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Abstract
We present bounds on the maximal gain of adaptive and randomized algorithms over nonadaptive, deterministic
ones for approximating linear operators on convex sets. If the sets are additionally symmetric, then our results are
optimal. For nonsymmetric sets, we unify some notions of n-widths and s-numbers, and show their connection to
minimal errors. We also discuss extensions to nonlinear widths and approximation based on function values, and
conclude with a list of open problems.
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1. Introduction and summary

Let X and Y be (real) Banach spaces, 𝑆 ∈ L(𝑋,𝑌 ), that is, a continuous linear mapping between X and
Y, and 𝐹 ⊂ 𝑋 . We usually assume that F is convex, and sometimes also that F is symmetric. The goal is
to approximate 𝑆( 𝑓 ) for arbitrary 𝑓 ∈ 𝐹 by an algorithm 𝐴𝑛 : 𝐹 → 𝑌 that has access to the values of at
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most n linear functionals (aka measurements) applied to f ; see Section 2 for precise definitions. Here,
we ask the following question:

How much can be gained by choosing the functionals
adaptively and/or randomly?

In this paper, we present several upper bounds on the largest possible gain. In the case that F is not only
convex, but also symmetric, we can apply known relations of minimal worst-case errors and s-numbers
as well as inequalities between different s-numbers. In the case that F is only convex, much less is known
and new concepts are required. Such nonsymmetric model classes F appear quite naturally, for example,
if the problem instances 𝑓 ∈ 𝐹 are non-negative, monotone or convex functions. They may behave very
differently compared to symmetric classes, as we discuss below. We also consider the maximal gain if
only one of the two features, that is, adaption or randomization, is allowed, and present an upper bound
if the measurements are given by n function evaluations instead of arbitrary linear functionals.

Let us now describe the state of the art and our main results in more detail. We start by discussing the
power of adaption: How much better are algorithms that are allowed to choose information successively
depending on already observed information, compared to those that apply the same n measurements to
all inputs? This is sometimes called the “adaption problem.” Note that we compare all algorithms that
use the same amount of information, regardless of their computational cost.

In the deterministic setting, if F is additionally symmetric, it is known that the answer is almost
nothing. More precisely, the minimal worst-case error that can be achieved with adaptive algorithms
improves upon the one achievable with nonadaptive algorithms by a factor of at most two, see [2, 9, 15,
49, 51, 67, 68]. For nonsymmetric sets, it was proved in [48] that the largest possible gap between those
errors is bounded above by 4(𝑛 + 1)2.

For a long time, it was not known whether adaption helps for randomized algorithms if the input
set F is convex and symmetric. The problem was posed in [49] and restated in [51, Open Problem 20].
This open problem was recently solved in the affirmative by Stefan Heinrich [22, 23, 24, 25] who
studied (parametric) integration and approximation in mixed ℓ𝑝 (ℓ𝑞)-spaces using standard information
(function evaluations). We stress that in this paper we mainly consider arbitrary linear information,
hence the setting is different.

For randomized algorithms using arbitrary linear information, the paper [38] shows that one may
gain by adaption a factor of main order 𝑛1/2 for the embedding 𝑆 : ℓ𝑚1 → ℓ𝑚2 if F is the unit ball of ℓ𝑚1 .
It is proved in [39] that the same gain occurs for the embedding 𝑆 : ℓ𝑚2 → ℓ𝑚∞ and one may even gain
a factor of main order n for the embedding 𝑆 : ℓ𝑚1 → ℓ𝑚∞ . In these results, the dimension m is chosen
in (exponential) dependence of n and hence the problem S depends on n. Both papers also show how
one can obtain from this a single infinite-dimensional problem, where adaption gives a speed-up of the
respective main order for all 𝑛 ∈ N by using a construction similar to the one proposed in [25].

In this paper, we give upper bounds for the maximal gain of randomized adaptive algorithms (the
most general kind) over deterministic nonadaptive algorithms (the least general kind). We denote the
corresponding n-th minimal worst-case errors for approximating S over F by 𝑒ran

𝑛 (𝑆, 𝐹) and 𝑒det-non
𝑛 (𝑆, 𝐹),

see Section 2. Our main result reads as follows; see Theorem 5.1 for a slightly stronger version and its
proof.
Theorem 1.1. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 and 𝑛 ∈ N, we
have

𝑒det-non
2𝑛−1 (𝑆, 𝐹) ≤ 12 𝑛3/2

( ∏
𝑘<𝑛

𝑒ran
𝑘 (𝑆, 𝐹)

)1/𝑛
.

In special cases, the following improvements hold:
a) if F is symmetric, we can replace 𝑛3/2 with n,
b) if Y is a Hilbert space, we can replace 𝑛3/2 with n,
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c) if F is symmetric and Y a Hilbert space, replace 𝑛3/2 with 𝑛1/2,
d) if X is a Hilbert space and F its unit ball, we can replace 𝑛3/2 with 𝑛1/2 if we additionally replace

the index 2𝑛 − 1 with 4𝑛 − 1.

Although these bounds are of a nonasymptotic nature, see Corollary 5.2, they might be most easily
understood in terms of the polynomial rate of convergence. For this, one has to realize that the geometric
mean on the right-hand side has the same polynomial rate of convergence as the error numbers 𝑒ran

𝑛 .
Hence, we find that adaption and randomization improve the rate of convergence by no more than 1 in
the symmetric case and by no more than 3/2 in the nonsymmetric case. This maximal improvement is
further reduced by 1/2 if either the input or the target space is a Hilbert space. In the case that X and Y are
Hilbert spaces and F the unit ball of X, then there is no gain (up to constants), see [46] and Lemma 4.3.

By recalling the aforementioned results from [38, 39], we see that our results for the polynomial rate
of convergence are sharp in the case of symmetric classes F. We summarize the new state of the art for
the adaption and randomization problem in Table 1. The same results hold for the adaption problem in
the randomized setting. See also Section 6.1 and Table 2 for an individual discussion of adaption and
randomization. For comparison, recall that adaption gives no speed-up for deterministic algorithms for
all convex and symmetric classes F.

A crucial tool in our analysis are inequalities between s-numbers of operators, see, for example,
[55, 56], and between variants of those numbers for the nonsymmetric case, see Section 3.

Indeed, the Gelfand numbers 𝑐𝑛 characterize the error 𝑒det-non
𝑛 of deterministic and nonadaptive

algorithms up to a factor of two. On the other hand, it is known that the Bernstein numbers 𝑏𝑛 are a lower
bound for the error of deterministic and adaptive algorithms, see, for example, [48]. More recently, based
on earlier results of [21], it has been proven in [36, 37] that also the error 𝑒ran

𝑛 of adaptive randomized
algorithms is bounded below by the Bernstein numbers. Hence, one can obtain bounds for the ratio
𝑒det-non
𝑛 /𝑒ran

𝑛 from corresponding bounds involving 𝑐𝑛 and 𝑏𝑛, which is the approach of this paper.
For the symmetric case, such bounds follow from the already available estimates on the maximal

difference between arbitrary s-numbers, see [55, 56] and the recent paper [70]. For the nonsymmetric
case, we will use similar concepts and proof ideas. In particular, we will introduce the Hilbert width ℎ𝑛
as a substitute of the Hilbert numbers, that is, the smallest s-numbers, and prove bounds between 𝑐𝑛 and
ℎ𝑛 similar to our Theorem 1.1, see Theorem 3.3.

There are many questions which remain unanswered, even despite all the recent progress on the matter
of adaption and randomization. For instance, Table 1 neglects any logarithmic factors and it is probably a
very hard problem to determine the correct behavior of the maximal gain including logarithmic factors,
even in the symmetric case. In the nonsymmetric case, we do not even know the right polynomial order
of the maximal gain. Moreover, what is the maximal gain of nonadaptive randomized algorithms over
nonadaptive deterministic algorithms? We give a list of open problems in Section 6.

Possibly the most interesting open problem is the following: How do the results change if we switch
from algorithms that use arbitrary linear functionals to algorithms that are only allowed to use function
evaluations? (In information-based complexity this type of information is called standard information.)
We guess that the results are, under suitable conditions, quite similar, but so far have not found the right
ideas for a proof.

Table 1. Maximal gain in the rate of convergence of adaptive randomized
over nonadaptive deterministic algorithms using linear information. The same
table applies for the comparison of adaptive randomized with nonadaptive
randomized algorithms..

𝑌
𝐹 unit ball of a

Hilbert space convex & symmetric only convex

Hilbert
space no gain 1/2 ≤ 1

Banach
space 1/2 1 ≤ 3/2
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There are results on this question, but mostly for particular S and F. The techniques of our paper can
be easily adapted to standard information in the case of uniform approximation on convex subsets of
𝐵(𝐷), the space of bounded functions on a set D. That is, we consider 𝑋 = 𝑌 = 𝐵(𝐷), equipped with
the sup-norm on D, and 𝑆 = APP∞ being the identity on 𝐵(𝐷).

We obtain that algorithms that only use function evaluations obey the same upper bounds as given
in Theorem 1.1, see below and Section 6.3. Here, we only present the interesting special case that F is
convex and symmetric. In this case, it is known that we can restrict ourselves to linear algorithms, see
[9] or [51, Thm. 4.8]. Using this, we obtain bounds on the linear sampling numbers. For 𝐹 ⊂ 𝐵(𝐷),
those are defined by

𝑔lin
𝑛 (APP∞, 𝐹) := inf

𝑥1 ,...,𝑥𝑛∈𝐷
𝜑1 ,...,𝜑𝑛∈𝐵 (𝐷)

sup
𝑓 ∈𝐹

����� 𝑓 −
𝑛∑
𝑖=1

𝑓 (𝑥𝑖) 𝜑𝑖

�����
𝐵 (𝐷)

.

One might argue that linear sampling algorithms are the simplest type of algorithms, which are not only
nonadaptive, deterministic, and linear but also only employ very restrictive (but natural) information.

The following theorem bounds the error of linear sampling algorithms with the error of gen-
eral algorithms which may be nonlinear, randomized, adaptive, and based on arbitrary linear
information.

Theorem 1.2. Let D be a set, F be a convex and symmetric subset of 𝐵(𝐷), and APP∞ be the identity
on 𝐵(𝐷). Then, for all 𝑛 ∈ N, we have

𝑔lin
2𝑛−1 (APP∞, 𝐹) ≤ 6𝑛

( ∏
𝑘<𝑛

𝑒ran
𝑘 (APP∞, 𝐹)

)1/𝑛
.

If F is the unit ball of a Hilbert space, we can replace the factor n with 𝑛1/2 if we additionally replace
the index 2𝑛 − 1 with 4𝑛 − 1.

Theorem 1.2 is optimal in the sense that the factor n cannot be replaced by a lower-order term. This
follows again by considering the embedding 𝑆 : ℓ𝑚1 → ℓ𝑚∞ as discussed in [39]. See Section 6.3 for
some details, extensions, as well as remarks on this setting. Theorem 1.2 is proven by Theorem 6.4, a
common generalization of Theorems 1.1 and 1.2.

2. Algorithms and minimal errors

In general, a deterministic algorithm 𝐴𝑛 : 𝐹 → 𝑌 is an arbitrary mapping of the form 𝐴𝑛 = 𝜑𝑛 ◦ 𝑁𝑛
with 𝑁𝑛 : 𝐹 → R𝑛 being the information mapping, and 𝜑𝑛 : R𝑛 → 𝑌 the reconstruction mapping. We
mostly pose no restriction at all on the mappings 𝜑𝑛 and focus on the form of 𝑁𝑛; see also Section 6.
The most general form we consider is that an information mapping is given recursively by

𝑁𝑛 ( 𝑓 ) = (𝑁𝑛−1 ( 𝑓 ), 𝐿𝑛 ( 𝑓 )),

where the choice of the n-th linear functional 𝐿𝑛 = 𝐿𝑛 (·, 𝑁𝑛−1 ( 𝑓 )) may depend on the first 𝑛 − 1
measurements. This is called an adaptive choice of information, and we denote the collection of all such
algorithms by Adet

𝑛 (𝐹,𝑌 ), or just Adet
𝑛 .

An algorithm is called nonadaptive if 𝑁𝑛 = (𝐿1, . . . , 𝐿𝑛), that is, the same functionals are used for
every input, and we denote by Adet-non

𝑛 the corresponding class of algorithms.
Let us add that the assumption that measurements are given by linear functionals is very common

in numerical analysis and approximation theory. However, also other concepts are possible. We shortly
discuss this in Section 6.2.
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For an algorithm 𝐴𝑛 ∈ A∗
𝑛 with ∗ ∈ {det, det-non}, a mapping 𝑆 : 𝑋 → 𝑌 and a set 𝐹 ⊂ 𝑋 , we

define the worst-case error of 𝐴𝑛 for approximating S over F by

𝑒(𝐴𝑛, 𝑆, 𝐹) := sup
𝑓 ∈𝐹

‖𝑆( 𝑓 ) − 𝐴𝑛 ( 𝑓 )‖𝑌 .

(Note that we omit the Y in ‖ · ‖𝑌 when no confusion is possible.)
Randomized algorithms are random variables whose realizations are deterministic algorithms as

described above.
A randomized algorithm is a family of deterministic algorithms 𝐴𝑛 = (𝐴𝜔𝑛 )𝜔∈Ω ⊂ Adet

𝑛 (𝐹,𝑌 )
which is indexed by a probability space (Ω,A, P). For technical reasons, we assume that the mapping
( 𝑓 , 𝜔) ↦→ ‖𝑆( 𝑓 ) − 𝐴𝜔𝑛 ( 𝑓 )‖𝑌 is (B𝐹 ⊗A, B𝑌 )-measurable, where B𝑌 denotes the Borel 𝜎-algebra on Y,
the set F is assumed to be convex, and B𝐹 denotes the Borel 𝜎-algebra of the topology associated with
F, that is, with respect to the semi-norm whose unit ball is the convex and symmetric set 𝐹 − 𝐹. Then,
formally, the desirable statement Adet

𝑛 ⊂ Aran
𝑛 is not correct since we do not assume that a deterministic

algorithm has to be measurable. See [51, Section 4.3.3] and Section 6 for a discussion of this technicality.
We denote the class of all such (possibly adaptive) algorithms by Aran

𝑛 (𝐹,𝑌 ) and let Aran-non
𝑛 (𝐹,𝑌 )

be the class of randomized algorithms whose realizations are nonadaptive. Again, we may omit the
dependence on F and Y. We define the worst-case error of a randomized algorithm 𝐴𝑛 ∈ Aran

𝑛 (𝐹,𝑌 ) for
approximating S over F by

𝑒(𝐴𝑛, 𝑆, 𝐹) := sup
𝑓 ∈𝐹
E ‖𝑆( 𝑓 ) − 𝐴𝑛 ( 𝑓 )‖𝑌 .

In order to compare the power of the just introduced types of algorithms, we now define the n-th
minimal worst-case error for approximating S over F by

𝑒∗𝑛 (𝑆, 𝐹) := inf
𝐴𝑛∈A∗

𝑛

𝑒(𝐴𝑛, 𝑆, 𝐹),

where ∗ ∈ {det, det-non, ran, ran-non}.
The respective concepts can indeed lead to very different minimal errors. Several examples, remarks,

and open problems will be presented in Section 6.

3. Widths and s-numbers

Widths have a long tradition in approximation theory and there is a whole range of widths of sets within
normed spaces. See, for example, Tikhomirov [66] and Ismagilov [26] for early treatments, and Pinkus
[58] or Lorentz et al. [40] for books on the subject. A somehow competing concept are s-numbers of
operators which play an important role in operator theory and geometry of Banach spaces, see Pietsch
[55, 56]. A short account of their history and potential differences can be found in [56, 6.2.6], see
also [13, 20]. Some of these widths and numbers have an obvious relation to algorithms, and hence
to information-based complexity, while others are seemingly unrelated. We will discuss some known
relations in Section 4. However, we first study the relation of the relevant numbers among each other.

We start by providing a common generalization of the above concepts. That is, we introduce various
s-numbers of a mapping 𝑆 ∈ L(𝑋,𝑌 ) on a subset 𝐹 ⊂ 𝑋 . Alternatively, one may call them widths of a
set 𝐹 ⊂ 𝑋 with respect to a mapping 𝑆 ∈ L(𝑋,𝑌 ).

The original definitions of the corresponding widths of sets 𝐹 ⊂ 𝑋 are obtained by considering the
s-numbers of the identity id𝑋 on 𝐹 ⊂ 𝑋 (or the width of F w.r.t. id𝑋 ), while s-numbers of the operator
S are recovered by considering 𝐹 = 𝐵𝑋 (or the width of 𝐵𝑋 w.r.t. S).

Here and in the following, the (closed) unit ball of X is denoted by 𝐵𝑋 and the continuous dual space
of X by 𝑋 ′.
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We define the Gelfand numbers of 𝑆 ∈ L(𝑋,𝑌 ) on 𝐹 ⊂ 𝑋 by

𝑐𝑛 (𝑆, 𝐹) := inf
𝐿1 ,...,𝐿𝑛∈𝑋 ′

sup
𝑓 ,𝑔∈𝐹 :

𝐿𝑘 ( 𝑓 )=𝐿𝑘 (𝑔)

1
2

��𝑆( 𝑓 ) − 𝑆(𝑔)
��

= inf
𝑀 ⊂𝑋 closed
codim(𝑀 ) ≤𝑛

sup
𝑓 ,𝑔∈𝐹 :
𝑓 −𝑔∈𝑀

1
2

��𝑆( 𝑓 ) − 𝑆(𝑔)
��.

In particular, 𝑐0 (𝑆, 𝐹) = 1
2 diam

(
𝑆(𝐹)

)
. Note that in the theory of s-numbers, there is usually an index

shift of one and “𝑠𝑛” is only considered for 𝑛 ≥ 1 (such that 𝑠1(𝑆) = ‖𝑆‖ = 1
2 diam

(
𝑆(𝐵𝑋 )

)
). We use

a different convention here because n is used for the amount of information. It is well-known, and we
will present the details in Section 4, that the Gelfand numbers 𝑐𝑛 are closely related to 𝑒det-non

𝑛 .
Other quantities that will serve as lower bounds for all minimal errors are the Bernstein numbers of

S on F, which are defined by

𝑏𝑛 (𝑆, 𝐹) := sup
dim(𝑉 )=𝑛+1
𝑆 injective on 𝑉

sup
{
𝑟 > 0 : 𝑔 + 𝐵 ⊂ 𝐹 for some 𝑔 ∈ 𝐹

and a ball 𝐵 of radius 𝑟 in (𝑉, ‖ · ‖𝑆)
}
.

Here, we consider the norm on the linear space V that is induced by S, that is, ‖𝑥‖𝑆 := ‖𝑆𝑥‖𝑌 . If F is
convex and symmetric, it suffices to consider balls centered at the origin in the above definition. We note
again that these numbers coincide with the classical Bernstein widths if S is the identity on X. In the
special case that F is a bounded subset of X, it is not hard to verify that we have the handy formula

𝑏𝑛 (𝑆, 𝐹) = sup
𝑉 ⊂𝑋 affine

dim(𝑉 )=𝑛+1

sup
𝑔∈𝐹∩𝑉

inf
𝑓 ∈𝑉∩(𝑋\𝐹 )

‖𝑆( 𝑓 ) − 𝑆(𝑔)‖.

Remark 3.1. The paper [48] considers instead the Bernstein widths of the set 𝑆(𝐹) in Y, that is, the radius
of the largest (𝑛 + 1)-dimensional ball contained in 𝑆(𝐹). This coincides with the Bernstein numbers of
S on F as defined above if S is injective. If S is not injective, the widths of the set 𝑆(𝐹) may be larger.

We will see in Section 4, that one obtains bounds on 𝑒det-non
𝑛 /𝑒ran

𝑛 from corresponding bounds involving
𝑐𝑛 and 𝑏𝑛, which is the approach of this paper. For this, we want to employ proof ideas that have already
been used for bounding the maximal difference between s-numbers, see, for example, [55, 56]. Inspired
by Hilbert numbers, see [4], which are the smallest s-numbers, we introduce the Hilbert numbers of
𝑆 ∈ L(𝑋,𝑌 ) on 𝐹 ⊂ 𝑋 by

ℎ𝑛 (𝑆, 𝐹) := sup
{
𝑐𝑛

(
𝐵𝑆𝐴, 𝐵ℓ2

)
: 𝐵 ∈ L(𝑌, ℓ2) with ‖𝐵‖ ≤ 1,

𝐴 ∈ L(ℓ2, 𝑋) and 𝑥 ∈ 𝐹 with 𝐴(𝐵ℓ2) + 𝑥 ⊂ 𝐹
}
.

In this definition, we can replace 𝑐𝑛 with 𝑏𝑛 since both numbers coincide for operators 𝑇 ∈ L(ℓ2, ℓ2);
they are both equal to the (𝑛 + 1)-st singular value of T, see, for example, [53].

One of the key ingredients to our results will be bounds between these numbers. First, note that they
are related in the same way as the corresponding s-numbers, see [4, 53].

Proposition 3.2. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 and 𝑛 ∈ N0,
we have

ℎ𝑛 (𝑆, 𝐹) ≤ 𝑏𝑛 (𝑆, 𝐹) ≤ 𝑐𝑛 (𝑆, 𝐹).

Equalities hold if X and Y are Hilbert spaces and 𝐹 = 𝐵𝑋 .
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Proof of Proposition 3.2. In order to prove 𝑏𝑛 ≥ ℎ𝑛, let 𝐵 ∈ L(𝑌, ℓ2) with ‖𝐵‖ ≤ 1 as well as
𝐴 ∈ L(ℓ2, 𝑋) and 𝑔 ∈ 𝑋 with 𝐴(𝐵ℓ2) + 𝑔 ⊂ 𝐹. For any 𝛽 < 𝑏𝑛

(
𝐵𝑆𝐴, 𝐵ℓ2

)
, there exists an (𝑛 + 1)-

dimensional linear space 𝑉 ⊂ ℓ2 such that 𝐵𝑆𝐴 is injective on V and for any 𝑣 ∈ 𝑉 it holds that
‖𝐵𝑆𝐴𝑣‖2 ≤ 𝛽 implies 𝑣 ∈ 𝐵ℓ2 . First, we observe that the injectivity of 𝐵𝑆𝐴 implies that S is injective
on 𝑊 = 𝐴(𝑉) and that W is (𝑛 + 1)-dimensional. Moreover, let 𝑓 ∈ 𝑊 with ‖𝑆 𝑓 ‖𝑌 ≤ 𝛽. Choose 𝑣 ∈ 𝑉
with 𝑓 = 𝐴𝑣. We have

‖𝐵𝑆𝐴𝑣‖2 ≤ ‖𝑆𝐴𝑣‖𝑌 = ‖𝑆 𝑓 ‖𝑌 ≤ 𝛽

and hence 𝑣 ∈ 𝐵ℓ2 . By assumption, this implies 𝑓 + 𝑔 ∈ 𝐹 for all such f. Hence, F contains an ‖ · ‖𝑆-ball
of radius 𝛽 in W and we have 𝑏𝑛 (𝑆, 𝐹) ≥ 𝛽. Taking the supremum over all 𝛽 gives

𝑏𝑛 (𝑆, 𝐹) ≥ 𝑏𝑛 (𝐵𝑆𝐴, 𝐵ℓ2)

and taking the supremum over all B, A, and g as above gives

𝑏𝑛 (𝑆, 𝐹) ≥ ℎ𝑛 (𝑆, 𝐹).

In order to show 𝑐𝑛 ≥ 𝑏𝑛, let 𝛽 < 𝑏𝑛 (𝑆, 𝐹) be arbitrary and let 𝑉 ⊂ 𝑋 be an (𝑛 + 1)-dimensional
subspace such that S is injective on V as well as 𝑚 ∈ 𝐹 such that ℎ ∈ 𝑉 and ‖𝑆ℎ‖𝑌 ≤ 𝛽 imply 𝑚+ ℎ ∈ 𝐹.
Now, for all 𝐿1, . . . , 𝐿𝑛 ∈ 𝑋 ′, there must be some ℎ ∈ 𝑉 \ {0} with 𝐿𝑖 (ℎ) = 0 for all 𝑖 ≤ 𝑛. We choose
h such that ‖𝑆ℎ‖𝑌 = 𝛽, which implies 𝑓 = 𝑚 + ℎ ∈ 𝐹 and 𝑔 = 𝑚 − ℎ ∈ 𝐹. Note that 𝐿𝑖 ( 𝑓 ) = 𝐿𝑖 (𝑔) for
all 𝑖 ≤ 𝑛. Moreover, 1

2 ‖𝑆 𝑓 − 𝑆𝑔‖ = 𝛽 and hence 𝑐𝑛 (𝑆, 𝐹) ≥ 𝛽. �

Here, we prove the following reverse inequalities, which are reminiscent to the corresponding bounds
for s-numbers, see Remark 3.4.

Theorem 3.3. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 and 𝑛 ∈ N,
we have

𝑐𝑛−1 (𝑆, 𝐹) ≤
(
𝑛−1∏
𝑘=0

𝑐𝑘 (𝑆, 𝐹)
)1/𝑛

≤ 𝑛3/2

(
𝑛−1∏
𝑘=0

ℎ𝑘 (𝑆, 𝐹)
)1/𝑛

.

In special cases, the following improvements hold:

a) if F is symmetric, we can replace the exponent 3/2 with 1,
b) if Y is a Hilbert space, we can replace the exponent 3/2 with 1,
c) if F is symmetric and Y a Hilbert space, replace 3/2 with 1/2,
d) if X is a Hilbert space and F its unit ball, we can replace the exponent 3/2 with 1/2 if we also replace

all 𝑐𝑘 with 𝑐2𝑘 .

Proof of Theorem 3.3. Let 𝑆 ∈ L(𝑋,𝑌 ) and 𝐹 ⊂ 𝑋 be convex.

General case: We first show that, for fixed 𝜀 > 0, we can find 𝑓0, 𝑔0, 𝑓1, 𝑔1, . . . ∈ 𝐹 and 𝐿0, 𝐿1, . . . ∈ 𝑋 ′

such that, with 𝑝𝑘 := 𝑓𝑘−𝑔𝑘
2 , we have 𝐿 𝑗 (𝑝𝑘 ) = 0 for 𝑗 < 𝑘 and (1 + 𝜀)𝐿𝑘 (𝑝𝑘 ) > 𝑐𝑘 (𝑆, 𝐹) for

𝑘 = 0, 1, . . .. See [48, p. 132] for a similar proof.
The proof is by induction. Let 𝑘 ∈ N0 and assume that 𝑓 𝑗 , 𝑔 𝑗 and 𝐿 𝑗 for 𝑗 < 𝑘 are already found.

Define

𝑀𝑘 :=
{
𝑝 ∈ 𝑋 : 𝐿 𝑗 (𝑝) = 0 for 𝑗 < 𝑘

}
.

Since codim 𝑀𝑘 ≤ 𝑘 , we can choose 𝑓𝑘 , 𝑔𝑘 ∈ 𝐹 with 𝑝𝑘 ∈ 𝑀𝑘 and

(1 + 𝜀) ‖𝑆𝑝𝑘 ‖ ≥ 𝑐𝑘 (𝑆, 𝐹). (3.1)
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By the Hahn-Banach theorem, there is 𝜆𝑘 ∈ 𝐵𝑌 ′ with 𝜆𝑘 (𝑆𝑝𝑘 ) = ‖𝑆𝑝𝑘 ‖ and hence

𝜆𝑘 (𝑆𝑝𝑘 ) ≥ (1 + 𝜀)−1 𝑐𝑘 (𝑆, 𝐹). (3.2)

We finish the induction step by setting 𝐿𝑘 = 𝜆𝑘 ◦ 𝑆 ∈ 𝑋 ′.
For 𝑛 ∈ N, we now define 𝑔 = 1

𝑛

∑
𝑖<𝑛

𝑓𝑖+𝑔𝑖
2 ∈ 𝐹 and the operators

𝐴(𝜉) :=
1
𝑛

∑
𝑖<𝑛

𝜉𝑖 𝑝𝑖 ∈ 𝑋, 𝜉 = (𝜉𝑖)𝑖<𝑛 ∈ ℓ𝑛2 , (3.3)

and

𝐵(𝑦) :=
1
√
𝑛

(
𝜆𝑖 (𝑦)

)
𝑖<𝑛 ∈ ℓ𝑛2 , 𝑦 ∈ 𝑌,

and consider the mapping 𝑆𝑛 := 𝐵𝑆𝐴. We observe that ‖𝐵‖ ≤ 1 and, for all 𝜉 ∈ [−1, 1]𝑛, due to
convexity, it holds

𝐴(𝜉) + 𝑔 =
1
𝑛

∑
𝑖<𝑛

(
1 + 𝜉𝑖

2
𝑓𝑖 +

1 − 𝜉𝑖
2

𝑔𝑖

)
∈ 𝐹.

In particular, 𝐴(𝐵ℓ𝑛2 ) + 𝑔 ⊂ 𝐹. This gives, for any 𝑘 < 𝑛,

𝑐𝑘 (𝑆𝑛, 𝐵ℓ𝑛2 ) ≤ ℎ𝑘 (𝑆, 𝐹).

Our bounds are obtained by considering the determinant of 𝑆𝑛 : ℓ𝑛2 → ℓ𝑛2 . Since 𝑆𝑛 is generated by
the triangular matrix 𝑛−3/2(𝐿 𝑗 (𝑝𝑖))𝑖, 𝑗<𝑛, we have

det(𝑆𝑛) ≥
∏
𝑘<𝑛

𝑐𝑘 (𝑆, 𝐹)
𝑛3/2 (1 + 𝜀)

.

On the other hand, the determinant is multiplicative and equals the product of the singular values, which
in turn equal the Gelfand widths 𝑐𝑘 (𝑆𝑛, 𝐵ℓ𝑛2 ). Therefore, we obtain

∏
𝑘<𝑛

𝑐𝑘 (𝑆, 𝐹)
𝑛3/2(1 + 𝜀)

≤ det(𝑆𝑛) =
∏
𝑘<𝑛

𝑐𝑘 (𝑆𝑛, 𝐵ℓ2) ≤
∏
𝑘<𝑛

ℎ𝑘 (𝑆, 𝐹).

Taking the infimum over all 𝜀 > 0 and using 𝑐𝑘 (𝑆, 𝐹) ≥ 𝑐𝑛−1 (𝑆, 𝐹) for 𝑘 < 𝑛, we obtain

𝑐𝑛−1 (𝑆, 𝐹) ≤ 𝑛3/2
( ∏
𝑘<𝑛

ℎ𝑘 (𝑆, 𝐹)
)1/𝑛

.

𝐹 symmetric: If F is additionally symmetric, then one has 𝑝𝑖 =
𝑓𝑖−𝑔𝑖

2 ∈ 𝐹 such that we can redefine
A by 𝐴(𝜉) := 1√

𝑛

∑
𝑖<𝑛 𝜉𝑖 𝑝𝑖 to have 𝐴(𝐵ℓ2) ⊂ 𝐹. Hence, we can continue with the triangular matrix

𝑆𝑛 = 𝑛−1 (𝐿 𝑗 (𝑝𝑖))𝑖, 𝑗<𝑛 to obtain the improved bound.

𝑌 Hilbert space: If Y is a Hilbert space, we can choose the functionals 𝐿𝑘 from the Hahn-Banach
theorem explicitly as

𝐿𝑘 :=
〈
· , 𝑆𝑝𝑘

‖𝑆𝑝𝑘 ‖𝑌

〉
,
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where 〈·, ·〉 is the inner product in Y. Hence, by the definition of the sets 𝑀𝑘 , we see that the 𝑆𝑝𝑘
for 𝑘 ≤ 𝑛 are pairwise orthogonal. We can hence skip the factor 𝑛−1/2 in the definition of B and put
𝐵(𝑦) := (𝜆𝑖 (𝑦))𝑖<𝑛 while preserving the property ‖𝐵‖ ≤ 1. Thus, also in this case, we can continue
with the triangular matrix 𝑆𝑛 = 𝑛−1 (𝐿 𝑗 (𝑝𝑖))𝑖, 𝑗<𝑛.

F symmetric, 𝑌 Hilbert space: We combine the modifications from the previous two cases and work
with the matrix 𝑆𝑛 = 𝑛−1/2 (𝐿 𝑗 (𝑝𝑖))𝑖, 𝑗<𝑛.

𝐹 unit ball of a Hilbert space: The proof is similar to the general case. We show by induction that for
fixed 𝜀 > 0, there are orthogonal vectors 𝑝0, 𝑝1, . . . ∈ 𝐵𝑋 and 𝐿0, 𝐿1, . . . ∈ 𝑋 ′ such that 𝐿 𝑗 (𝑝𝑘 ) = 0
for 𝑗 < 𝑘 and (1 + 𝜀)𝐿𝑘 (𝑝𝑘 ) ≥ 𝑐2𝑘 (𝑆, 𝐵𝑋 ) for 𝑘 = 1, 2, . . .

Assume that 𝑝 𝑗 , 𝐿 𝑗 for 𝑗 < 𝑘 are already found, and define

𝑀𝑛 :=
{
𝑝 ∈ 𝑋 : 𝐿 𝑗 (𝑝) = 0 and 〈𝑝𝑘 , 𝑝〉 = 0 for 𝑗 < 𝑘

}
.

Since codim 𝑀𝑘 ≤ 2𝑘 , we can choose 𝑝𝑘 ∈ 𝐵𝑋 with 𝑝𝑘 ∈ 𝑀𝑘 and

(1 + 𝜀)‖𝑆𝑝𝑘 ‖ ≥ 𝑐2𝑘 (𝑆, 𝐵𝑋 ).

By the Hahn-Banach theorem, there is 𝜆𝑘 ∈ 𝐵𝑌 ′ with 𝜆𝑘 (𝑆𝑝𝑘 ) = ‖𝑆𝑝𝑘 ‖.
For 𝑛 ∈ N, we define the operators 𝐴 ∈ L(ℓ𝑛2 , 𝑋) and 𝐵 ∈ L(𝑌, ℓ𝑛2 ) by

𝐴(𝜉) :=
∑
𝑖<𝑛

𝜉𝑖 𝑝𝑖 , 𝐵(𝑦) :=
1
√
𝑛

(
𝜆𝑖 (𝑦)

)
𝑖<𝑛

such that ‖𝐴‖ ≤ 1 and ‖𝐵‖ ≤ 1. The mapping 𝑆𝑛 := 𝐵𝑆𝐴 is generated by the triangular matrix
𝑛−1/2 (𝐿 𝑗 (𝑝𝑖))𝑖, 𝑗<𝑛, where 𝐿 𝑗 := 𝜆 𝑗 ◦ 𝑆. This gives

∏
𝑘<𝑛

𝑐2𝑘 (𝑆, 𝐵𝑋 )
𝑛1/2(1 + 𝜀)

≤ det(𝑆𝑛) =
∏
𝑘<𝑛

𝑐𝑘 (𝑆𝑛, 𝐵ℓ𝑛2 ) ≤
∏
𝑘<𝑛

ℎ𝑘 (𝑆, 𝐵𝑋 ).

Taking the infimum over 𝜀 > 0 and using 𝑐2𝑘 ≤ 𝑐2𝑛−2 for 𝑘 < 𝑛, we get

𝑐2𝑛−2 (𝑆, 𝐹) ≤ 𝑛1/2
( ∏
𝑘<𝑛

ℎ𝑘 (𝑆, 𝐹)
)1/𝑛

. �

Remark 3.4. a) Note the “oversampling” in Theorem 3.3 in the case that the input space is a Hilbert
space, where we consider 𝑐2𝑛−2 on the left hand side. We do not know if this is necessary.

b) We mentioned above that the Gelfand and Hilbert numbers coincide with the corresponding
s-numbers if F is the unit ball of X. In this case, Theorem 3.3 was known, see [55, 2.10.7] and
[54, Theorem 11.12.3] or [70] for a streamlined presentation.

It may be desirable to compare 𝑐𝑛 directly with ℎ𝑛 instead of the geometric mean of ℎ0, . . . , ℎ𝑛.
Under the regularity condition that ℎ𝑘/ℎ2𝑘 is bounded, such a comparison is obtained from the following
lemma.

Lemma 3.5. Let 𝑛 ∈ N be even and 𝑧1 ≥ . . . ≥ 𝑧𝑛 > 0. Moreover, let 𝑐 > 0 with 𝑧𝑘 ≤ 𝑐 𝑧2𝑘 for all
𝑘 ≤ 𝑛/2. Then ( 𝑛∏

𝑘=1
𝑧𝑘

)1/𝑛
≤ 𝑐4 𝑧𝑛.
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Proof of Lemma 3.5. Choose 𝑣 ∈ N0 such that 𝑛/2 < 2𝑣 ≤ 𝑛. For 2 𝑗 ≤ 𝑘 ≤ 𝑛, we get

𝑧𝑘 ≤ 𝑧2 𝑗 ≤ 𝑐𝑣− 𝑗 𝑧2𝑣 ≤ 𝑐𝑣− 𝑗 𝑧𝑛/2 ≤ 𝑐𝑣− 𝑗+1𝑧𝑛

so that ( 𝑛∏
𝑘=1

𝑧𝑘

)1/𝑛
≤

( 𝑣∏
𝑗=0

∏
2 𝑗 ≤𝑘<2 𝑗+1

𝑐𝑣− 𝑗+1
)1/𝑛

· 𝑧𝑛 = 𝑐𝜅 𝑧𝑛

with

𝜅 =
1
𝑛

𝑣∑
𝑗=0

(𝑣 − 𝑗 + 1)2 𝑗 = 2𝑣+1

𝑛

𝑣+1∑
𝑖=1

𝑖2−𝑖 ≤ 4. �

Lemma 3.5 is a fitting estimate for sequences of polynomial decay: If 𝑧𝑛 = 𝑛−𝛼, then 𝑐 = 2𝛼 is
independent of n. For sequences of super-polynomial decay, it might be better to use the simple estimate( 𝑛∏

𝑘=1
𝑧𝑘

)1/𝑛
≤

√
𝑧1 · 𝑧𝑛/2. (3.4)

In the case that Y is a Hilbert space, there also is the following alternative bound which works for
individual n without any regularity condition as in Lemma 3.5. On the downside, the upper bound is in
terms of the (possibly larger) Bernstein numbers instead of the Hilbert numbers.

Theorem 3.6. Let X be a Banach space, H be a Hilbert space and 𝑆 ∈ L(𝑋, 𝐻). For every convex
𝐹 ⊂ 𝑋 and 𝑛 ∈ N0, we have

𝑐𝑛 (𝑆, 𝐹) ≤ (𝑛 + 1) · 𝑏𝑛 (𝑆, 𝐹).

We can replace (𝑛 + 1) by
√
𝑛 + 1 if F is additionally symmetric.

Proof of Theorem 3.6. We take 𝑔𝑘 , 𝑓𝑘 and 𝑝𝑘 = 𝑓𝑘−𝑔𝑘
2 from the proof of Theorem 3.3 (general case),

and put 𝑟 = 𝑐𝑛−1
1+𝜀 . The n-dimensional space V spanned by 𝑝0, . . . , 𝑝𝑛−1 with the norm ‖ · ‖𝑆 is a Hilbert

space. The vectors 𝑝𝑘 have norm at least r and, as observed in the proof of Theorem 3.3, they are
orthogonal in V. If F is convex and symmetric, we have ±𝑝𝑘 ∈ 𝐹 and so F contains a ball of radius 𝑟√

𝑛

in V. This proves the claim, that is, 𝑏𝑛−1 (𝑆, 𝐹) ≥ 𝑐𝑛−1 (𝑆,𝐹 )√
𝑛

.
In the nonsymmetric case, we already observed that 𝐴(𝐵ℓ𝑛2 ) + 𝑔 ⊂ 𝐹 with A and g as in (3.3), so that

F contains a ball of radius 𝑟𝑛 . �

The paper [59] contains bounds similar to Theorem 3.6 with the Gelfand widths replaced by the
Kolmogorov widths. Since the target space is a Hilbert space, the Kolmogorov widths are larger than
the Gelfand widths, see, for example, [58, Prop. 5.2] and Section 6. This means that the bounds of
Theorem 3.6 are known up to constants. We presented the proof anyway since the result follows with
little effort from our other observations.

Due to their relations with the previously defined minimal worst-case errors (as discussed in the next
section), the Gelfand, Bernstein, and Hilbert numbers as considered above are of particular interest to
us. Nonetheless, in Section 6, we will mention some other types of widths that may be of independent
interest and discuss how Theorem 3.3 applies to these widths.

4. Widths versus minimal errors

In this section, we discuss how the Gelfand, Bernstein, and Hilbert numbers are related to minimal
errors and hence obtain bounds between the different types of minimal errors.
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First, note that the Gelfand numbers characterize the minimal worst-case error of deterministic
algorithms up to a factor of two. This is a special case of a classical result in information-based
complexity, see, e.g, [51, Sec. 4.1]. In our setting, the result reads as follows.

Proposition 4.1. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every 𝐹 ⊂ 𝑋 and 𝑛 ∈ N0, we have

𝑐𝑛 (𝑆, 𝐹) ≤ 𝑒det-non
𝑛 (𝑆, 𝐹) ≤ 2 𝑐𝑛 (𝑆, 𝐹).

If F is convex and symmetric then

𝑐𝑛 (𝑆, 𝐹) ≤ 𝑒det
𝑛 (𝑆, 𝐹) ≤ 𝑒det-non

𝑛 (𝑆, 𝐹) ≤ 2 𝑐𝑛 (𝑆, 𝐹).

We turn to the relation of Bernstein numbers and minimal errors. It is known, see [48], that 𝑏𝑛 (𝑆, 𝐹)
may serve as a lower bound for the error of adaptive deterministic algorithms.

Proposition 4.2. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every 𝐹 ⊂ 𝑋 and 𝑛 ∈ N0, we have

𝑒det
𝑛 (𝑆, 𝐹) ≥ 𝑏𝑛 (𝑆, 𝐹).

Proof of Proposition 4.1 and 4.2. The technique of the proof is the same for both results and is well
known (but a factor of 2 is missing in Proposition 1 of [48]) and hence we concentrate on Proposition 4.2.
Let 𝐴𝑛 = 𝜑𝑛 ◦ 𝑁𝑛 be an algorithm based on the information 𝑁𝑛 : 𝐹 → R𝑛 that might be adaptive. We
fix the nonadaptive and linear mapping 𝑁∗

𝑛 = (𝐿∗
1, . . . , 𝐿

∗
𝑛) : 𝐹 → R𝑛 that is taken for the midpoint g of

a ball 𝑔 + 𝐵 ⊂ 𝐹. The mapping 𝑁∗
𝑛 cannot be injective and there exists a point 𝑓 on the sphere of B with

𝑁∗( 𝑓 + 𝑔) = 𝑁∗(𝑔) = 𝑁∗(𝑔 − 𝑓 ), hence 𝑁 (𝑔 + 𝑓 ) = 𝑁 (𝑔 − 𝑓 ). Then 𝐴𝑛 cannot distinguish between the
two inputs and we obtain the lower bound. �

In the case that X and Y are Hilbert spaces and F is the unit ball of X, it is shown in [46] that the
Bernstein numbers also yield lower bounds for randomized adaptive algorithms. Here we use a slightly
different error criterion and hence formulate a lemma.

Lemma 4.3. Let H and G be Hilbert spaces and 𝑆 ∈ L(𝐻,𝐺). For every 𝑛 ∈ N0, we have

𝑒ran
𝑛 (𝑆, 𝐵𝐻 ) ≥ 1

2
𝑏2𝑛−1(𝑆, 𝐵𝐻 ) =

1
2
𝑒det-non

2𝑛−1 (𝑆, 𝐹). (4.1)

With a different constant, Lemma 4.3 is implied by [21, Cor. 2].

Proof of Lemma 4.3. Let 0 < 𝑏 < 𝑏2𝑛−1 (𝑆, 𝐹). There exists a subspace 𝑉 ⊂ 𝐻 with dimension 2𝑛 such
that ‖𝑆 𝑓 ‖𝐺 ≥ 𝑏‖ 𝑓 ‖𝐻 for all 𝑓 ∈ 𝑉 . Let 𝑊 := 𝑆(𝑉). We choose 𝑅 ∈ L(R2𝑛, 𝑉) and 𝑄 ∈ L(𝑊,R2𝑛),
where R2𝑛 is considered with the Euclidean norm, such that ‖𝑅‖ ≤ 1 and ‖𝑄‖ ≤ 𝑏−1 and such that
𝑄𝑆𝑅 equals the identity id2𝑛 on R2𝑛. If 𝐴𝑛 is a randomized algorithm for S with error less than 𝑏/2,
then 𝑄𝐴𝑛𝑅 is a randomized algorithm for id2𝑛 with error less than 1/2. It hence suffices to prove the
lower bound 1/2 in the case 𝑆 = id2𝑛.

We let 𝑃2𝑛 be the uniform distribution on the sphere of R2𝑛. An application of Fubini’s theorem
(known as Bakhvalov’s proof technique, see [3] or [51, Section 4.3.3]) gives

𝑒ran
𝑛 (𝑆, 𝐹) ≥ inf

𝐴𝑛

∫
‖ 𝑓 − 𝐴𝑛 ( 𝑓 )‖ d𝑃2𝑛 ( 𝑓 ),

where the infimum runs over all deterministic and measurable algorithms 𝐴𝑛 ∈ Adet
𝑛 . Hence let 𝐴𝑛 =

𝜑 ◦ 𝑁𝑛 be a measurable deterministic algorithm with adaptively chosen information 𝑁𝑛 = (𝐿1, . . . , 𝐿𝑛)
and let f be distributed according to 𝑃2𝑛. Assume that the functionals 𝐿𝑖 are chosen orthonormal; this
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is no restriction. For each y in the unit ball of R𝑛, the information 𝑁𝑛 ( 𝑓 ) = 𝑦 defines a sphere S𝑦 of
radius 𝑟𝑦 =

√
1 − ‖𝑦‖2. We have∫

‖ 𝑓 − 𝐴𝑛 ( 𝑓 )‖ d𝑃2𝑛 ( 𝑓 ) =
∫ ∫

‖ 𝑓 − 𝜑(𝑦)‖ d𝜇𝑦 ( 𝑓 ) d𝜈(𝑦)

where 𝜇𝑦 is the uniform distribution on S𝑦 and 𝜈 is the distribution of 𝑁𝑛 ( 𝑓 ). The inner integral is
minimized if 𝜑(𝑦) equals the center of S𝑦 , so that we have∫

‖ 𝑓 − 𝐴𝑛 ( 𝑓 )‖ d𝑃2𝑛 ( 𝑓 ) ≥
∫

𝑟𝑦 d𝜈(𝑦) ≥
∫

𝑟2
𝑦 d𝜈(𝑦).

From the symmetry of 𝑃2𝑛 it follows that 𝜈 does not depend on 𝑁𝑛. We choose 𝑁𝑛 ( 𝑓 ) = ( 𝑓1, . . . , 𝑓𝑛)
and get ∫

‖ 𝑓 − 𝐴𝑛 ( 𝑓 )‖ d𝑃2𝑛 ( 𝑓 ) ≥
∫ 2𝑛∑

𝑖=𝑛+1
𝑓 2
𝑖 d𝑃2𝑛 ( 𝑓 ) =

1
2
.

The last identity holds since the 𝑓 2
𝑖 are identically distributed so that their expected value equals 1/(2𝑛).

See Proposition 3.2 for the equality 𝑏𝑛 = 𝑒det-non
𝑛 . �

More recently, it has been shown in [36, 37] that also for Banach spaces X and Y, it holds that

𝑒ran
𝑛 (𝑆, 𝐹) ≥ 1

30
𝑏2𝑛−1 (𝑆, 𝐹). (4.2)

The result of [37] is proven only in the symmetric case but it remains valid if F is only convex. On the
other hand, the result (4.1) for the Hilbert case easily implies the following.

Proposition 4.4. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 and 𝑛 ∈ N,
we have

𝑒ran
𝑛 (𝑆, 𝐹) ≥ 1

2
ℎ2𝑛−1 (𝑆, 𝐹).

Proof of Proposition 4.4. Let 𝐴𝑛 ∈ Aran
𝑛 (𝑋,𝑌 ) and let 𝐵 ∈ L(𝑌, ℓ2) with ‖𝐵‖ ≤ 1 as well as 𝐴 ∈

L(ℓ2, 𝑋) and 𝑔 ∈ 𝐹 with 𝐴(𝐵ℓ2) + 𝑔 ⊂ 𝐹. Then we have 𝐵𝐴𝑛𝐴 ∈ Aran
𝑛 (ℓ2, ℓ2). This algorithm uses

information of the form 𝐿 ′
𝑘 = 𝐿𝑘𝐴 ∈ ℓ′2, if 𝐿𝑘 ∈ 𝑋 ′ is the information used by 𝐴𝑛. Note that A is

continuous in the norm induced by F due to 𝐴(𝐵ℓ2) ⊂ 𝐹 − 𝐹 and hence the algorithm is measurable.
By (4.1), we have

𝑒(𝐵𝐴𝑛𝐴, 𝐵𝑆𝐴, 𝐵ℓ2) ≥ 1
2
𝑏2𝑛−1 (𝐵𝑆𝐴, 𝐵ℓ2).

On the other hand,

𝑒(𝐵𝐴𝑛𝐴, 𝐵𝑆𝐴, 𝐵ℓ2) = 𝑒(𝐵𝐴𝑛 (𝐴 + 𝑔), 𝐵𝑆(𝐴 + 𝑔), 𝐵ℓ2)
≤ 𝑒(𝐵𝐴𝑛, 𝐵𝑆, 𝐹) ≤ 𝑒(𝐴𝑛, 𝑆, 𝐹),

where we used (𝐴 + 𝑔) (𝐵ℓ2) ⊂ 𝐹 in the first and ‖𝐵‖ ≤ 1 in the second inequality. So,

𝑒(𝐴𝑛, 𝑆, 𝐹) ≥ 1
2
𝑏2𝑛−1 (𝐵𝑆𝐴, 𝐵ℓ2).

Taking the supremum over all B, A and g as above gives the result. �
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We point out that the Hilbert numbers can be much smaller than the Bernstein numbers. For example,
if S is the identity on ℓ1 and F the unit ball of ℓ1, then the Bernstein numbers are equal to one, see [53],
while the Hilbert numbers are of order 𝑛−1/2, see [55, 2.9.19]. So in general, one should prefer the bound
(4.2) over Proposition 4.4. However, since our upper bounds are in terms of the Hilbert numbers anyway,
we will obtain a better constant in the overall comparison if we work with Proposition 4.4 instead of
(4.2).

5. The main result

We now arrive at our main result, Theorem 1.1, which we present here in a slightly stronger form.

Theorem 5.1. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 and 𝑛 ∈ N,
we have ( ∏

𝑘<2𝑛
𝑒det-non
𝑘 (𝑆, 𝐹)

)1/(2𝑛)

≤ 27/2 𝑛3/2

(∏
𝑘<𝑛

𝑒ran
𝑘 (𝑆, 𝐹)

)1/𝑛

.

In special cases, the following improvements hold:

a) if F is symmetric, we can replace 𝑛3/2 with n,
b) if Y is a Hilbert space, we can replace 𝑛3/2 with n,
c) if F is symmetric and Y a Hilbert space, replace 𝑛3/2 with 𝑛1/2,
d) if X is a Hilbert space and F its unit ball, we can replace 𝑛3/2 with 𝑛1/2 if we also replace the range

𝑘 < 2𝑛 with 𝑘 < 4𝑛.

Proof of Theorems 1.1 and 5.1. A successive application of Proposition 4.1, Theorem 3.3, the mono-
tonicity of the Hilbert widths, and Proposition 4.4 (in the weaker form ℎ2𝑘 ≤ 2𝑒ran

𝑘 for all 𝑘 ∈ N0) gives∏
𝑘<2𝑛

𝑒det-non
𝑘 (𝑆, 𝐹) ≤ 22𝑛 ·

∏
𝑘<2𝑛

𝑐𝑘 (𝑆, 𝐹) ≤ 25𝑛𝑛3𝑛 ·
∏
𝑘<2𝑛

ℎ𝑘 (𝑆, 𝐹)

≤ 25𝑛𝑛3𝑛 ·
∏
𝑘<𝑛

ℎ2𝑘 (𝑆, 𝐹)2 ≤ 27𝑛𝑛3𝑛 ·
∏
𝑘<𝑛

𝑒ran
𝑘 (𝑆, 𝐹)2.

The modifications in the special cases are obvious. �

Since estimates in terms of geometric means might be unfamiliar to the reader, we present a corollary
of Theorem 1.1 which is reminiscent of Carl’s inequality.

Corollary 5.2. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex 𝐹 ⊂ 𝑋 , 𝑛 ∈ N and
𝛼 > 0, we have

𝑒det-non
2𝑛−1 (𝑆, 𝐹) ≤ 𝐶𝛼 𝑛

−𝛼+3/2 · sup
𝑘<𝑛

(
(𝑘 + 1)𝛼 𝑒ran

𝑘 (𝑆, 𝐹)
)
,

where 𝐶𝛼 ≤ 12𝛼+1. In accordance with the special cases given in Theorem 1.1, the exponent 3/2 can
be replaced with 1 or 1/2.

Proof of Corollary 5.2. If K denotes the supremum on the right hand side, then 𝑒ran
𝑘 (𝑆, 𝐹) ≤ 𝐾 (𝑘+1)−𝛼

for all 𝑘 < 𝑛. Now the statement follows from Theorem 1.1 and Lemma 3.5 with 𝑧𝑛 = 𝐾𝑛−𝛼. �

We also write explicitly the implication for the polynomial rate of convergence, which has been
presented in the introduction as Table 1. The polynomial rate of convergence of a sequence (𝑧𝑛) ⊂ [0,∞)
is defined by

rate(𝑧𝑛) := sup
{
𝛼 > 0

��� ∃𝐶 ≥ 0 : ∀𝑛 ∈ N : 𝑧𝑛 ≤ 𝐶𝑛−𝛼
}
. (5.1)
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We only give the result for the symmetric case, where the bounds are sharp up to logarithmic factors.
It should be obvious enough what the corresponding results in the nonsymmetric case look like.
Corollary 5.3. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex and symmetric 𝐹 ⊂ 𝑋 ,
we have

rate
(
𝑒det-non
𝑛 (𝑆, 𝐹)

)
≥ rate

(
𝑒ran
𝑛 (𝑆, 𝐹)

)
− 1.

If either Y is a Hilbert space or F is the unit ball of a Hilbert space X, we even have

rate
(
𝑒det-non
𝑛 (𝑆, 𝐹)

)
≥ rate

(
𝑒ran
𝑛 (𝑆, 𝐹)

)
− 1/2.

Moreover, in each of these cases, equality can occur.
Proof of Corollary 5.3. The inequalities are implied by Corollary 5.2. Equality occurs for the examples
from [39, Cor. 4.2], [38, Rem. 3.4], and [39, Rem. 4.3], respectively. �

6. Examples and related problems

In this section we give further details and extensions of our result and discuss related problems. In
particular, we analyze the individual influence of adaption and randomization on the minimal worst-
case error, and present those examples which exhibit the largest gain known to us. In addition, we show
how our results apply to other nonlinear widths and to approximation based on standard information,
that is, function evaluations, as shown in Theorem 1.2. We also present a list of open problems.

6.1. The individual power of adaption and randomization

By the results of the previous sections, we know how much adaption and randomization can help if they
are allowed together. That is, we have a good understanding of the maximal gain from Adet-non

𝑛 to Aran
𝑛 .

In the symmetric case, we even know that our bounds are optimal up to logarithmic factors. However,
our knowledge about the individual power of randomization or adaption still has several gaps.

Let us first talk about upper bounds. Intuitively, it is clear that the gain of randomization or adaption
alone cannot be larger than the gain of adaption and randomization together. Let us make this a corollary.
Corollary 6.1. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every convex and bounded 𝐹 ⊂ 𝑋
and 𝑛 ∈ N, we have

𝑒∗2𝑛−1(𝑆, 𝐹) ≤ 𝐶𝑛3/2
( ∏
𝑘<𝑛

𝑒�𝑘 (𝑆, 𝐹)
)1/𝑛

,

where ∗,� ∈ {det, det-non, ran, ran-non} and C is a universal constant. If X or Y is a Hilbert space or
if F is symmetric, the improvements of Theorem 1.1 apply.

This corollary is not as obvious as it seems at first glance. The problem is that, due to the assumed
measurability of randomized algorithms, we do not have the relation Adet-non

𝑛 ⊂ Aran-non
𝑛 . What we do

have is the relationAdet-non-mb
𝑛 ⊂ Aran-non

𝑛 , whereAdet-non-mb
𝑛 denotes the class of all (B𝐹 ,B𝑌 )-measurable

deterministic and nonadaptive algorithms with the corresponding minimal worst-case error denoted by
𝑒det-non-mb
𝑛 . The issue is fixed by the following lemma, which shows that measurable deterministic and

nonadaptive algorithms are (roughly) as good as arbitrary deterministic nonadaptive algorithms, that is,
there is no real difference between Adet-non-mb

𝑛 and Adet-non
𝑛 .

Lemma 6.2. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). For every bounded and convex 𝐹 ⊂ 𝑋
and 𝑛 ∈ N0, we have

𝑒det-non-mb
𝑛 (𝑆, 𝐹) ≤ 8 𝑒det-non

𝑛 (𝑆, 𝐹).
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Table 2. Maximal gain in the rate of convergence between different classes of algorithms using
linear information..

Gain from Adet-non
𝑛 Aran-non

𝑛 Adet
𝑛

for
to Adet

𝑛 Aran-non
𝑛 Aran

𝑛

𝐹 convex+symmetric 0
[ 1

2 , 1
]

1 1

𝐹 convex
[ 1

2 ,
3
2
] [ 1

2 ,
3
2
] [

1, 3
2
] [

1, 3
2
]

Lemma 6.2 is proven in [41, Thm. 11(v)] for the case that F is the unit ball of the space X. (In fact,
it is shown that continuous algorithms are almost optimal.) We show below how it can be transferred to
general convex classes. It is open whether the factor 8 can be removed and to what extent measureable
algorithms are as good as nonmeasurable algorithms also in other settings, see [51, Section 4.3.3]
and [50].

Proof of Lemma 6.2. Without loss of generality we assume that 0 ∈ 𝐹; the error numbers do not change
if we shift F. Then we have 𝐹 ⊂ 𝐹 − 𝐹. The class 𝐹 − 𝐹 is convex, bounded and symmetric, and hence
the unit ball of a norm on X. By [41, Thm. 11(v)], it holds that

𝑒det-non-mb
𝑛 (𝑆, 𝐹) ≤ 𝑒det-non-mb

𝑛 (𝑆, 𝐹 − 𝐹) ≤ 2 𝑒det-non
𝑛 (𝑆, 𝐹 − 𝐹).

On the other hand, [51, Lemma 4.3] and Proposition 4.1 give

𝑒det-non
𝑛 (𝑆, 𝐹 − 𝐹) ≤ 2 𝑐𝑛 (𝑆, 𝐹 − 𝐹) = 4 𝑐𝑛 (𝑆, 𝐹) ≤ 4 𝑒det-non

𝑛 (𝑆, 𝐹). �

We can now prove Corollary 6.1.

Proof of Corollary 6.1. All the minimal errors are bounded from below by 1
2 · ℎ2𝑛−1 (𝑆, 𝐹). For Aran

𝑛

and Aran-non
𝑛 , this follows from Proposition 4.4. For Adet

𝑛 and Adet-non
𝑛 , it follows from [48, Prop. 1] and

Proposition 3.2. On the other hand, all the minimal errors are bounded from above by 16 · 𝑐𝑛 (𝑆, 𝐹). For
Adet
𝑛 and Adet-non

𝑛 , this follows from Proposition 4.1. Lemma 6.2 implies that the upper bound also holds
for 𝐴det-non-mb

𝑛 and thus for Aran
𝑛 and Aran-non

𝑛 . Hence, the statement follows from Theorem 3.3. �

We summarize the state of the art for the maximal gain between the different classes of algorithms,
see Table 2. For this, let us define the “maximal gain function”

gain(∗,�, �) := sup
𝑆∈L(𝑋,𝑌 )
𝐹 ⊂𝑋 is �

(
rate

(
𝑒�𝑛 (𝑆, 𝐹)

)
− rate

(
𝑒∗𝑛 (𝑆, 𝐹)

))
,

where the rate function is defined in (5.1), ∗,� ∈ {det, det-non, ran, ran-non} and � ∈ {convex,
convex+symmetric}.

The upper bounds in Table 2 are given by Corollary 6.1 and Proposition 4.1. We now turn to the lower
bounds on the (individual) gain of adaption and randomization. For this, we collect specific examples:

◦ F convex+symmetric:
1. Power of adaption, deterministic (Adet-non

𝑛 → Adet
𝑛 ):

There is no gain in the rate of convergence. As stated in Proposition 4.1, we have 𝑒det-non
𝑛 (𝑆, 𝐹) ≤

2 · 𝑒det
𝑛 (𝑆, 𝐹) for any 𝑆 ∈ L, see for example [9, 49, 51, 68]. An example where adaptive algorithms

are slightly better can be found in [28].
2. Power of randomization, nonadaptive (Adet-non

𝑛 → Aran-non
𝑛 ):

Randomization of nonadaptive algorithms can yield a gain of 1/2 for certain Sobolev embeddings.
The simplest case is from 𝑊 𝑘

2 ([0, 1]) into 𝐿∞([0, 1]), where the optimal rate with deterministic
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algorithms is 𝑛−𝑘+1/2 for 𝑘 > 1/2. This is a classical result of [62]. Using nonadaptive randomized
algorithms, one can get the upper bound 𝑛−𝑘 log 𝑛, see [42] and [6, 14, 21] for further results and
extensions.

3. Power of adaption, randomized (Aran-non
𝑛 → Aran

𝑛 ):
The paper [38] shows that one may gain a factor (𝑛/log 𝑛)1/2 for the embedding 𝑆 : ℓ𝑚1 → ℓ𝑚2 and
suitable (large) m and in [39] it is proved that one may gain, up to logarithmic terms, a factor of
polynomial order n for the embedding 𝑆 : ℓ𝑚1 → ℓ𝑚∞ with appropriate m. Note that this example
(or more precisely, an infinite-dimensional version of it) shows the optimality of Corollary 5.3
and the factor n in Theorem 1.2. We do not know if a gain of 1 can also occur in the transitions
Adet-non
𝑛 → Aran-non

𝑛 .
4. Power of randomization, adaptive (Adet

𝑛 → Aran
𝑛 ):

If we employ Example (1), as well as Adet-non-mb
𝑛 ⊂ Aran-non

𝑛 and Lemma 6.2, we can take the
examples from (3), to obtain the same gain.

◦ F convex:
5. Power of adaption, deterministic (Adet-non

𝑛 → Adet
𝑛 ):

Consider 𝑆 = id ∈ L(ℓ∞, ℓ∞), that is, approximation in ℓ∞, for inputs from

𝐹 = {𝑥 ∈ ℓ∞ | 𝑥𝑖 ≥ 0,
∑

𝑥𝑖 ≤ 1, 𝑥𝑘 ≥ 𝑥2𝑘 , 𝑥𝑘 ≥ 𝑥2𝑘+1}.

Then one can prove a lower bound 𝑐(
√
𝑛 log 𝑛)−1 for nonadaptive algorithms while a simple

adaptive algorithm (using “function values,” that is, values of coordinates of x) gives the upper
bound (𝑛 + 3)−1; see [47] for details. This shows a gain of 1/2.In the case of standard information,
that is, function values, see also Section 6.3, there are more extreme examples, where adaption
yields a gain up to the order n, see again [47].

6. Remaining Cases:
Clearly, the examples given in the symmetric case also apply here. This gives the remaining
lower bounds of Table 2. We do not know any example of nonsymmetric F, where the gain of
adaptive over nonadaptive randomized algorithms, or of randomized over deterministic algorithms
(adaptive or not), is larger than the corresponding gain in the symmetric case.

Let us highlight a few open problems indicated by Table 2 that we assume to be of particular interest.
In particular, note that it is still possible that the maximal gain of adaption and randomization is 1 also
for nonsymmetric convex sets.
Open problems.
1. Bounds for individual n: Verify whether 𝑒det-non

2𝑛 (𝑆, 𝐹) ≤ 𝐶 𝑛 𝑒ran
𝑛 (𝑆, 𝐹) for some 𝐶 > 0 and all

convex and symmetric F. See also [53, Thm. 8.6]. Does a similar bound hold even for all convex
classes F?

2. Power of adaption: Is there some 𝑆 ∈ L and convex F such that

𝑒det
2𝑛 (𝑆, 𝐹) ≤ 𝐶 𝑛−1 𝑒det-non

𝑛 (𝑆, 𝐹)

for all 𝑛 ∈ N?
3. Power of randomization: Is there some 𝑆 ∈ L and convex F such that

𝑒ran-non
2𝑛 (𝑆, 𝐹) ≤ 𝐶 𝑛−1 𝑒det-non

𝑛 (𝑆, 𝐹)

for all 𝑛 ∈ N?
4. Power of randomization for symmetric sets: Is there some 𝑆 ∈ L and convex and symmetric F

such that

𝑒ran-non
2𝑛 (𝑆, 𝐹) ≤ 𝐶 𝑛−𝛼 𝑒det-non

𝑛 (𝑆, 𝐹)

for all 𝑛 ∈ N and some 𝛼 > 1
2 ?
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6.2. Other widths

Our main emphasis was to compare different classes of algorithms. However, the study of widths is
clearly not only of interest in IBC. These notions are used in many areas, including approximation
theory, geometry, and the theory of Banach spaces.

We indicate how our results apply here, and give further references.

6.2.1. Kolmogorov widths
Possibly most prominent among the widths are the Kolmogorov widths

𝑑𝑛 (𝑆, 𝐹) := inf
𝑀 ⊂𝑌

dim(𝑀 ) ≤𝑛

sup
𝑓 ∈𝐹

inf
𝑔∈𝑀

‖𝑆( 𝑓 ) − 𝑔‖,

which describe how well 𝑆( 𝑓 ) for 𝑓 ∈ 𝐹 can be approximated by elements from an affine linear
subspace. Such a best approximation can generally not be found by an algorithm, and so, 𝑑𝑛 is usually
not a suitable benchmark for algorithms. Still, it is a natural “geometric” quantity.

If 𝐹 = 𝐵𝑋 , then it is known that the Kolmogorov numbers 𝑑𝑛 are dual to the Gelfand numbers, and
that the Hilbert numbers are self-dual, see [4, 53, 55]. Similar statements might hold for general F, and
this could be used to extend our results to 𝑑𝑛. However, one may also repeat the proofs of our results
almost verbatim for 𝑑𝑛. By this, we obtain for 𝑆 ∈ L(𝑋,𝑌 ) and convex 𝐹 ⊂ 𝑋 that

𝑑𝑛 (𝑆, 𝐹) ≤ (𝑛 + 1)𝛼
( 𝑛∏
𝑘=0

ℎ𝑘 (𝑆, 𝐹)
)1/(𝑛+1)

(6.1)

with 𝛼 = 1 if F is symmetric and 𝛼 = 3/2 otherwise. The symmetric case is proven in [70]; the
modifications for the nonsymmetric case are analogous. We omit the details.

Of course, the same bound holds with the larger 𝑏𝑛 in place of the smaller ℎ𝑛. The ratio of Kolmogorov
and Bernstein widths was studied at least since the paper [43] from Mityagin and Henkin (1963). They
proved that 𝑑𝑛 (𝑆, 𝐹) ≤ (𝑛 + 1)2 𝑏𝑛 (𝑆, 𝐹) for convex and symmetric F, and conjectured that one has
indeed 𝑑𝑛 (𝑆, 𝐹) ≤ (𝑛 + 1) 𝑏𝑛 (𝑆, 𝐹). See also [48] for the nonsymmetric case. The above considerations
show that this old conjecture is true, at least for regular sequences and up to constants. Note again that
this was known, see [56].

Similar problems appear in geometry, where often different notions are used, such as successive radii,
or inner and outer radii. In this context, their ratio was mainly considered for sets in Hilbert spaces,
see [18, 19, 52, 59], where one can find further references. Results for general norms can be found, for
example, in [19, Theorem 5.1]. These bounds are improved by the inequalities above.

Remark 6.3. For S being the identity on a Hilbert space, it is conjectured that the regular simplex
provides the largest gap in the nonsymmetric case and the regular cube or the regular cross-polytope
provides the largest gap in the symmetric case. The Kolmogorov and Bernstein widths of these sets are
completely known [5, 60], but the proven general bounds are slightly weaker.

6.2.2. Linear widths
If we replace the requirement that the approximation space is linear by the requirement that the approx-
imation procedure is linear, we end up with the approximation numbers of S on F, or linear widths of F
with respect to S, that is,

𝑎𝑛 (𝑆, 𝐹) := inf
𝐿1 ,...,𝐿𝑛∈𝑋 ′

𝜑0 ,...,𝜑𝑛∈𝑌

sup
𝑓 ∈𝐹

�����𝑆( 𝑓 ) − 𝜑0 −
𝑛∑
𝑖=1

𝐿𝑖 ( 𝑓 ) 𝜑𝑖

�����.
This corresponds to the minimal worst-case error of affine algorithms that use at most n pieces of linear
information.
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If F is the unit ball of X, then it is known from [53, Thm. 8.4] (based on [27]) that

𝑎𝑛 (𝑆, 𝐵𝑋 ) ≤ (1 +
√
𝑛) 𝑐𝑛 (𝑆, 𝐵𝑋 ). (6.2)

Note that 𝑎𝑛 (𝑆, 𝐵𝑋 ) and 𝑐𝑛 (𝑆, 𝐵𝑋 ) are equal if X is a Hilbert space or if Y has the metric extension
property, see [53] or [9, 41] for extensions. Together with Theorem 3.3, inequality (6.2) implies

𝑎𝑛 (𝑆, 𝐵𝑋 ) ≤ 2 (𝑛 + 1)3/2
( 𝑛∏
𝑘=0

ℎ𝑘 (𝑆, 𝐵𝑋 )
)1/(𝑛+1)

.

The exponent 3/2 can be replaced by 1 in the aforementioned cases or in the case that Y is a Hilbert
space since then we have the identity 𝑎𝑛 (𝑆, 𝐵𝑋 ) = 𝑑𝑛 (𝑆, 𝐵𝑋 ). Again, for this symmetric case, the result
is essentially known, see [56, 6.2.3.14], and we only remove an oversampling constant compared to
the known estimate. It is a major open problem, whether the exponent 3/2 can be reduced to 1, see
[57, Open Problem 5].

This problem is of particular interest in the theory of s-numbers, where F is assumed to be the unit
ball of X. Note that the approximation numbers form the largest scale of s-numbers while the Hilbert
numbers are the smallest scale of s-numbers, see [55, Ch. 2].

6.2.3. Nonlinear widths
In connection with nonlinear approximation, also several types of nonlinear widths appear in the
literature, see, for example, [7, 10, 11, 61, 63, 64, 73]. Let us introduce two of them to illustrate the
relation to our setting. First, the manifold widths of 𝐹 ⊂ 𝑋 with respect to 𝑆 ∈ L(𝑋,𝑌 ) are defined by

𝛿𝑛 (𝑆, 𝐹) := inf
𝑁 ∈𝐶 (𝑋,R𝑛)
𝜑∈𝐶 (R𝑛 ,𝑌 )

sup
𝑓 ∈𝐹

��𝑆( 𝑓 ) − 𝜑(𝑁 ( 𝑓 ))
��,

where 𝐶 (𝑋,𝑌 ) denotes the class of continuous mappings from X to Y. Moreover, the continuous co-
widths of 𝐹 ⊂ 𝑋 w.r.t. 𝑆 ∈ L(𝑋,𝑌 ) are

𝑐̃𝑛 (𝑆, 𝐹) := inf
𝑁 ∈𝐶 (𝑋,R𝑛)

sup
𝑓 ,𝑔∈𝐹 :

𝑁 ( 𝑓 )=𝑁 (𝑔)

1
2

��𝑆( 𝑓 ) − 𝑆(𝑔)
��.

These numbers correspond (up to a factor 2) to minimal errors for approximating S over F based on n
nonadaptive continuous measurements. Comparing these definitions to minimal errors and Gelfand
numbers, we see that this approach is more general in the sense that the information mapping
(or parameter selection map) N is not built from linear functionals, but less general in the sense that a dis-
continuous adaptive choice of the one-dimensional measurements (like, e.g., a bisection method) is not
allowed. These quantities seem to appear in the literature only in the special case of 𝑆 ∈ L(𝑋, 𝑋) being
the identity. We naturally extend the definitions, but only comment on this special case in the following.

First, note that another important (and very early) concept are the Aleksandrov widths, see [1, 11],
which replace R𝑛 by more general n-dimensional complexes. However, it is shown in [11] that all these
quantities are equivalent up to constants and oversampling.

Second, it is clear from the definitions that these widths are smaller than 𝑒det-non
𝑛 and 𝑐𝑛, respectively.

Moreover, it is shown in [10] that they are lower-bounded by the Bernstein widths 𝑏𝑛. So, we have
everything we need to apply our technique: The upper bounds in Theorem 3.3 and in Table 1 are
also applicable to the maximal gain in the rate of convergence when passing from linear to arbitrary
continuous measurement maps 𝑁 : 𝐹 → R𝑛, at least for S being the identity.
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In fact, combining Theorem 3.3, in the form of Corollary 5.2, with [10, Thm. 3.1] (and noting that
they use the notation “𝑑𝑛” for “𝛿𝑛”), we obtain, for example, for all convex 𝐹 ⊂ 𝑋 that

𝑐2𝑛 (id𝑋 , 𝐹) ≤ 𝐶𝛼 𝑛
−𝛼+3/2 · sup

𝑘<𝑛
(𝑘 + 1)𝛼 𝛿𝑘 (id𝑋 , 𝐹), (6.3)

where 𝐶𝛼 ≤ 16𝛼+1. Again, the exponent 3/2 can be replaced by 1 for symmetric F and, taking
Section 6.2.1 into account, this bound also holds with 𝑑2𝑛 in place of 𝑐2𝑛.

For a very different (and surprising for us) result on adaptive continuous measurements that shows
an exponential speed-up, see [30].

6.3. Sampling numbers and other classes of information

As already indicated in the introduction, our proof technique can also be employed for sampling recovery
in the uniform norm. In fact, our upper bound from Theorem 1.1 also holds if the class of deterministic,
nonadaptive algorithms is further restricted to those using only certain restricted information.

For this, we consider a set of linear functionals Λ ⊂ 𝑋 ′, which we call the admissible information.
The n-th minimal worst-case error for approximating S over F with information from Λ is defined by

𝑒det-non
𝑛 (𝑆, 𝐹,Λ) := inf

𝐿1 ,...,𝐿𝑛∈Λ
𝜑 : R𝑛→𝑌

sup
𝑓 ∈𝐹

‖𝑆( 𝑓 ) − 𝜑(𝐿1 ( 𝑓 ), . . . , 𝐿𝑛 ( 𝑓 ))‖.

Moreover, we call N ⊂ 𝑋 ′ a norming set of X if

‖ 𝑓 ‖ = sup{ |𝜆( 𝑓 ) | : 𝜆 ∈ N } for all 𝑓 ∈ 𝑋.

With this, we obtain the following generalization of Theorem 1.1.

Theorem 6.4. Let X and Y be Banach spaces and 𝑆 ∈ L(𝑋,𝑌 ). Moreover, let Λ𝑆 ⊂ Λ ⊂ 𝑋 ′, where Λ𝑆
is of the form Λ𝑆 = {𝜆 ◦ 𝑆 : 𝜆 ∈ N } and N ⊂ 𝑌 ′ is a norming set of Y. Then, for every convex 𝐹 ⊂ 𝑋
and 𝑛 ∈ N, we have

𝑒det-non
2𝑛−1 (𝑆, 𝐹,Λ) ≤

( ∏
𝑘<2𝑛

𝑒det-non
𝑘 (𝑆, 𝐹,Λ)

)1/(2𝑛)

≤ 12 𝑛3/2
( ∏
𝑘<𝑛

𝑒ran
𝑘 (𝑆, 𝐹)

)1/𝑛
.

The corresponding improvements from Theorem 1.1 apply if F is additionally symmetric or the unit ball
of a Hilbert space X.

Proof of Theorem 6.4. First note that the bound

𝑒det-non
𝑛 (𝑆, 𝐹,Λ) ≤ 2 𝑐𝑛 (𝑆, 𝐹,Λ) (6.4)

from Proposition 4.1 also holds for the generalized Gelfand numbers

𝑐𝑛 (𝑆, 𝐹,Λ) := inf
𝐿1 ,...,𝐿𝑛∈Λ

sup
𝑓 ,𝑔∈𝐹 :

𝐿𝑘 ( 𝑓 )=𝐿𝑘 (𝑔)

1
2

��𝑆( 𝑓 ) − 𝑆(𝑔)
��

see [51, Sec. 4.1]. Hence it suffices to bound the modified Gelfand numbers in terms of the Hilbert
numbers as in Theorem 3.3.

We proceed as in the proof of Theorem 3.3. By the definition of a norming set N ⊂ 𝑌 ′, we can
choose the functionals 𝜆𝑘 in (3.2) from N , arguing with a slightly smaller 𝜀 in the previous inequality.

https://doi.org/10.1017/fms.2025.10101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10101


20 D. Krieg, E. Novak and M. Ullrich

Hence, the functionals 𝐿𝑘 defining 𝑀𝑘 are from Λ𝑆 and we can choose 𝑓𝑘 , 𝑔𝑘 such that (3.1) holds
with the modified Gelfand widths. This shows that the assertion in the very beginning of the proof of
Theorem 3.3 holds with 𝑐𝑘 (𝑆, 𝐹) replaced by 𝑐𝑘 (𝑆, 𝐹,Λ).

The same replacement is possible for the corresponding assertion in the case that F is the unit ball
of a Hilbert space. We can therefore copy the rest of the proof of Theorem 3.3 with 𝑐𝑘 (𝑆, 𝐹) replaced
by 𝑐𝑘 (𝑆, 𝐹,Λ). �

Recall that the minimal errors on the right-hand side in Theorem 6.4 are for the (much bigger) class
of randomized, adaptive algorithms that have access to arbitrary linear functionals, see Section 2. We do
not consider the case that Y is a Hilbert space since we believe that norming sets in Hilbert spaces
are too large to yield an interesting generalization of Theorem 1.1. Let us also note that our proof of
Theorem 1.1 only employs information of the form Λ𝑆 . As such, Theorem 1.1 cannot catch the optimal
behavior of 𝑒det-non

𝑛 (𝑆, 𝐹) if the latter decay faster than 𝑒det-non
𝑛 (𝑆, 𝐹,Λ𝑆).

We discuss a few examples:

1. Linear information:
The case studied in Theorem 1.1 corresponds to N = 𝐵𝑌 ′ and Λ = 𝑋 ′ which satisfy the assumptions
of the theorem. The class 𝐵𝑌 ′ is a norming set by the Hahn-Banach theorem.

2. Uniform approximation (and proof of Theorem 1.2):
We consider 𝑋 = 𝑌 = 𝐵(𝐷) and 𝑆 = APP∞, that is, the identity on 𝐵(𝐷), and observe that
Λstd := {𝛿𝑥 : 𝑥 ∈ 𝐷} with the Dirac functionals 𝛿𝑥 ( 𝑓 ) = 𝑓 (𝑥) = 𝑆 𝑓 (𝑥) is a norming set of 𝐵(𝐷).
Since 𝑔𝑛 (𝑆, 𝐹) = 𝑒det-non

𝑛 (𝑆, 𝐹,Λstd), see [9] or [51, Thm. 4.8], we obtain Theorem 1.2 from Theorem
6.4. A special case is the space of bounded sequences ℓ∞ = 𝐵(N), where Λstd consists of evaluations
of coordinates. Note that the factor 12 from Theorem 6.4 can be replaced with 6 in Theorem 1.2
since the factor 2 in (6.4) can be removed in this case, see again [51, Sec. 4.1]. A related bound on
the sampling numbers in 𝐵(𝐷), without the geometric mean and in terms of entropy numbers, was
recently obtained in [71].

3. 𝐶𝑘 -approximation:
We can also apply Theorem 6.4 to function recovery in 𝐶𝑘 (𝐷), the space of k-times continuously
differentiable functions on a compact domain 𝐷 ⊂ R𝑑 . That is, we consider the identity S on the
space 𝑋 = 𝑌 = 𝐶𝑘 (𝐷), which we equip with the norm

‖ 𝑓 ‖𝐶𝑘 (𝐷) := max
|𝛼 | ≤𝑘

max
𝑥∈𝐷

���� 𝜕 |𝛼 | 𝑓 (𝑥)
𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑

����.
Theorem 6.4 applies for the class Λ of point evaluations of derivatives up to order k, that is, for

Λ =

{
𝛿𝑥 ◦

𝜕 |𝛼 |

𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑

��� 𝑥 ∈ 𝐷, |𝛼 | ≤ 𝑘

}
,

which is a norming set on 𝐶𝑘 (𝐷).

We discuss two implications of Theorem 1.2.
Firstly, Theorem 1.2 contributes to the question on the power of adaption and randomization if only

function values are available. Namely, considering algorithms for uniform approximation that only use
standard information, Theorem 1.2 gives that adaption and randomization cannot lead to a speed-up
larger than one, that is,

rate
(
𝑒det-non
𝑛 (APP∞, 𝐹,Λ

std)
)

≥ rate
(
𝑒ran
𝑛 (APP∞, 𝐹,Λ

std)
)
− 1

for any convex and symmetric 𝐹 ⊂ 𝐵(𝐷). This is in analogy to our result for linear information, see
Corollary 5.3.
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Secondly, Theorem 1.2 also contributes to the question on the power of standard information com-
pared to arbitrary linear information. If we consider randomized algorithms for uniform approximation,
Theorem 1.2 gives that a restriction to standard information causes a loss in the rate of convergence of
no more than one, that is,

rate
(
𝑒𝑛

ran(APP∞, 𝐹,Λ
std)

)
≥ rate

(
𝑒𝑛

ran (APP∞, 𝐹)
)
− 1

for any convex and symmetric 𝐹 ⊂ 𝐵(𝐷). The analogous result for deterministic algorithms has been
proven in [45]. This has recently been improved to

rate
(
𝑒𝑛

det(APP∞, 𝐹,Λ
std)

)
≥ rate

(
𝑒𝑛

det(APP∞, 𝐹)
)
− 1/2, (6.5)

see [32]. Note that we even have equality of the rates if F is the unit ball of a certain kind of reproducing
kernel Hilbert space, see [16, 31].

It is an interesting open problem whether (6.5) also holds in the randomized setting, and to what
extent the results above hold for more general problems 𝑆 ∈ L(𝑋,𝑌 ).
Remark 6.5 (Sampling numbers in 𝐿2). Another problem where several new bounds have been obtained
recently is the case that 𝑆 = APP2, that is, the embedding of X into the space 𝑌 = 𝐿2. In this case, there
are various upper bounds for the error of nonadaptive algorithms based on function values in terms of
the Kolmogorov numbers 𝑑𝑛 (𝑆, 𝐹), see [12, 34, 35, 44, 65, 69] for deterministic and [8, 29, 72] for
randomized algorithms. On the other hand, the bound (6.1) and Lemma 4.3 give an upper bound on
𝑑𝑛 (𝑆, 𝐹) in terms of the error of adaptive randomized algorithms. Hence, we may derive several bounds
on the maximal gain of adaption and/or randomization for the problem of sampling recovery in 𝐿2.

We only mention the special case that F is the unit ball of a reproducing kernel Hilbert space 𝑋 = 𝐻
with finite trace. Using that rate(𝑒det-non

𝑛 (APP2, 𝐵𝐻 ,Λstd)) = rate(𝑐𝑛 (APP2, 𝐵𝐻 )) from [34, Corollary 1]
together with Lemma 4.3 and Proposition 3.2, we obtain that

rate
(
𝑒det-non
𝑛 (APP2, 𝐵𝐻 ,Λ

std)
)
= rate

(
𝑒ran
𝑛 (APP2, 𝐵𝐻 )

)
.

That is, linear sampling algorithms are optimal (in the sense of order) among arbitrary adaptive,
randomized algorithms that may use general linear information.
Remark 6.6 (Exponential decay). For many classes F of smooth functions, the n-th minimal error has
a super-polynomial decay and Theorem 1.2 together with (3.4) implies a bound of the form

𝑔lin
𝑐𝑛 (APP∞, 𝐹) ≤ 𝑒𝑛

ran (APP∞, 𝐹)

for all 𝑛 ≥ 𝑛0, where 𝑛0 ∈ N and 𝑐 ≥ 1 are (relatively small) constants. One such example is given by
reproducing kernel Hilbert spaces with a Gaussian kernel, see, for example, [17, Thm 1.1]. This means
that, for all such examples, there is no need for sophisticated algorithms that use randomization, adaption
or general linear information, at least from the viewpoint of information complexity. In comparison to
deterministic and nonadaptive algorithms that only use function evaluations, at most a factor c can
be gained. A similar result for 𝐿2-approximation can be obtained along the lines of Remark 6.5, see
also [33].
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