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Abstract

Given any polynomial in two variables of degree at most three with rational integer coeffi-
cients, we obtain a new search bound to decide effectively if it has a zero with rational integer
coefficients. On the way we encounter a natural problem of estimating singular points. We
solve it using elementary invariant theory but an optimal solution would seem to be far from
easy even using the full power of the standard Height Machine.

2020 Mathematics Subject Classification: 11D25 (Primary); 11G50 (Secondary)

1. Introduction

This paper is a kind of sequel to [7], where a sharp “search bound” for rational solutions
of a quadratic equation in several variables was obtained. Namely if the quadratic equation
has a rational solution, then there is one whose height is bounded above in terms of the
height of the quadratic. Here we prove the following analogue.

THEOREM. For H ≥ 1 let F(X, Y) in Z[X, Y] be a polynomial of degree at most three, with
coefficients of absolute values at most H, such that the equation F(x, y) = 0 has a solution
in integers x, y. Then there is a solution with

max{|x|, |y|} ≤ exp
(

(20H)600000
)

. (1)

To this day we know no analogue at all of such a result for rational solutions, even for
Mordell’s y2 = x3 + m. And similarly for integral solutions of binary quartics, even for x4 −
2y4 + xy + x = m.

The result may not surprise the expert, who will recognise the usual bad dependence on
H. But in the way we have stated the result, it would be false with the exponent 600000
replaced by any κ < 1 (even if we allow larger constants). So while it is by no means sharp,
it is at least not too blunt.

The impossibility of κ < 1 arises in special situations only when F(X, Y) is not absolutely
irreducible or of degree less than three. This has been shown already by Kornhauser [6].
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610 DAVID MASSER

When F is absolutely irreducible and the genus is one, then Baker and Coates [1] had
obtained an upper bound for the size of all integer solutions (even with F of arbitrary degree),
which in our case reduces to

exp exp exp (2H)1059049
.

This was improved to a single exponential by Schmidt [14], which in our case reduces
to something like (1) with 600000 replaced by 1213 = 106993205379072 but no explicit
multiplying constant. These authors used the Riemann–Roch Theorem to reduce to linear
forms in logarithms. Sometimes Runge’s Method secures a polynomial bound, which then
can be comparatively small.

When F is absolutely irreducible and the genus is zero, Poulakis has carried out a detailed
study in [9] and [10] (and see [8] for rational points). As in [1] he treated equations of
arbitrary degree, and in [10] even over an arbitrary number field, so that it is hardly a surprise
that for cubics over Q our own bounds are numerically better. Later on we shall refer to some
of his results.

In this genus zero situation there may be infinitely many solutions and in that case we
have to be content with a search bound in the sense above. This aspect may be slightly less
familiar to the expert. Also the size of the singular point, while not at all crucial for our
result, seems to raise new questions related to the Height Machine in diophantine geometry
and involving the classical algebraic geometry of cubics.

Thanks to the abc conjecture one expects polynomial bounds for y2 = x3 + m. Also
y2 = x3 + kx + m is covered by similar conjectures (see for example Silverman [15, p.268]).
Maybe there is always a polynomial bound when the number of solutions is finite.

Our methods here are rather standard, except perhaps for the invariant theory to get at
singular points. Also we try to reduce the cubic to a particular “semi-rectangular” form
whose highest homogeneous part is XY(X + Y). This allows a subsequent reduction to Tate
form using explicit constructions without the need for Riemann–Roch (but sometimes the
formulae involved are quite complicated). In special cases it also allows the solutions to be
found by ad hoc elementary methods without the need for Runge. We have chosen to present
in detail the worst estimate (based on linear forms in logarithms), and then for brevity omit
the details when it is reasonably clear that subsequent estimates are much better. But later we
also give the details for a slightly different use of linear forms in logarithms, and then again
we relax. And we usually give the details in the more elementary estimates, even though they
are comparatively infinitesimal especially our best estimate (which is even sharp), because
these occupy relatively little space.

Throughout we use the notation

F = F(X, Y) = aX3 + bX2Y + cXY2 + dY3 + eX2 + fXY + gY2 + kX + lY + m, (2)

F0 = F0(X, Y) = aX3 + bX2Y + cXY2 + dY3; (3)

to begin with for algebraic coefficients.

2. Preliminaries on singular points

We use h(α) or more generally h(α1, . . . , αn) for the (non-homogeneous) logarithmic
absolute height of algebraic numbers, with H = eh (non-logarithmic).
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LEMMA 1. Suppose F is absolutely irreducible with coefficients in a number field K such
that

H(a, b, c, d, e, f , g, k, l, m) ≤H.

If the corresponding curve has genus zero with a singular point (x̃, ỹ) then x̃, ỹ are in K and

H(x̃, ỹ) ≤ 500H5/3.

Proof. There is a discriminant

G = 19683a4d4m4 + · · ·
in Z[a, b, c, d, e, f , g, k, l, m] (actually primitive), which vanishes precisely at the singu-
lar cubic curves (it is essentially Ruppert’s R of [11, p.181], the Macaulay resultant of
F, ∂F/∂X, ∂F/∂Y). It has 2040 terms (we checked this number given in [5, p.4]), but it
can be calculated most easily by

G = 19683(T2 + 64S3),

where

T = a2d2m2 + · · · − 1

5832
f 6, S = 1

6
adfm + · · · − 1

1296
f 4

are the standard invariants for example in [4, p.160] or [12, pp 189-192]. Here the “dictio-
nary” identification in [4] between the Dolgachev notation and the Salmon notation has to
be extended to our notation (2); namely both sides have to be identified with

(a, b, e, c, f , k, d, g, l, m)

when we identify the variables (T0, T1, T2) in [4] with our (X, Y , Z).

When the singular point is a node, it can be shown that the gradient

∇G = ∇G(F) =
(

∂G

∂a
,
∂G

∂b
,
∂G

∂c
,
∂G

∂d
,
∂G

∂e
,
∂G

∂f
,
∂G

∂g
,
∂G

∂k
,
∂G

∂l
,
∂G

∂m

)
, (4)

evaluated at the coefficient vector

C(F) = (a, b, c, d, e, f , g, k, l, m),

does not vanish. One way of seeing this would be by [5, theorem 1·5, p.16], applied to the
(non-singular) Veronese (see also [5, corollary 1·2, p.14]), which implies that the projective
point corresponding to (4) is the same as that corresponding to

(x̃3, x̃2ỹ, x̃ỹ2, ỹ3, x̃2, x̃ỹ, ỹ2, x̃, ỹ, 1). (5)

As G has degree 12, the projective height in (4) is of order at most H11 and that in (5) is
exactly H(x̃, ỹ)3, so we obtain the exponent 11/3 instead of 5/3.

However this approach fails for a cusp, because then all the coordinates in (4) vanish,
thanks to the defining equations T = S = 0 for cuspidal cubics.

We present an alternative argument giving at first 11/3 that can then be modified to yield
5/3.
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It is more convenient to work with the homogenised

F(P) =Z3F

(
X

Z
,
Y

Z

)

for P= (X, Y, Z). Then F(P) =P[3]C(F)t for

P[3] = (X3, X2Y, XY2, Y3, X2Z, XYZ, Y2Z, XZ2, YZ2, Z3)

as in (5), with C(F) = C(F) being transposed.
We consider the effects of a non-singular linear transformation P=P1� for P1 =

(X1, Y1, Z1). Then P[3] =P
[3]
1 �[3] for the “compound” �[3] of the matrix �. Thus F(P) =

F1(P1) for

C(F1) = C(F)�[3]t. (6)

By the invariance of G, we have G(F1) = φ12G(F) for φ = det � �= 0. Differentiating as
in (4) using (6) gives

∇G(F1)�[3] = φ12∇G(F). (7)

Suppose it turns out that for some particular P̃1 and λ1 that

∇G(F1) = λ1P̃1
[3]

. (8)

Then it follows from (7) that also

∇G(F) = λP̃
[3]

(9)

for P̃= P̃1� and λ = φ−12λ1.
If further, F1(P̃1) = 0 (so that P̃1 lies on the curve C1 corresponding to F1), then

F(P̃) = P̃
[3]

C(F)t = P̃1
[3]

�[3]C(F)t = P̃1
[3]

C(F1)t = F1(P̃1) = 0

(so that P̃ lies on the curve C corresponding to F - this curve is of course the image of C1

under the map corresponding to �).
And if yet further, ∇0F1(P̃1) = 0 for ∇0 = (∂/∂X, ∂/∂Y, ∂/∂Z)t (so that P̃1 is singular on

C1) then similarly

∇0F(P̃) = (∇0P̃
[3]

)C(F)t = (∇0P̃1
[3]

)�[3]C(F)t = (∇0P̃1
[3]

)C(F1)t = ∇0F1(P̃1) = 0

(so that P̃ is singular on C).
Now any nodal F can be transformed into say F1 = Y2

1Z1 −X1(X1 −Z1)2 with node P̃1 =
(1, 0, 1). After some computation we find that (8) holds with λ1 = −64. Thus the node P̃=
P̃1� satisfies (9); and this is nothing other than the projective equality between (4) and (5)
above.

As mentioned, this gives the exponent 11/3 in the present lemma. But we can repeat the
whole argument with G replaced by T (and φ12 by φ6). Unfortunately (8) no longer holds at
a node, but it does at a cusp P̃1 = (0, 0, 1) with F1 = Y2

1Z1 −X3
1 and λ1 = 4/27. In this case

we can proceed to an explicit bound as follows.
We find that 5832T has degree 6 and integer coefficients with absolute values at most

M = 5832 and with N = 103 terms. On differentiating the degree goes down to 5 and then we
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pick up some extra factors at most 6. We find by standard methods that H(x̃, ỹ)3 ≤ 6MNH5

so that

H(x̃, ỹ) ≤ 154H5/3

for a cusp.
To get a similar bound for a node, we note that as T2 + 64S3 = 0 for T = T(F), S = S(F)

not both zero, there is a (unique) U with S = −U2, T = 8U3. Now

∇G = 19683(2T∇T + 192S2∇S) = 314928U3(∇T + 12U∇S)

so that projectively we have ∇T + 12U∇S (instead of the ∇T for a cusp). This time we need
to know that 11664S has degree 4 and integer coefficients of absolute values at most 1944
and 25 terms. Using U = √−S we find that the components of 104976(∇T + 12U∇S) have
the form P5 + P3

√
P4, where Pk has degree k. As above P5 has integer coefficients of abso-

lute value at most M5 = 18(6M) = 629856 and N5 = N = 103 terms, while P4 = −11664S
has already been described, with M4 = 1944, N4 = 25. And P3 = 11664∇S has integer
coefficients of absolute values at most M3 = 4M4 = 7776 and N3 = 25 terms.

Now the height estimation is not quite so standard, and we have to return to first principles
with valuations. We find

H(x̃, ỹ)3 ≤ (M5N5 + M3N3
√

M4N4)H5

and so this time

H(x̃, ỹ) ≤ 476H5/3.

That completes the proof of Lemma 1.

Since the invariant T worked for cusps, one might try the lower degree S instead for
nodes. But unfortunately the key equation (8) fails for both nodes and cusps. Using different
methods on S we can go a bit further and obtain the exponent 3/2 < 5/3 for cusps; but we
omit the details because the argument fails for nodes.

Note that lemma 3·4 (p.56) of Poulakis [8] gives (for cubics) the bound H(x̃, ỹ) ≤ 254H10.
He used ordinary resultants instead of the Macaulay resultant.

We believe that the curious exponent 5/3 can be reduced, perhaps even to any σ > 1. This
would be best possible in view of the family

(Y − nX)2 − X(X − n)2 (10)

with (x̃, ỹ) = (n, n2). It seems that in (4) there are in some sense large common factors
corresponding to reducibility or cusps.

For example, let us drop from projective P9 to affine A2 using a two-dimensional fam-
ily linearly parametrized by F = F1 + uFu + vFv with fixed F1, Fu, Fv chosen “at random”.
Then G = 0 defines a curve 	 in A2 of degree 12 (seemingly absolutely irreducible of genus
10), and the various ∂G/∂t in (4) are polynomials in u, v of degree at most 11. The divisor of
a typical such polynomial is liable to be D132 − 11∞12, where D132 is a sum of 132 different
points and ∞12 is the sum of the 12 points at infinity. However it appears that for our ∂G/∂t
we get the special form

2D21 + 3D24 + iDX
6 + jDY

6 + (3 − i − j)D6 − 11∞12, (11)
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614 DAVID MASSER

where i, j are determined by F containing the term tXiYj, and where again the subscripts
denote the number of different points. From computation it is practically certain that D21

and D24 correspond to reducible F and cuspidal F respectively (but DX
6 , DY

6 , D6 probably
have no natural geometric interpretation).

We may note in passing that while the cuspidal F are defined by T = S = 0, the reducible F
seem to be defined only as a determinantal variety and thus far from a complete intersection
- see [11, p.178], where no fewer than 45 equations are implicit.

If indeed (11) holds, then we find that the degree of ∇G in P9(C(	)) is only 18 due to
the cancelling of D21 and D24. So by the Height Machine, provided F is not reducible or
cuspidal, we would get from (5) and (4)

3h(x̃, ỹ) ≤ 18h1 + O(1 + √
h1),

where h1 is the height of (u, v) with respect to a divisor of degree 1. As u, v are themselves
of degree 12 we have h(u, v) = 12h1 + O(1 + √

h1), and also h(u, v) ≤ log H+ O(1); so we
end up with

h(x̃, ỹ) ≤ 1

2
log H+ O(1 + √

log H).

In fact this gives any σ > 1/2. It does not contradict the example (10) because that is not
linearly parametrised.

Of course dropping to A2, and a special one at that, loses a lot. Still, it is tempting to think
that something like (11) may sometimes persist in P9 or at least on some open subset of the
singular locus G = 0. But even so there is no suitable Height Machine.

Maybe it is relevant here to recall dimensions, some of which are clear from the above
discussion. Our cubics live in nine dimensions, and the nodal cubics occupy eight of them
(with degree 12). Both the cuspidal and the reducible cubics make up seven dimensions
(with degrees 24 and 21 respectively), and the unions of three lines come down to six (with
degree 6).

There is a natural analogue of Lemma 1 for quadratic F that are not squares. Then using
the determinant instead of G we obtain rather quickly the bound H(x̃, ỹ) ≤ √

5H (no trouble
with cusps). Here the exponent is sharp, as the family (Y − nX)(X − n), based on the same
principle as (10), shows.

3. Preliminaries on special equations

LEMMA 2. Let K be a number field of degree D over Q with ring of integers O and
discriminant 
. Suppose x, y are in O with

y2 = ax3 + ex2 + kx + m

for a, e, k, m in O and non-zero discriminant on the right. Then

max{h(x), h(y)} ≤ (12D)17172D|
|216 exp (4050Dh′),

where h′ = h(a, e, k, m).

Proof. This follows at once from Theorem 2·2 of Bérczes, Evertse and Györy [2]
(p. 730) with n = 3 and S as the set of all infinite places.
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Of course it is linear forms in logarithms which are responsible for the large bound in
Lemma 2. By contrast the next result uses (concealed) Runge-type methods so the bounds
are much smaller.

LEMMA 3.

(a) Suppose x, y are in Z with

x2y + gy2 + kx + ly + m = 0 (12)

for g, k, l, m in Z of absolute values at most H ≥ 1 with not both k, m zero. Then

max{|x|, |y|} ≤ 145H4.

(b) Suppose x, y are in Z with

x3 + fxy + ly + m = 0

for f, l, m in Z of absolute values at most H ≥ 1 with f and l3 − f 3m non-zero. Then

max{|x|, |y|} ≤ 15H6.

Proof.

(a) If y = 0 then kx + m = 0 and we get the bound H. So from now on we assume y �= 0.

If |x| ≤ 12H2 then we use (12) to see that y divides kx + m. If kx + m �= 0 this implies

|y| ≤ |kx + m| ≤ 13H3

and we are done. If kx + m = 0 and g �= 0 then

|y| ≤ |gy| = |x2 + l| ≤ 145H4,

while if g = 0 then x2 + l = 0 contradicting |x| ≤ 12H2.
So we will assume |x| > 12H2.
The following argument was found by examining the Taylor expansions at ∞.
We have

|x|2|y| = |gy2 + kx + ly + m| ≤ 3H|y|2 + H|x| ≤ 3H|y|2 + 1

2
|x|2|y|

and so |x|2 ≤ 6H|y|. Now

|x2 + gy + l||y| = |kx + m| ≤ 2H|x|
and so

|x2 + gy + l| ≤ 12H2

|x| < 1.

Thus x2 + gy + l = 0; and then also kx + m = 0 contradicting |x| > 12H2. This settles (a).
Observe that if k = m = 0 then there are infinitely many solutions with y = 0 (due to

reducibility).
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(b) We verify

(fx + l)(f 3y + f 2x2 − flx + l2) = l3 − f 3m �= 0.

Thus from the first factor |fx| ≤ 2H3 + fH3 so |x| ≤ 3H3; and then from the second
factor |f 3y| ≤ 15|f |3H6 so |y| ≤ 15H6.

Observe that if f = 0 then for example l = 1 yields infinitely many solutions with y =
−x3 − m. And if l3 − f 3m = 0 then f = 1 yields infinitely many solutions with x = −l (also
reducibility).

4. Smaller degree or not absolutely irreducible

When F has degree smaller then three, such as the “not-quite-Pell” −X2 + gY2 − 1, then
Kornhauser [6, p.83)] gives the search bound

max{|x|, |y|} ≤ (14H)5H (13)

for the smallest solution, comfortably better than in our Theorem.
Next, when F has degree three and is not absolutely irreducible but irreducible over Q,

such as X3 − 2Y3 or X3 − 2, then it is a product of three conjugate polynomials of degree
one. Then a, d are not both zero and after permuting we can assume a �= 0. So F = aLL′L′′
for L = X + βY + γ and its conjugates. Then β is not in Q, otherwise F would have no
zeroes even in Q2.

Using the notation H generally for the height of a polynomial via its vector of (algebraic)
coefficients, we can check that

H(L1L2L3) ≥ 2−6H(L1)H(L2)H(L3) (14)

for any L1, L2, L3 in Q[X, Y] of total degree at most one (in the usual way via Gauss’s Lemma
and well-known archimedean inequalities in particular [13, equation (41) of corollary 12,
p.249].

For our quantity H we have

H ≥ H(LL′L′′) ≥ 2−6H(L)H(L′)H(L′′) = 2−6H(L)3

and so H(L) ≤ 4H1/3. Now using

x = −β ′γ − βγ ′

β ′ − β
, y = γ − γ ′

β ′ − β

as the unique solution (if existent) of F(x, y) = 0 in Q2, we find

|x| = H(x) ≤ 2H(β, γ , 1)H(β ′, γ ′, 1) = 2H(L)2 ≤ 32H2/3

and the same bound for |y|. Thus

max{|x|, |y|} ≤ 32H2/3 (15)

for all solutions. This is by far the best of all our estimates. It is amusing to note that again
the idea of (10) gives the family (y − nx)3 = 2(x − n)3 showing here too that the exponent is
sharp (probably the only such search bound in this paper).

Note that if F = 0 does have a rational solution, then the corresponding curve splits into
three lines meeting at the corresponding point.
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And if F is reducible over Q (still of degree three), then it is LQ for linear L and quadratic
Q over Z. Now again from [13]

H ≥ H(LQ) ≥ 2−6H(L)H(Q)

so [6] for Q (and even L) gives the search bound max{|x|, |y|} ≤ (896H)320H .
From now on we shall assume that F is absolutely irreducible (so we can speak of genus)

of degree three.

5. Genus one

As previously indicated, the search bounds obtained in this section are for all solutions.
We first treat the case of three points at infinity.
In geometric language we construct a sequence of rational maps C→ C1 → C2 → C3,

where the curve C is defined by F = 0. But we shall not be pedantic about this.
Assume for simplicity that a, d are not both zero (we will address this issue later). We can

assume a �= 0, and then we factorise

F0 = a(X − αY)(X − α′Y)(X − α′′Y)

with L = Q(α, α′, α′′) of degree D ≤ 6. We increase the symmetry by transforming this to
X1Y1(X1 + Y1) and then we kill the coefficients of X2

1, Y2
1 to get

−a8δ4F(X, Y) = F1(X1, Y1) = X1Y1(X1 + Y1) + f1X1Y1 + k1X1 + l1Y1 + m1. (16)

We note that the three pairs

(l1, m1), (k1 − l1, f1k1 − m1), (k1, f1k1 − m1) (17)

cannot be (0,0) otherwise F1 would be reducible. The transformation is given by

X1 = a3δ(α − α′)(X − α′′Y) − a2(α − α′)2(α′′2e + α′′f + g) (18)

Y1 = a3δ(α′′ − α)(X − α′Y) − a2(α′′ − α)2(α′2e + α′f + g) (19)

with δ = (α′′ − α)(α′′ − α′)(α′ − α) �= 0 . And in the other direction we have


0X = aα′(α′′ − α)X1 + aα′′(α′ − α)Y1 + ξ (20)


0Y = a(α′′ − α)X1 + a(α′ − α)Y1 + η, (21)

where 
0 = a4δ2 is (up to sign) the discriminant of F0. Here the coefficients of X1, Y1

are in OL because aα, aα′, aα′′ and aαα′, aα′α′′, aα′′α are. So are ξ , η because they are

polynomials over Z in e, f , g, a, α, α′, α′′ where each αiα′i′α′′i′′ comes multiplied by aI for
I = max{i, i′, i′′} (we shall repeatedly use this property in what follows). Thus f1, k1, l1, m1

in (16) are also in OL.
Next we transform (16) to Tate form. We used Riemann–Roch in the standard way, but

the reader can be spared this through the identity

X1(X1Y1 + k1)F1(X1, Y1) = F2(X2, Y2) = Y2
2 − f2X2Y2 − l2Y2 − (X3

2 + e2X2
2 + k2X2 + m2)

(22)
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with

X2 = −X1Y1, Y2 = X2
1Y1 + k1X1 (23)

and inverse (a map C2 → C1 between curves as above)

X1 = − Y2

X2 − k1
, Y1 = X2

2 − k1X2

Y2
, (24)

where

f2 = f1, l2 = −m1, e2 = −k1 − l1, k2 = k1l1, m2 = 0. (25)

Finally we pass to Weierstrass form

Y2
3 = 4X3

3 + e3X2
3 + k3X3 + m3

by means of

X3 = X2, Y3 = 2Y2 − f2X2 − l2 (26)

and

X2 = X3, Y2 = 1

2
(Y3 + f2X3 + l2) . (27)

Here

e3 = f 2
2 + 4e2 = f 2

1 − 4k1 − 4l1, k3 = 2f2l2 + 4k2 = −2f1m1, m3 = l22 + 4m2 = m2
1. (28)

From all the above it should be clear that e3, k3, m3 lie in L. But in fact they lie in K =
Q(α). This can be seen by direct computation. But here is a slicker method.

If L = K it is trivial. Otherwise L is a quadratic extension of K with a galois generator that
interchanges α′, α′′ (so changes the sign of δ). Extending this to L(X, Y) we see from (18)
and (19) that it also interchanges X1, Y1. So by (16) it interchanges k1, l1; but fixes f1 and m1

(here we implicitly used the algebraic independence of X1, Y1). Now we get what we want
from (28).

As f1, k1, l1, m1 are in OL so are e3, k3, m3 and even in OK =OL ∩ K.
Going further along these galois lines, we see from (23) that X2 is fixed but Y2 is sent to

X1Y2
1 + l1Y1 = F1(X1, Y1) − Y2 − f1X1Y1 − m1.

Also X3 is fixed, and a short calculation then shows that Y3 is sent to 2F1(X1, Y1) − Y3.
Let x, y in Z satisfy F(x, y) = 0, and define (x3, y3) through (x1, y1) and (x2, y2) accord-

ing to (18), (19), (23), (26). We deduce from the above that x3 lies in K, and, because
F1(x1, y1) = 0, that y3 is sent to −y3. Thus for example a2δy3 is in K. And so x3, a2δy3

are in OK . As

(a2δy3)2 = 
0(4x3
3 + e3x2

3 + k3x3 + m3)

(note that the discriminant of the cubic is non-zero because the genus is one) Lemma 2 with
D ≤ 3 shows that

max{h(x3), h(a2δy3)} ≤ 3651516|
|216 exp (12150h′
3)
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with

h′
3 = h(4
0, e3
0, k3
0, m3
0).

From (3) follows easily |
| ≤ |
0| ≤ 54H4 and

h(a2δ) = 1

2
h(
0) = 1

2
log |
0| ≤ 1

2
log (54H4).

Thus

μ3 = max{h(x3), h(y3)} ≤ CH864 exp (12150h′
3) (29)

with C/2 = 365151654216. We now proceed to estimate h′
3.

It can be checked that f1, k1, l1, m1 are polynomials of total degree at most 9 in a, e, f , g,
k, l, m and of total degree at most 12 in α, α′, α′′. By (14) we have

H ≥ H(F0/a) ≥ 2−6H(α)H(α′)H(α′′) ≥ 2−6H(α, α′, α′′).

Next we check that f1, k1, l1, m1 each involve at most N = 574 terms (who says mathe-
maticians can’t count) and their coefficients in Z have absolute values at most M = 92. It
follows that

h1 = h(f1, k1, l1, m1) ≤ log (MN) + 9 log H + 12 log (64H). (30)

Thus by (28) we deduce

h3 = h(e3, k3, m3) ≤ 2h1 + log 9 ≤ 2 log (MN) + 42 log H + 24 log 64 + log 9.

Finally

h′
3 ≤ log (4|
0|) + h3 ≤ 2 log (MN) + 46 log H + log 216 + 24 log 64 + log 9.

Thus, recalling (29) we get

μ3 ≤ C′H559764 (31)

with

C′ = C(MN)243002161215064291600912150.

We now have to make our way back from x3, y3 to x, y. This is relatively easy (and the
exponent κ = 559764 will not change except in a silly way right at the end).

First (27) gives

μ2 = max{h(x2), h(y2)} ≤ log 6 + 2μ3 + h(f2) + h(l2)

which by (31) and (25) is at most 3C′Hκ .
Now we have to be careful of the denominators in (24).
Assume for the moment that y2 �= 0. Then from (23) we see that x2 = −x1y1 �= k1, and so

(24) gives

μ1 = max{h(x1), h(y1)} ≤ 4μ2 + h1 + log 2 ≤ 13C′Hκ . (32)

But if y2 = 0 then the Tate form (22) implies x2 = 0, k1, l1. If x2 �= k1 then (24) implies
x1 = 0 so l1y1 + m1 = 0 from (16). Thus by the first in (17) y1 = −m1/l1. This leads to
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something a lot better than (32). If x2 = k1 then (23) implies x1y1 + k1 = 0. Now looking at
the resultants with respect to X1, Y1 of F1(X1, Y1) and X1Y1 + k1 we see that

y1 = 0 or (k1 − l1)y1 + (f1k1 − m1) = 0

and

x1 = 0 or (f1k1 − m1)x1 − k1(k1 − l1) = 0.

By the second expression of (17) the first here determines y1 and using also the third expres-
sion of (17) we see that the second here determines x1. Again we end up with something
better than (32).

Now

log |x| ≤ log |
0x| = h(
0x) ≤ 8 log (2H) + 2μ1 + h(ξ ) + log 3

by (20), and in the usual way h(ξ ) ≤ 10 log (2H) + log 108 leading to log |x| ≤ 27C′Hκ , with
the same bound for log |y| by (21). Finally 27C′ ≤ 20585653 giving the bound in our Theorem,
and for all solutions. This is the worst of all our estimates.

We had assumed that a, d are not both zero. If a = 0, d = 0 then D ≤ 3 drops to D = 1. For
example, then b, c are non-zero and the analogues of (18) and (19) are

X1 = b2cX + b2g, Y1 = bc2Y + c2e

and even the awful m1 becomes just b3c3(bcm − bgk − cel + efg). As the upper bound in
Lemma 2 is dominated by its last term, we improve substantially on the final estimate,
getting

max{|x|, |y|} ≤ exp ((20H)300000) (33)

for all solutions (the second worst estimate).
Next we do two points at infinity.
Then a, d cannot be both zero, so with a �= 0 we have

F0 = a(X − αY)2(X − α′Y)

for α �= α′ in Q. We then simplify this to X2
1Y1 and kill the coefficients of X2

1, X1Y1 to get

8a8(α − α′)6F(X, Y) = F1(X1, Y1) = X2
1Y1 + g1Y2

1 + k1X1 + l1Y1 + m1. (34)

Here

X1 = 2a3(α − α′)2(X − αY) − a2(2αα′e + (α + α′)f + 2g), (35)

Y1 = 2a3(α − α′)2(X − α′Y) + 2a2(α′2e + α′f + g). (36)

Also g1 = 2a2(α2e + αf + g) and k1, l1 are polynomials of total degree at most 2 in e, f , g,
k, l and degree at most 5 in each of a, α, α′ with coefficients in Z of absolute values at most
12 and at most 20 terms, and m1 of total degree at most 3 in e, f , g, k, l, m and degree at most
8 in each of a, α, α′ with coefficients in Z of absolute values at most 160 and 55 terms. And
as before g1, k1, l1, m1 are in Z.

We are now ready to apply Lemma 3(a). Note that k1 = m1 = 0 would contradict the
irreducibility.
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It follows that for x1, y1 defined in terms of x, y by (35), (36) that μ1 = max{|x1|, |y1|} ≤
154H4

1 for

H1 = max{|g1|, |k1|, |l1|, |m1|} ≤ CH27

and C = 55.160.224. So μ1 ≤ 154C4H108 and then

max{|x|, |y|} ≤ 1048H109

for all solutions.
Finally we do one point at infinity, so that

F = a(X − αY)3 + eX2 + fXY + gY2 + kX + lY + m (37)

for α in Q. Here ν = α2e + αf + g �= 0 otherwise there would be a singularity at infinity
∞α . Now it suffices to put

X1 = −a3ν(X − αY), Y1 = −a4ν2Y

to get

−a8ν3F(X, Y) = F1(X1, Y1) = X3
1 + e1X2

1 + f1X1Y1 − Y2
1 + k1X1 + l1Y1 + m1 (38)

with

e1 = −a2eν, f1 = −a(2αe + f ), k1 = a5kν2, l1 = a4(αk + l)ν, m1 = −a8mν3.

Now (38) is none other than the Tate form, and the reader can easily believe that the resulting
estimate is comparable with (33).

6. Genus zero and singular point infinite

Now F0 is a(X − αY)2(X − α′Y) or a(X − αY)3 as above, with singular point ∞α as
above.

In the first case we reduce to (34), and with the Runge-type Lemma 3(a) again we end
up with (33) for all solutions. A polynomial bound can also be found in [10, theorem 1·2(i),
p.252].

In the second case we are with (37) but now ν = 0.
If β = 2αe + f �= 0 we can use

X1 = 3a3β
(

X − αY + e

3a

)
, Y1 = 3a3β

(
Y + 3ak − e2

3aβ

)

in Z[X, Y] to reduce to

X3
1 + f1X1Y1 + l1Y1 + m1

in Z[X1, Y1]. Here f1 = 3a2β2 �= 0 and by irreducibility l31 − f 3
1 m1 �= 0 so now Lemma 3(b)

works. We get max{|x|, |y|} ≤ 1043H75 for all solutions (here the singular point is a node
because f1 �= 0).

If β = 0 then there can be infinitely many solutions; for example y = x3, so only a search
bound is possible. Now

F = a(X − αY)3 + e(X − αY)2 + k(X − αY) + l1Y + m

with l1 = l + αk �= 0 by irreducibility.
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Here aα = −b/3 is actually an integer; call it b′. Then multiplying F by a2 gives C(aX −
b′Y) + nY for

C(Z) = Z3 + eZ2 + akZ + a2m, n = a2l1 = a2l + ab′k �= 0.

By hypothesis there are x#, y# in Z with C(ax# − b′y#) + ny# = 0. We can find x1, y1 in Z
congruent to x#, y# modulo na with |x1|, |y1| ≤ |na|/2. Then

C(ax1 − b′y1) + ny1 = naz1

for some z1 in Z. Thus C(ax − b′y) + ny = 0 for x = x1 − b′z1, y = y1 − az1 a small solution.
We have

|naz1| ≤ 4H3|na|3 + 1

2
|n2a|

so

|x| ≤ 1

2
|na| + H(4H3|na|2 + 1

2
|n|)

and then |n| ≤ 2H3 gives |x| ≤ 18H12; with the same bound for |y|. So we get the search
bound max{|x|, |y|} ≤ 18H12 (here the singular point is a cusp). A polynomial bound follows
also from [10, theorem 1·1, p.252], because (x#, y#) must be a simple point.

7. Genus zero and singular point finite

By Lemma 1, this point (x̃, ỹ) has x̃ = r/n, ỹ = s/n with n ≥ 1 and max{|r|, |s|, n} ≤
500H5/3. We shift this to (0,0) using

X1 = nX − r, Y1 = nY − s (39)

yielding n3F(X, Y) = F0(X1, Y1) + Q(X1, Y1) with

Q(X1, Y1) = e1X2
1 + f1X1Y1 + g1Y2

1 (40)

and

e1 = 3ar + bs + en, f1 = 2br + 2cs + nf , g1 = cr + 3ds + gn.

Thus F(x, y) = 0 leads to F0(x1, y1) + Q(x1, y1) = 0 with x1, y1 as in (39).
We write x1 = zu, y1 = zv for u, v coprime. If z = 0 then we hit the singular point and the

estimate is easy, giving of course max{|x|, |y|} ≤ 500H5/3. Otherwise zF0(u, v) = −Q(u, v);
thus F0(u, v) divides both F0(u, v) and Q(u, v) (note that F0(u, v) �= 0 otherwise Q(u, v) = 0
would give reducibility).

Now it is reasonably well known that the highest common factor of F0(u, v) and Q(u,
v) must divide the resultant W �= 0 of F0(X1, Y1) and Q(X1, Y1). We therefore obtain the
equation F0(u, v) = w with 0 < |w| ≤ |W|.

This is a Thue equation if F0 is irreducible over Q, and then we use Bugeaud and Györy
[3, theorem 3, p.275, equation (3·3)]. Our W is a polynomial of total degree at most 5 in a,
b, c, d, e, f , g, k, l, m and total degree at most 3 in r, s, n, so we get

|w| ≤ 2052H5(500H5/3)3 = CH10
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with C = 256500000000. Thus for example

max{|u|, |v|} ≤ M = exp (2.1058H5). (41)

Then

|z| ≤ |Q(u, v)| ≤ 15H(500H5/3)M2 ≤ M3

and max{|nx − r|, |ny − s|} ≤ M4. Finally

max{|x|, |y|} ≤ M5 = exp(1059H5)

for all solutions. When there are three points at infinity then there is also an exponential
estimate in [9, theorem 1·2(i), p.329].

If F0 = L0Q0 is reducible over Q with coprime L0, Q0, then the estimates are elementary.
For example one can take M = 72CH20 in (41) leading to max{|x|, |y|} ≤ 1071H100 for all
solutions.

If L0, Q0 above cannot be taken as coprime, then F0(X, Y) = a(X − αY)3 and there can be
infinitely many solutions, as for example with x3 = y2 or x3 − x2 = y2, so once more it is a
search bound that we need. We write as before α = b′/a. After multiplying by a2 we get

(aX1 − b′Y1)3 + e′
1(aX1 − b′Y1)2 + f ′

1(aX1 − b′Y1)Y1 + g′
1Y2

1 (42)

with

e′
1 = e1, f ′

1 = af1 + 2b′e1, g′
1 = a2g1 + ab′f1 + b′2e1 �= 0

by irreducibility.
We introduce a parameter T carefully by g′

1Y1 = T(aX1 − b′Y1). On the curve defined by
the vanishing of (42) we get

ag′2
1 X1 = −e′

1g′2
1 − (f ′

1g′
1 + b′e′

1g′
1)T − (g′

1 + b′f ′
1)T2 − b′T3, (43)

g′2
1 Y1 = −e′

1g′
1T − f ′

1T2 − T3. (44)

Now F(x#, y#) = 0 leads to x#
1 congruent to −r modulo n and y#

1 congruent to −s modulo n
by (39) and a corresponding t# in Q (provided we do not have ax#

1 − b′y#
1 = 0, which would

lead to y#
1 = 0 so x#

1 = 0 and again we have hit the singular point). From (44) we see that t#

is integral over Z so in Z.
We next choose t in Z congruent to t# modulo g′2

1 an with |t| ≤ |g′2
1 an|/2. The resulting

x1, y1 coming from (43), (44) are still integers because of the part ag′2
1 of the modulus; and

they are still congruent to −r, −s modulo n because of the part n. Thus via (39) they give
F(x, y) = 0.

Now the coefficients in (40) are at most 2500H8/3 in absolute value. Thus those in (18) at
most 7500H14/3. We end up with the search bound max{|x|, |y|} ≤ 1055H50. There is also a
polynomial bound in [10, theorem 1·1, p.252], because by Lemma 1 we can assume that our
(x#, y#) is simple.
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