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POLYNOMIAL RINGS WITH THE OUTER
PRODUCT PROPERTY

A. V. GERAMITA

Note. We shall assume throughout that all rings R are noetherian. This
property is not used in some of the lemmas but it intercedes before the main
theorem. We retain this assumption to ease the exposition.

Introduction. In [3] Lissner defined a class of rings called outer product rings,
(OP-rings). These are commutative rings R with identity for which every
exterior vector v € /\""'R" is decomposable, i.e., v = v; A ... A 9,01 with
v, ERN1=1,...,n— 1.

If we look only at those vectors v € /\"~1R”* whose co-ordinates with respect
to any basis of /\"~1R" generate the unit ideal in R and consider those rings R
for which all vectors of this type are decomposable, we obtain the class of
rings which have been referred to as Hermite-rings (H-rings, see also Lissner
[3]). This class of H-rings evidently contains the class of OP-rings.

ProrosiTioN A. R is an H-ring if and only if for any n elements of R,
@1y - - - Uy, SUCh that the ideal they generate in R is R, there exists an invertible
n X n matrix with first row (a1, . .., a,).

Proof. The reader should refer to [3, § 2, Proposition 2.1 and Corollary] for
a proof of this statement.

One of the major reasons for considering H-rings is contained in the follow-
ing proposition.
ProrositioN B. The following two statements are equivalent.
(1) R is an H-ring.
(ii) If P is a finitely generated projective R-module such that P @ R™ =~ R*
for two integers m, s, then P = R5™,

Proof. See [11, Proposition 12.2, p. 185].

In [7] Serre asked if every f.g. projective R-module, R = k[X;, ..., X,]
where k is a field, is necessarily free. Serre showed [7, Proposition 10] that if
P is a f.g. projective k[X4, ..., X,]-module then P @ R™ = R*® for some
integers m, s, (depending on P). In view of Proposition B above, Serre's
question amounts to asking whether k[X, ..., X,] is an H-ring.
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In [10], Seshadri showed that for # = 2, finitely generated projective
k[X4, ..., X, ]-modules are indeed free, while in [4] Lissner showed that
R[X], when R is a principal ideal domain (P.I.D.), is an OP-ring, thereby
obtaining Seshadri’s theorem as a consequence.

Our aim in this paper is to classify all those noetherian rings R such that
R[X] is an OP-ring. This is accomplished via the following theorem.

THEOREM. Let R be a noetherian ring. The following are equivalent:
(1) R[X] is an OP-ring.
(ii) R is a direct sum of rings of global dim =1 and special principal ideal
rings.

In the second section we completely classify finitely generated projective
R[X]-modules, when R[X] is an OP-ring.
1. The outer product property. We recall a few lemmas.

LeMMA 1. Let R be an OP-ring and ¢ : R — S be a surjection. Then S is an
OP-ring.

Proof. See [13, Proposition 1.3].

LEMMA 2. Let R be a ring and let S be a multiplicatively closed subset of R
(0¢.S,1€S8). If Ris an OP-ring then so is R s.

Proof. See [5, Proposition 4.5].

CoOROLLARY Let R[X] be an OP-ring and p C R be a prime ideal. Then
R,[X] is an OP-ring.

Proof. The proof is clear from Lemma 2.

In view of the corollary to Lemma 2 it is appropriate to begin considering
OP-rings of the form R[X] in the case that R is local.

The following lemma is probably well-known, but inasmuch as there appears

no proof in the literature we shall include a proof here for completeness.
We recall the following definition.

Definition. Let (R, m) be a local ring. The v-dimension (v-dim) of R is
= dim gmm/m?.

It is well-known (see, e.g., [6, p. 189]) that the v-dimension of R is equal to
the minimal number of elements in a generating set for m.

LeEmMmA 3. Let (R, m) be a local ring of v-dimension =s. Then there exists a
maximal ideal in A = R[X], say p, such that A, has v-dim = s + 1.

Proof. We suppose m = (u1,...,us) and let p C A, p = (uy, ..., un;X).
It is clear that p is a maximal ideal of A. Let ¢ : A — A, be the canonical map,
¢(f(x)) = f(x)/1. Evidently ¢(p)4, is the maximal ideal of A4, and is
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generated by {ui/1,us/1,...,u,/1,x/1}. If we can show that this set of
generators is minimal we will know that v-dimension 4, = s 4+ 1, since in a
local ring all minimal generating sets have the same number of elements.

Claim 1. x/1 ¢ (u1/1, u2/1, ..., u,/1) in A,: Suppose
x_ i s ts
1 a1 + ... +gs 1

where f;, g; € R[X], and g; ¢ p. Then

f1g2 Lo g+ glfzga gt L g g.g~1fs%s
2182 - - & '

From the definition of equality in 4,, there exists ¥ € R[X], k& ¢ p, such that

—R

(¥) kgige...gx = kf1ga. .. gaur + Rgifogs ... gste + o A RGZ2. gt

Since g; € p, the constant term of g, is not in m C R; similarly for k. Thus,
on the left side of equation (), the coefficient of x is (const. term of k) -H§=1
(const. term g;). Since all these factors are in R but not in m, and m is prime,
the coefficient of x on the left side of (#) is an element of R not in m. Evidently
all the coefficients on the right side of () are in m. This contradiction estab-
lishes the claim.

Claim 2. u/1 ¢ (uq/1,...,us/1,x/1): (We shall observe that the argument
given here does not depend on #;, but would work for any u,) Suppose
u1/1 € (uz/1,...,us/1,x/1); then

wm_ ’f+f2 +...+’§ T foge€ RIX] and g€ p.

I &
Thus,
Uy _fige. . . gX + gifogs. . gas + ...+ gagy . geafiu
1 2182 . . . gs ’
Again by the definition of equality in 4,, there exists ¥ € R[X], & ¢ p such
that

(1) wikgige . .. gs = Rf1ge ... gsx + Rgifogs ... guts + ... + kgigs. .. go1f s

As before, the constant term of kgy...g, is in R not in m, call it . Now
touy ¥ 0, since uq is part of a minimal generating set for m and f, ¢ m.

The constant term on the right side of (1) is 20 and fu1 = (const. term of
kgifogs . .. gs) - u2 + ...+ (const. term of kgigs . . . go—1fs) - us.

This equation contradicts the minimality of the generating set {u1, . . ., 2}
of m, and establishes Claim 2.

Thus ¢(p)A, needs s + 1 generators and so v-dimension 4, = s + 1.

ProrositioN 1. If (R, m) is a local ring of v-dimension = 2, then R[X] 1s
not an OP-ring.
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Proof. If R[X] is an OP-ring, then for any prime ideal p C R[X], R[X], is
an OP-ring [5, Proposition 4.5]. By Lemma 3, there exists maximal ideal
p C R[X] such that v-dimension R[X], = (v-dimension R) + 1 > 2. But
local OP-rings must have v-dim < 2 [13].

Thus, R[X] is not an OP-ring.

ProrosiTioN 2. If R is a ring of Krull dimension = 2, then R[X] is not an
OP-ring.

Proof. If Krull dimension R = 2 there exists a maximal ideal m in R such
that Krull dimension R, = 2. Since Krull dimension R,, < v-dimension R,,
we see by Proposition 1 that R,[X] is not an OP-ring. Thus, R[X] is not an
OP-ring by Lemma 2.

In view of Proposition 2 we need only consider rings R of Krull Dimension
<1.

If Krull dimension R = 0 then all prime ideals in R are maximal and R is
a finite direct sum of primary rings, i.e., rings with exactly one prime ideal,
(finite because R is noetherian). We recall the following proposition.

ProrosiTION 3. If R=R1 ® ... ® R, then, R 1is an OP-ring < R; 1is an
OP-ring for each v = 1, ..., s.

Proof. See [5, Theorem 5.4].

So, if R has Krull dimension =0, R = R; @ ... @ R, where the R; are
all primary rings and R[X] = R{X] @ ... @ R,J[X]. By Proposition 3, R[X]
is an OP-ring if and only if R,[X] is an OP-ring for eachz = 1,2,...,s.

ProrosiTION 4. Let R be a primary ring with prime ideal p. R[X] is an
OP-ring < R is a special principal ideal ring or R is a field. (Recall that R is a
special principal ideal ring if R has a unique prime ideal, p = (%), which is
nilpotent.)

Proof. = : Since R[X] is an OP-ring so is R, by Lemma 1. A primary ring
is a local ring and so by Proposition 1, v-dim R < 2. If v-dimension R = 0
then R is a field. So we may assume that v-dimension R = 1. In that case
p = (#) and p is nilpotent, i.e., R is a special principal ideal ring.

< : If Risa field then R[X] is a principal ideal domain and so is an OP-ring
[3, Theorem 2.2]. If R is a special principal ideal ring then R is a complete
local ring and hence by a theorem of I. S. Cohen [2], R is the homomorphic
image of a regular local ring of Krull dimension equal to the v-dimension of R.
Let A be such a regular local ring of Krull dimension = 1, and ¢ : A — R the
surjection provided by the theorem. Now 4 is a principal ideal domain and so
A[X] is an OP-ring [4]. We extend ¢ to a homomorphism, which we will also call
¢, ¢ : A[X] — R[X]. This new ¢ is also a surjection. Since 4[X] is an OP-ring,
so is R[X].
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Thus, if R has Krull dimension 0, R[X] is an OP-ring if and only if R is a
finite direct sum of fields and principal ideal rings.

It remains only to consider rings R of Krull dimension = 1. We may as
well assume that the prime spectra of the rings considered are connected, for
if not then R is a finite sum of rings of Krull dimension =< 1, whose prime
spectra are connected. We have already considered the case of Krull dimen-
sion zero. Since the OP property is invariant under direct sums we are reduced
to considering the problem in one summand.

ProrosITION 5. Let R be a ring with connected prime spectrum and Krull
dimension one.
R[X] 7s an OP-ring < R has global dimension one.

Proof. < : If R has global dimension one then R is a direct sum of Dedekind
domains [1, Proposition 4.13]. Since the prime spectrum of R is connected, R
is a Dedekind domain. That R[X] is an OP-ring follows from [12, Theorem 1.2].

= : Let m be any maximal ideal of R. Suppose that m is also a minimal
prime ideal of R. Since R is noetherian there are only finitely many minimal
prime ideals of R, say m, p1, ..., ps. In Spec(R) we let

V() = {prime ¢ C R|A C g}

for any ideal A. The V(A) are all closed sets in Spec(R) and Spec(R) =
({m})\J (Uis1V(p:)). Clearly {m} N\ V(p;) =¢,72=1,...,s. Since U,V (p;)
is closed in Spec(R) we have that {m]} is open. Since {m} = V(m) we also have
that {m} is closed. This is a contradiction since Spec(R) is connected. Thus m
is not a minimal prime of R and so the Krull dimension of R, is 1.

Since R[X] is an OP-ring so is R,[X] by Lemma 2. Hence, by Proposition 1,
v-dimension R,, < 2. Since in any event Krull dimension R,, =< v-dimension
R,, we have both dimensions = 1. Hence global dimension R,, = 1. Since
this maximal ideal was arbitrarily chosen and since global dimension R = sup
global dimension R,, (m varying over the maximal ideals of R) we have global
dimension R = 1.

Thus, if R has Krull dimension 1 and R[X] is an OP-ring then R is a finite
sum of rings of global dimension 1, special PIR’s and fields. This, together
with our previous results proves:

THEOREM 1. Let R be a commutative noetherian ring with 1. R[X] is an
OP-ring & R is a direct sum of rings of global dimension < 1 and special
principal ideal rings.

The following corollary is an immediate consequence.

CorOLLARY 1.1. If R s a domain the following are equivalent.
(1) R s a Dedekind domain (possibly a field).
(2) R[X] 1s an OP-ring.
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(Note: The referee has brought to my attention a recent article by Kleiner
in Mat. Sb. 84, No. 4 (1971), 526-536, in which he also obtains Corollary 1.1
above. Our Theorem 1 then, generalizes his result.)

2. Projective R[X]-modules when R[X] is an OP-ring. In view of
Theorem 1 of the previous section if one wishes to consider the structure of
finitely generated projective R[X]-modules when R[X] is an OP-ring it suffices
to consider the structure of finitely generated projective R[X] modules when R
is a connected ring of global dimension = 1 and when R is a special principal
ideal ring.

In view of the theorem of Serre [8], we know precisely what the situation
is when global dimension of R is <1. If R is a field or a principal ideal domain
then all finitely generated projectives are free; while if R is a Dedekind domain,
not a field or a principal ideal domain, then all finitely generated projective
R[X]-modules have the form (R[X])* @ I where I is a projective ideal of
R[X].

The only case left to consider is the case when R is a special principal ideal
ring.

THEOREM 2. Let R be a special principal ideal ring. Then finitely generated
projective R[X]-modules are free.

Proof. Let p = (u) C R be the unique prime ideal of R, and let p[X] =
{ao + awx + ... + axa; € p}.

Then # is nilpotent, say p™ = 0, so p[X]™ = 0 also, and R[X] is therefore
trivially complete with respect to the p[X]-topology. Proposition 2.29 of
[11] then applies and

~ EPSJ)
K (R[X]) _KO(P[X]
Since
ke p[X] and K0<P[X] >~ Z,

it follows that K¢(R[X]) =< Z, i.e., every finitely generated projective R[X]-
module has a free complement. Since R[X] is an H-ring we have, by
Proposition B, that every finitely generated projective R[X]-module is then
free.
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