t>, i = 1, . . . , s. Since \JtV(pt) 
is closed in Spec(i^) we have that {m} is open. Since \m\ = V(m) we also have 
that \m\ is closed. This is a contradiction since Spec(i^) is connected. Thus m 
is not a minimal prime of R and so the Krull dimension of Rm is 1. 

Since R[X] is an OP-ring so is Rm[X] by Lemma 2. Hence, by Proposition 1, 
^-dimension Rm < 2. Since in any event Krull dimension Rm ^ ^-dimension 
Rm, we have both dimensions = 1. Hence global dimension Rm = 1. Since 
this maximal ideal was arbitrarily chosen and since global dimension R = sup 
global dimension Rm, (m varying over the maximal ideals of R) we have global 
dimension R = 1. 

Thus, if R has Krull dimension 1 and R[X] is an OP-ring then R is a finite 
sum of rings of global dimension 1, special PIR's and fields. This, together 
with our previous results proves: 

THEOREM 1. Let R be a commutative noetherian ring with 1. R[X] is an 
OP-ring <=> R is a direct sum of rings of global dimension ^ 1 and special 
principal ideal rings. 

The following corollary is an immediate consequence. 

COROLLARY 1.1. If R is a domain the following are equivalent. 
(1) R is a Dedekind domain (possibly a field). 
(2) R[X] is an OP-ring. 
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(Note: The referee has brought to my attention a recent article by Kleiner 
in Mat. Sb. 84, No. 4 (1971), 526-536, in which he also obtains Corollary 1.1 
above. Our Theorem 1 then, generalizes his result.) 

2. Projective i?[X]-modules when R[X] is an OP-ring. In view of 
Theorem 1 of the previous section if one wishes to consider the structure of 
finitely generated projective R[X]-modules when R[X] is an OP-ring it suffices 
to consider the structure of finitely generated projective R[X] modules when R 
is a connected ring of global dimension ^ 1 and when R is a special principal 
ideal ring. 

In view of the theorem of Serre [8], we know precisely what the situation 
is when global dimension of R is 5j 1. If R is a field or a principal ideal domain 
then all finitely generated projectives are free; while if R is a Dedekind domain, 
not a field or a principal ideal domain, then all finitely generated projective 
R[X]-modules have the form (R[X])S © 7 where I is a projective ideal of 
R[X]. 

The only case left to consider is the case when R is a special principal ideal 
ring. 

THEOREM 2. Let R be a special principal ideal ring. Then finitely generated 
projective R[X]-modules are free. 

Proof. Let p = (u) C R be the unique prime ideal of R, and let p[X] = 
{a0 + aix + . . . + anx

n\at G p\. 
Then p is nilpotent, say pm = 0, so p[X]m = 0 also, and R[X] is therefore 

trivially complete with respect to the p[X]-topology. Proposition 2.29 of 
[11] then applies and 

Since 

it follows that K0(R[X]) = Z, i.e., every finitely generated projective R[X]-
module has a free complement. Since R[X] is an H-r'mg we have, by 
Proposition B, that every finitely generated projective R[X]-module is then 
free. 
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