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Summary

Tolerance to infections is the ability of a host to limit the impact of a given pathogen burden on host
performance. This simulation study demonstrated the merit of using random regressions to estimate unbiased
genetic variances for tolerance slope and its genetic correlations with other traits, which could not be obtained
using the previously implemented statistical methods. Genetic variance in tolerance was estimated as genetic
variance in regression slopes of host performance along an increasing pathogen burden level. Random
regressions combined with covariance functions allowed genetic variance for host performance to be estimated
at any point along the pathogen burden trajectory, providing a novel means to analyse infection-induced
changes in genetic variation of host performance. Yet, the results implied that decreasing family size as well as a
non-zero environmental or genetic correlation between initial host performance before infection and pathogen
burden led to biased estimates for tolerance genetic variance. In both cases, genetic correlation between tolerance
slope and host performance in a pathogen-free environment became artificially negative, implying a genetic
trade-off when it did not exist. Moreover, recording a normally distributed pathogen burden as a threshold trait
is not a realistic way of obtaining unbiased estimates for tolerance genetic variance. The results show that
random regressions are suitable for the genetic analysis of tolerance, given suitable data structure collected either
under field or experimental conditions.

1. Introduction

The defence mechanisms against pathogens and
parasites can be divided into two categories : resis-
tance and tolerance. Resistance is the host trait that
reduces the probability of infection or reduces the
growth of the pathogen population within a host,
both factors reducing pathogen burden within a host
individual. Tolerance is defined as the ability of the
host to limit the impact of a given pathogen burden
on host health, performance and ultimately on fitness
(Painter, 1958; Simms & Triplett, 1994). In farm
animal science, tolerance is sometimes termed resil-
ience (Clunies-Ross, 1932; Albers et al., 1987; Bisset
& Morris, 1996). Resistance and tolerance together

define a host’s defensive capacity, yet they have very
different influences on hostxpathogen interactions.
Increased host resistance typically induces selection
pressure on a pathogen to overcome the resistance
mechanisms, causing a continuous arms race between
the host and the pathogen. In contrast, increased
tolerance makes the pathogen harmless to the host
reducing selection imposed on the pathogen. This
reduces the arms race co-evolution and may provide
an efficient alternative in the fight against pathogens
(Mauricio et al., 1997; Rausher, 2001; Bishop &
MacKenzie, 2003; Best et al., 2008). Accordingly,
tolerance–resistance genetics is a fundamental com-
ponent contributing to hostxpathogen co-evolution
and to practical plant and farm animal production.

Tolerance may be defined as a change in host per-
formance in response to increasing pathogen burden
(Simms, 2000). Thus, measuring tolerance follows the
methodology of the analysis of reaction norms (Via &
Lande, 1985). Analysing tolerance as a change in host
performance from before to after pathogen attack,
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an approach sometimes applied for ‘resilience’
analysis (Bisset &Morris, 1996), is unjustified because
it includes both natural temporal variation in host
performance (e.g. in growth curves) and impact of
pathogen burden on host performance. Genetic vari-
ance in tolerance can be estimated as genetic variance
in regression slopes of host performance along a
gradient of increasing pathogen burden (Simms &
Triplett, 1994; Mauricio et al., 1997; Simms, 2000).
Furthermore, a degree of genetic cost of tolerance can
be measured as a genetic correlation between toler-
ance slope and host performance in a pathogen-
free environment (i.e. the intercept of the pathogen
burden–host performance relationship). A genetic
trade-off between the slope and intercept has been
suggested to be one potential reason for the mainten-
ance of genetic variation in tolerance (Rausher, 1996;
Agrawal et al., 1999; Tiffin & Rausher, 1999).

Studies on tolerance genetics typically use an
analysis of covariance (ANCOVA) to test for genetic
variation in tolerance, where a significant F-test for
family-by-pathogen burden interaction implies ge-
netic variation for tolerance slopes (Simms & Triplett,
1994; Mauricio et al., 1997; Koskela et al., 2002;
Råberg et al., 2007). Furthermore, genetic relation-
ships between tolerance and other traits are often
estimated using correlations between family means
for each trait. Familyxmean correlations are typi-
cally downward-biased estimates of the true genetic
correlations (Astles et al., 2006). Thus, these ap-
proaches tend to produce biased estimates of genetic
variances and genetic correlations for tolerance.

Random regressions allow sophisticated genetic
analysis of traits defined as functions (Henderson,
1982; Kirkpatrick et al., 1990; Meyer & Hill, 1997;
Schaeffer, 2004). Random regressions have been ap-
plied to genetic analysis of growth curves, lactation
curves and reaction norms in farm animal breeding
(Henderson, 1982; Schaeffer, 2004), and also more
recently in evolutionary genetics (e.g. Kingsolver et al.,
2004). When combined with pedigree information,
random regression models allow the estimation of
genetic variances for the regression coefficients and of
genetic correlations with other traits. Moreover, re-
gression coefficients combined with covariance func-
tions (Kirkpatrick et al., 1990) provide a potential
novel means to estimate the degree to which pathogen
infection induces changes in genetic variance of host
performance.

Here I assessed the potential of random regressions
for the genetic analysis of tolerance when a host
population is under natural pathogen infection. This
was done because a significant part of datasets from
animal breeding programmes and wild populations
come from field studies where natural infections
with pathogens, parasitoids or production diseases
occur. A simulation was conducted to study the effect

of alternative data structures on bias and precision
of (1) genetic variance of tolerance slope, (2) esti-
mated breeding values (BVs), (3) genetic correlation
between tolerance slope and intercept and (4) genetic
variance in host performance along a pathogen
burden gradient.

Two challenges likely to be encountered when
analysing data from natural infection were con-
sidered. Firstly, genetic analysis of tolerance uses
within-family information (full-sib and half-sibs, and
more distant relatives) to estimate a family’s tolerance
slope. Thus, family size is a crucial parameter influ-
encing estimation accuracy. Secondly, with natural
infection individuals are not randomly allocated to
control and infection treatments, as in a controlled
experiment. For instance, under natural infection the
individuals with the lowest performance (fitness,
growth and reproduction) due to environmental or
genetic factors may innately also have either the
lowest pathogen burden (i.e. the highest resistance) or
the highest pathogen burden. Accordingly, estimates
of tolerance variance can become biased if pathogen
burden within an individual and measures of host
performance are innately related.

2. Materials and methods

(i) Terminology used

From hereon, pathogen burden is used as a general
term to refer to a pathogen load of an individual,
for instance, number or biomass of ecto- or endo-
parasites, number of pathogens in a blood sample and
in plants the number of herbivores or percentage leaf
area lost to herbivores. Thus, pathogen burden is the
inverse of resistance against infections, parasitoids or
production diseases. In a random regression model,
pathogen burden of individuals is on the x-axis and
varies from zero upwards. Host performance refers to
a host’s trait value such as growth, reproduction per-
formance or ultimately fitness. Tolerance is the slope
of host performance when regressed against indi-
viduals’ own pathogen burden phenotypes (Simms,
2000). The intercept refers to host performance in a
pathogen-free environment (pathogen burden and
thus x-axis value is zero). Alternatively, the intercept
can be interpreted as initial host performance before
infection (e.g. initial growth rate), and host per-
formance under infection (corresponding to non-zero
x-value) would be final host performance.

(ii) Simulation of data

Full-sib data with 100 families were simulated.
Generation 1 consisted of 200 unrelated individuals,
100 sires and 100 dams. To estimate a family’s toler-
ance slope, only within-family information was used.
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Similar designs are used e.g. in plant sciences, and sire
models are common in animal breeding.

In generation 2, phenotypic values (p) of an indi-
vidual for pathogen burden (PB), tolerance slope (b1)
and intercept (b0) were simulated as the sum of genetic
(a) and environmental effects (e) randomly sampled
from a multi-trait distribution. A genetic value of an
individual was simulated as the average of parents’
genetic values (i.e. BVs) plus a Mendelian sampling
term (ms):
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A phenotypic value of host performance (yi) of an
individual i at its own pathogen burden phenotype
was calculated as yi=pb0i+pb1i pPBi

:

The simulated data were based on observations
from studies on tolerance and resistance genetics in
plants and animals (Mauricio et al., 1997; Simms,
2000; Koskela et al., 2002; Råberg et al., 2007; Read
et al., 2008; Schneider & Ayres, 2008; Kuukka-
Anttila et al., 2010). In these papers, the relation
between pathogen burden and host performance is
typically observed to be linear, but non-linear re-
sponses are also realistic (see Discussion for the im-
plications of the model assumptions). Heritability (h2)
and phenotypic variance (s2

p) of slope were varied
because of a lack of data in the literature.

For pathogen burden, both normal and negative
binomial distribution scenarios were simulated (Fig. 1).
The normal distribution covers burden traits that are
normally distributed at least after a transformation,
such as log-normally and normally distributed
pathogen/parasite counts, production diseases such as
mastitis in dairy cows or ascites measured as a heart
ratio in broilers (Green et al., 2004; Zerehdaran et al.,
2006; Kuukka-Anttila et al., 2010). The negative
binomial distribution, in turn, is perhaps the most
widely used distribution to describe empirical para-
site/parasitoid burdens (Stear et al., 1995).

For the normally distributed pathogen burden,
genetic and environmental effects were randomly
sampled from yN(4, 0.3) and yN(4,0.7), respect-
ively. Therefore, h2 value of 0.3 was simulated.
Pathogen burden with h2 of 0.05 was also simulated
but not reported here because the conclusions did not
differ from the h2=0.3 alternative.

Negative binomial distribution of pathogen burden
was simulated following the logic of simulating a
threshold trait with an underlying normally dis-
tributed liability scale. Normally distributed pathogen
burden was first simulated, as described above, and
then the resulting phenotypic values were transformed
to a negative binomial distribution using a link
function (R Development Core Team, 2008). Alter-
native negative binomial distributions including very
skewed ones were simulated by changing the patho-
gen burden mean and the parameter ‘size ’ (Fig. 1).
Size is a dispersion parameter for the shape of the
gamma-mixing distribution (R Development Core
Team, 2008). The alternative parameters used for
negative binomial distributions were: size=1 and
mean=2 (with SD=2.45) ; size=3 and mean=2.5
(SD=2.14); size=40 andmean=3.1 (SD=1.83) (Fig. 1).

For intercept, genetic and environmental effects
were randomly sampled from yN(100, 120) and
yN(100, 280), respectively, corresponding to a
phenotypic coefficient of variation (CVP) of 20% and
a h2 of 0.3 for host performance in a pathogen-
free environment. This represents a normal growth-
related trait.

For the tolerance slope, a fixed mean of zero was
always used, and a phenotypic variance (s2

p) of 30

Fig. 1. Probability mass functions of the simulated
pathogen burden distributions. For negative binomial
(NB) and normal (Norm) distributions, alternative
distributions were obtained by varying dispersion
parameter (size), trait mean (Mean) and standard
deviation (SD).
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was simulated, but alternative h2 value scenarios were
applied (see below). In the base scenario, environ-
mental and genetic correlations between pathogen
burden, slope and intercept were all simulated to be
zero.

The simulated values for slope and pathogen bur-
den (both normal and negative binomial distribution)
correspond to a CVP of 30% for host performance
under pathogen burden, but phenotypic variance in-
creased with increasing pathogen burden. The in-
creased variance is natural because with increasing
pathogen burden the tolerance slopes diverge more
and more from each other. For slope h2 of 0.3, host
performance h2 remains constant at 0.3 along the
parasite burden gradient. For slope h2 of 0.05, host
performance h2 is reduced from 0.30 at pathogen-free
environment to 0.10 at pathogen burden of 8. For the
normally distributed pathogen burden, scenarios with
CVP of 25% or 22% for host performance under
pathogen burden were also simulated to assess the
effect of the increased variance assumption on the re-
sults. These were obtained by reducing the slope s2

p

from the original 30 to 15 and 5, respectively.
The simulation was repeated 500 times for each

alternative scenario.

(iii) Alternative scenarios studied

The alternative scenarios simulated are summarized
in Table 1. Firstly, the effect of family size was as-
sessed. Family size was set to 10, 30, 50, 100 or 200.
Given a fixed number of 100 families, population
size hence ranged from 1000 up to 20 000. For the
normally distributed pathogen burden, scenarios with
low and high heritabilities for slope (h2=0.05 and 0.3,
respectively) were simulated by randomly sampling
genetic and environment effects of tolerance slope
from yN(0, 30rh2) and yN(0, 30r(1xh2)), re-
spectively. For the negative binomially distributed
pathogen burden, only slope h2 of 0.3 was simulated.

For the remaining scenarios, normally distributed
pathogen burden, family size of 100, population size
of 10 000 and tolerance slope h2 of 0.3 were simulated.

Secondly, the effect of non-zero environmental (rE)
and genetic correlation (rG) between intercept and
pathogen burden was assessed. The correlations were
simulated, separately for rE and rG, to be eitherx0.5,
x0.3, x0.1, 0, 0.1, 0.3 or 0.5 (Table 1). A negative
correlation means that low host performance in a
pathogen-free environment is related to high patho-
gen burden.

(iv) Genetic analysis of simulated data

In the genetic analysis, phenotypic data from gener-
ation 2 individuals were used. The phenotypic values
of pathogen burden and performance value at that
burden were analysed. Thus, each individual had onlyT
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one host performance observation. ASReml software
(Gilmour et al., 2006) was used to fit a full-sib random
regression model :

yij=m+b0j+b1jPBij+"ij, ð1Þ

where yij is host performance of an individual i from
family j at its pathogen burden, m is the population
mean, b0j is the random genetic effect of intercept for a
family j, b1j is the random genetic effect of regression
slope for a family j, PBij is pathogen burden of an
individual i from family j and eij is the random error
term. This is a mixed model similar to ANCOVA,
the only difference being that the regression terms
are now random factors. To avoid heterogeneous
error variance inflating genetic variance in slope
(Lillehammer et al., 2009), residual variance was esti-
mated within six pathogen burden classes along the
x-axis. The six classes were defined as: pathogen
burden <2, 2–3, 3–4, 4–5, 5–6 and >6. Genetic cor-
relation between slope and intercept was constrained
to be between 0.99 and x0.99.

When non-zero environmental or genetic corre-
lation between intercept and pathogen burden was
simulated, an additional genetic model was used to
correct for the potential bias. In this case, the pheno-
typic values of host performance in a pathogen-
free environment were added as a regression term
(covariate) in the model (1).

These models resulted in estimated genetic var-
iances and EBVs for slope and intercept, genetic
correlation between slope and intercept, and six
separate error variances along the x-axis. Genetic
variance was calculated as two times the full-sib
family variance. Because each individual has one
observation for the reaction norm, residual variance
of slope cannot be estimated, although it was orig-
inally simulated into the data. Accuracy (rIH) of EBVs
was calculated as a Pearson correlation coefficient
between true BVs and EBVs of the families (n=100
families).

The genetic variance in host performance as a
function of pathogen burden was calculated as
xkPBGxPB (Kolmodin & Bijma, 2004), where

G=
s2
a(b0)

sa(b0, b1)

sa(b0, b1) s2
a(b1)

� �
:

The term xPB is a vector [1 burden]k in which burden
refers to a pathogen burden value on the x-axis. The
use of covariance function is demonstrated only for
the normally distributed pathogen burden scenario
with varied family size and slope h2 of 0.05.

For the varied family size scenario, a traditional
normally distributed trait was also simulated as a
control trait whose behaviour is well understood.
Genetic and environmental effects were randomly
sampled from yN(100, 120) and yN(100, 280),

creating a trait similar to body weight with h2 of 0.3
and CVP of 20%. The genetic model used to analyse
the simulated data was: yij=m+famj+eij, where famj

is a random full-sib family effect used to estimate
genetic variance and EBVs.

3. Results

(i) Effect of family size on estimates of slope
genetic variance

For the normally distributed pathogen burden,
small family size resulted in elevated estimates for
tolerance genetic variance (Table 2). For instance,
with family size of 10, estimated genetic variances for
slope were 7.9 and 2.0 times higher than the simulated
value in low- and high-slope h2 scenarios, respectively.
To obtain unbiased estimates for tolerance genetic
variance, family sizes of 100 and 200 were needed for
low- andhigh-slope h2 scenarios, respectively (Table 2).
For the negative binomial distribution of pathogen
burden, the same pattern was observed but the up-
ward bias was stronger at low family size (Table 3).

For the normally distributed pathogen burden,
accuracy of slope EBVs remained low in the low-slope
h2 scenario (rIH=0.13–0.41) but remained moderate
to high in the high-slope h2 scenario (rIH=0.47–0.78) ;
accuracy increased with increasing family size in
both cases (Table 2). For the negative binomial dis-
tribution of pathogen burden, the accuracies were
of similar magnitude or higher (for the larger family
sizes) than for the normally distributed pathogen
burden scenarios (Table 3).

When CVP of 25% or 22% for host performance
under the normally distributed pathogen burden was
simulated, the bias for slope variance was even greater
and accuracy for slope EBVs lower (results not
shown) compared to the scenario with CVP of 30%
(Table 2).

In contrast to slope variance, heritability for body
weight, which served as a control trait, was estimated
without bias even with the smallest family size of 10
(Table 2). Similarly, accuracy for body weight re-
mained high at all family sizes, ranging from 0.80
at family size of 10 to 0.99 at family size of 200. This
demonstrates that the estimation of genetic para-
meters for a slope is a challenge compared to a normal
growth trait.

(ii) Effect of family size on estimates of intercept
genetic variance

For the normally distributed pathogen burden, the
intercept showed a pattern similar to the slope,
but with higher average accuracies (rIH=0.27–0.90;
Table 2). With family size of 10, estimated genetic
variance for intercept was 1.9 times higher than
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simulated in both low- and high-slope h2 scenarios.
The accuracy of the intercept was higher for the
low-slope h2 scenario. This result can be explained by
the fact that increased slope genetic variation makes
intercept estimation more prone to errors. This can
be demonstrated with mean square errors (MSE) of
slope EBVs which quantify the overall estimation
error of the EBVs. For slope h2 of 0.05, MSE for slope
EBVs was 2.07, 1.34, 1.07, 0.80 and 0.70 for family
sizes of 10, 30, 50, 100 and 200. For slope h2 of 0.3,
MSE for slope EBVs were more than two times
higher: 4.75, 3.17, 2.73, 2.18 and 1.82. When slopes
were estimated with large absolute error (the scenario
with slope h2 of 0.3), the accuracy of the intercept
estimates also declined.

For the negative binomial distribution of pathogen
burden, accuracy of intercept estimates was higher
(rIH=0.62–0.97; Table 3) than for the respective
normally distributed pathogen burden scenarios
(rIH=0.27–0.79; Table 2). This occurred because
as the distribution is pushed to the left, more
observations are close to the intercept (0, x-axis).
Thus, with low family size intercept variance was only
little or not at all biased (Table 3).

(iii) Effect of family size on estimates of host
performance genetic variance

The bias in slope and intercept variances due to low
family size led to upward-biased estimates for genetic
variance in host performance along the pathogen
burden gradient, especially at both ends of the burden
spectrum (Fig. 2). Using the six separate en-
vironmental variances estimated along the pathogen
burden, heritability of host performance can also be
calculated. For instance, with slope h2 of 0.05 and
family size of 100, the estimated (simulated) host
performance h2 at pathogen burdens of 1.5, 2.5, 3.5,
4.5, 5.5 and 6.5 were 0.25 (0.26), 0.21 (0.22), 0.18
(0.18), 0.16 (0.15), 0.14 (0.13) and 0.12 (0.11),
respectively, implying accurate estimation for large
family sizes.

(iv) Environmental correlation between pathogen
burden and host performance

When environmental correlation between pathogen
burden and intercept was changed to be either nega-
tive or positive, estimated genetic variance for slope

Table 2. Estimated genetic parameters (¡SD) for a scenario with normally distributed pathogen burden, varied
family size (10–200) and two simulated tolerance slope heritabilities (0.05 and 0.3)

Slope h2

scenario

Parameter
estimated/
simulated
values

Family size

10 30 50 100 200

Estimated values

Slope VG

0.05 1.5 11.8¡16.2 4.96¡5.25 3.47¡4.00 2.19¡2.22 1.66¡1.42
0.3 9.0 17.7¡17.9 11.5¡7.80 10.2¡5.57 9.22¡3.79 9.13¡2.47

Slope rIH
0.05 0.13¡0.22 0.20¡0.26 0.26¡0.23 0.31¡0.22 0.41¡0.16
0.3 0.47¡0.27 0.65¡0.11 0.69¡0.11 0.74¡0.10 0.78¡0.14

Intercept VG

0.05 120 230¡255 147¡104 143¡72.6 138¡47.0 126¡30.6
0.3 120 228¡247 148¡110 130¡83.3 116¡50.7 120¡34.4

Intercept rIH
0.05 0.39¡0.42 0.73¡0.21 0.80¡0.11 0.87¡0.03 0.90¡0.02
0.3 0.27¡0.41 0.60¡0.13 0.65¡0.10 0.71¡0.06 0.79¡0.04

Body weight h2

0.05 0.3 0.30¡0.06 0.30¡0.05 0.30¡0.04 0.30¡0.04 0.30¡0.04
0.3 0.3 0.30¡0.06 0.30¡0.05 0.30¡0.04 0.30¡0.04 0.30¡0.04

Body weight rIH
0.05 0.80¡0.04 0.92¡0.02 0.95¡0.01 0.97¡0.006 0.99¡0.003
0.3 0.80¡0.04 0.92¡0.02 0.95¡0.01 0.97¡0.006 0.99¡0.004

rSlope–Intercept
0.05 0.0 x0.66¡0.44 x0.25¡0.62 x0.22¡0.52 x0.06¡0.52 x0.00¡0.40
0.3 0.0 x0.51¡0.47 0.06¡0.60 0.04¡0.53 0.08¡0.42 0.03¡0.22

Heritability of pathogen burden, intercept and body weight were simulated to be 0.3.
Slope h2 and Slope VG, slope heritability and slope genetic variance, respectively. Intercept VG, intercept genetic variance;
Body weight h2, heritability of body weight; rIH, correlation between the true and EBVs (i.e. accuracy); rSlope–Intercept, genetic
correlation between slope and intercept.
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increased symmetrically (Table 4). For example, when
environmental correlation was x0.5 (or 0.5), estima-
ted genetic variance for slope was 15.6 times higher
than the simulated value. This occurred because path-
ogen burden was non-randomly distributed within a

family, and a part of the initial variation in host per-
formance was translated to tolerance variation.

The accuracy of the tolerance slope remained high,
decreasing only slightly from rIH=0.74 at simulated
rE of 0.0 to rIH=0.70 at rE of 0.5 (Table 4). Thus, the
family differences in slopes were increased (slope VG

increased) but the consistency of the family slope
EBVs with the true BVs remained unaffected. In
contrast, the accuracy of the intercept decreased from
0.71 at simulated rE of 0.0 to rIH=0.46 at simulated rE
of 0.5 (x0.5). Consequently, when family slopes were
biased, the intercept EBVs became less consistent
with the true BVs. Similar to the slope, increasing
or decreasing environmental correlation elevated the
estimated genetic variance for intercept (Table 4).

Genetic variance of slope was estimated without
bias when host performance in a pathogen-free en-
vironment was included as a covariate in the statisti-
cal model (Table 4). Moreover, standard deviation of
slope variance was reduced (SD=1.60–1.93) compared
to the model without the covariate (for rE=0.0,
SD=3.59). Similarly, the inclusion of host perform-
ance in a pathogen-free environment increased slope
accuracy to 0.96 compared to the original 0.71
(Table 4). Accuracy increased because variation in
initial host performance made an individual’s

Table 3. Estimated genetic parameters (¡SD) for a scenario with negative binomial pathogen burden distribution,
varied family size (10–200), and tolerance slope heritability of 0.3

Slope h2

scenario

Parameter
estimated/
simulated
values

Dispersion
parameters :
size/mean

Family size

10 30 50 100 200

Estimated values

Slope VG

0.3 9.0 1/2 21.5¡5.43 14.7¡3.22 9.80¡2.48 9.35¡1.85 9.05¡1.59
0.3 9.0 3/2.5 19.6¡5.95 13.1¡3.34 9.18¡2.39 9.03¡1.74 8.91¡1.64
0.3 9.0 40/3.1 16.6¡5.46 12.6¡3.24 9.60¡2.70 8.92¡1.94 9.04¡1.61

Slope rIH
0.3 1/2 0.41¡0.12 0.62¡0.07 0.72¡0.05 0.82¡0.03 0.89¡0.02
0.3 3/2.5 0.44¡0.10 0.65¡0.07 0.73¡0.04 0.83¡0.03 0.90¡0.02
0.3 40/3.1 0.46¡0.16 0.65¡0.07 0.72¡0.05 0.82¡0.04 0.89¡0.02

Intercept VG

0.3 120 1/2 120¡39.4 120¡25.7 121¡20.6 121¡19.4 119¡18.1
0.3 120 3/2.5 117¡48.7 117¡28.4 121¡23.2 122¡20.4 120¡18.2
0.3 120 40/3.1 131¡44.3 115¡31.0 117¡25.5 119¡21.7 120¡18.7

Intercept rIH
0.3 1/2 0.72¡0.05 0.87¡0.03 0.91¡0.02 0.95¡0.01 0.97¡0.01
0.3 3/2.5 0.67¡0.07 0.83¡0.03 0.88¡0.02 0.93¡0.01 0.96¡0.01
0.3 40/3.1 0.62¡0.09 0.77¡0.04 0.82¡0.03 0.88¡0.02 0.93¡0.02

rSlope–Intercept
0.3 0.0 1/2 x0.05¡0.33 0.02¡0.22 0.01¡0.16 x0.02¡0.12 0.01¡0.10
0.3 0.0 3/2.5 x0.15¡0.36 x0.06¡0.16 0.01¡0.17 x0.02¡0.11 0.01¡0.10
0.3 0.0 40/3.1 x0.19¡0.55 x0.03¡0.26 x0.01¡0.15 x0.02¡0.11 x0.01¡0.10

Heritability of pathogen burden and intercept were simulated to be 0.3.
Slope h2 and Slope VG, slope heritability and slope genetic variance, respectively; Intercept VG, intercept genetic variance;
rIH, correlation between the true and EBVs (i.e. accuracy); rSlope–Intercept, genetic correlation between slope and intercept.
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Fig. 2. Genetic variance in host performance as a function
of pathogen burden. The bold line shows the simulated
values, and the other lines are estimates for alternative
family sizes predicted by a covariance function using the
estimated genetic (co)variances of tolerance slope and
intercept (Table 2). Simulated slope h2 was 0.05.
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performance along a pathogen burden axis deviate
from its family’s average regression line. Thus, in-
cluding initial host performance did not just reduce
bias but also decreased error variance around the
family’s slope.

The intercept results from the analysis where the
covariate was included are not comparable to the
simulated intercept values because the covariate re-
moves a major part of the variance from the original
simulated intercept. Thus, intercept variance ranged
from 2.40 to 3.61 (results not shown) although the
simulated value was 120.

(v) Genetic correlation between pathogen burden and
host performance

The effect of genetic correlation between pathogen
burden and intercept on estimated genetic variance
for slope was similar but weaker (Table 5) than
the effect of the respective environmental correlation
(Table 4). For instance, with a genetic correlation of
x0.5 (or 0.5), slope variance was overestimated by a
factor of 1.8. Slope accuracy remained high for all rGs
tested, and intercept accuracy was only slightly re-
duced when rG deviated from zero. Again, using ini-
tial host performance as a covariate in the analysis
corrected for the fact that pathogen burden was non-
randomly distributed within families (Table 5).

(vi) Cost of tolerance

In all the above scenarios, zero genetic correlation
between intercept and slope was simulated. For the
normally distributed pathogen burden, a decrease in

family size led to strongly negative genetic correlation
between slope and intercept (Table 2). For the nega-
tive binomial distribution of pathogen burden, the
bias was smaller or almost non-existent when the
distribution was much skewed to the right (size=1,
mean=2; Table 3). Having observations close to the
intercept prevented the intercept from becoming
automatically biased by a bias in the slope.

Similarly, with increasing or decreasing environ-
mental (Table 4) or genetic correlation (Table 5)
between pathogen burden and performance in a
pathogen-free environment, the genetic correlation
between slope and intercept became highly negative.
The negative correlation occurred because when the
slope for a family was overestimated, the intercept for
the family decreased (and vice versa). These results
imply that the analyses falsely indicated a presence of
a genetic trade-off (i.e. cost of tolerance).

When initial host performance was used as a co-
variance in the scenarios with either environmental
or genetic correlation between pathogen burden and
intercept, the genetic correlation between the slope
and intercept was always moderately negative (range
from x0.28 to x0.48; Tables 4 and 5). This down-
ward bias is unfortunate because, on the one hand,
genetic variance for the slope was correctly estimated,
but on the other hand, the genetic correlation was not.

4. Discussion

(i) Random regression models

The results showed that random regression models
can be successfully applied to estimate genetic

Table 4. Genetic parameters (¡SD) for a scenario with varied environmental correlation (rE) between pathogen
burden and intercept estimated with a statistical model either including or excluding host performance in a
pathogen-free environment as a covariate

Parameter
estimated

Simulated
value

rE

x0.5 x0.3 x0.1 0 0.1 0.3 0.5

Estimated value

Statistical model without the covariate
Slope VG 9.0 140¡12.2 56.7¡8.35 14.2¡4.34 9.40¡3.59 14.4¡4.23 57.2¡7.97 142¡11.7
Slope rIH 0.71¡0.07 0.72¡0.07 0.74¡0.09 0.74¡0.12 0.75¡0.08 0.72¡0.08 0.70¡0.08
Intercept VG 120 905¡245 409¡127 150¡58.8 117¡51.6 149¡59.9 413¡121 921¡251
Intercept rIH 0.46¡0.11 0.51¡0.11 0.70¡0.07 0.71¡0.05 0.71¡0.07 0.51¡0.10 0.46¡0.12
rSlope–Intercept 0.0 x0.89¡0.03 x0.76¡0.07 x0.20¡0.30 0.07¡0.41 x0.21¡0.30 x0.76¡0.06 x0.89¡0.03

Statistical model with the covariate
Slope VG 9.0 9.35¡1.93 9.32¡1.66 9.20¡1.60 9.48¡1.78 9.40¡1.81 9.33¡1.82 9.44¡1.82
Slope rIH 0.96¡0.10 0.96¡0.09 0.96¡0.09 0.96¡0.09 0.96¡0.09 0.96¡0.07 0.96¡0.08
rSlope–Intercept 0.0 x0.36¡0.50 x0.34¡0.49 x0.28¡0.50 x0.33¡0.53 x0.39¡0.50 x0.40¡0.49 x0.40¡0.50

Family size is 100, heritability of pathogen burden, slope and intercept were simulated to be 0.3, genetic correlation between
slope and intercept simulated to be 0.
Slope VG, slope genetic variance; Intercept VG, intercept genetic variance; rIH, correlation between the true and EBVs
(i.e. accuracy) ; rSlope–Intercept, genetic correlation between slope and intercept.
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parameters for tolerance, given suitable data struc-
ture. This permits unbiased estimation of genetic
(co)variance for both slope (tolerance) and intercept
(performance in a pathogen-free environment), which
is not possible using the traditional ANCOVA ap-
proach. When each animal has several observations,
e.g. before and after an infection, the model can
include genetic, permanent environmental and en-
vironmental effects for the slope, allowing the esti-
mation of heritability for tolerance. Furthermore,
random regressions can be combined with covariance
functions to calculate genetic variance and heritability
for host performance at any point along the pathogen
burden x-axis trajectory (Fig. 2). This provides a
novel way to increase our understanding of infection-
induced changes in genetic variance and evolutionary
responses in life histories. Pathogen infections can
indeed change heritabilities of performance traits,
which then impact genetic responses to selection (e.g.
Vehviläinen et al., 2008; Lewis et al., 2009). In con-
trast to pathogen-induced changes, changes in herit-
abilities due to other biotic (e.g. diet) and abiotic
factors have been a focus of active research (Kause &
Morin, 2001; Charmantier & Garant, 2005).

The focus here was on the analysis of field data,
but the statistical method presented is applicable
to experimental treatments as well. An experimental
manipulation of pathogen burden level is preferred
over a natural infection, because of the better control
on experimental design.

A linear relationship between pathogen burden and
reduction in host performance was simulated here.
So far, the genetic analyses of tolerance/resistance to

infections have assumed such a linear relationship
(e.g. Mauricio et al., 1997; Simms, 2000; Koskela
et al., 2002; Råberg et al., 2007; Kuukka-Anttila
et al., 2010). However, in reality, the relationship may
be non-linear, for example, sigmoidal or plateau-
linear. Such non-linear relationships can be analysed
with random regressions using the same principles
as for a linear regression (Kirkpatrick et al., 1990;
Schaeffer, 2004). Yet, non-linearity makes the toler-
ance analysis more challenging. Typically, large
sample sizes are needed to prove that non-linear
regressions fit the data better than the linear ones.
Moreover, when reaction norms are non-linear, the
position of a family along the pathogen burden x-axis
impacts the estimated regression parameters of the
family.

(ii) Experimental designs: family size

Tolerance slope is estimated within each family and
thus family size is a crucial parameter influencing es-
timation accuracy. The results implied that decreasing
family size leads to upward-biased genetic variance
estimates for tolerance slope. With decreasing family
size, it is increasingly difficult to accurately estimate
the true slope of a family. When a small number of
individuals are sampled for each family, the sample is
no longer representative of the true distribution and
single observations have strong impact on the slope
estimate. For some families the slope is under-
estimated, for others overestimated, and thus genetic
variance estimate for slope is artificially increased and
selection accuracy decreased.

Table 5. Genetic parameters (¡SD) for a scenario with varied genetic correlation (rG) between pathogen burden
and intercept estimated with a statistical model either including or excluding host performance in pathogen-free
environment as a covariate

Parameter
estimated

Simulated
value

rG

x0.5 x0.3 x0.1 0 0.1 0.3 0.5

Estimated value

Statistical model without the covariate
Slope VG 9.0 16.2¡4.8 11.5¡4.0 9.6¡3.7 9.2¡3.6 9.4¡3.8 11.6¡4.0 16.0¡4.5
Slope rIH 0.74¡0.11 0.74¡0.10 0.74¡0.11 0.73¡0.13 0.73¡0.11 0.75¡0.09 0.75¡0.08
Intercept VG 120 161¡67 130¡54 120¡55 119¡53 122¡52 131¡56 163¡57
Intercept rIH 0.68¡0.08 0.71¡0.06 0.72¡0.06 0.72¡0.06 0.72¡0.06 0.72¡0.06 0.68¡0.08
rSlope–Intercept 0.0 x0.29¡0.28 x0.06¡0.35 0.09¡0.41 0.05¡0.42 0.09¡0.40 x0.04¡0.37 x0.32¡0.23

Statistical model with the covariate
Slope VG 9.0 9.39¡1.73 9.59¡1.65 9.27¡1.78 9.48¡1.76 9.61¡1.82 9.42¡1.74 9.33¡1.78
Slope rIH 0.96¡0.09 0.95¡0.11 0.96¡0.10 0.95¡0.10 0.96¡0.09 0.96¡0.05 0.96¡0.06
rSlope–Intercept 0.0 x0.37¡0.52 x0.42¡0.52 x0.35¡0.49 x0.42¡0.48 x0.48¡0.48 x0.35¡0.47 x0.37¡0.53

Family size is 100, heritability of pathogen burden, slope and intercept were simulated to be 0.3, environment correlation
between slope and intercept simulated to be 0.
Slope VG, slope genetic variance; Intercept VG, intercept genetic variance; rIH, correlation between the true and EBVs
(i.e. accuracy); rSlope–Intercept, genetic correlation between slope and intercept.
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The family size needed for accurate slope esti-
mation is specific for each dataset. Thus, general
recommendations for appropriate sample sizes are
difficult to provide.

Knap & Su (2008) applied random regressions on
pig litter size data to estimate genetic variance for
slopes of reaction norms across North and Latin
America, Europe, Asia and Australia. Consistent with
our results, they observed that with decreasing sire
family size from 146 to 43 (with the number of ob-
servations decreasing from 2 97 518 to 33 641), the sire
reaction norms became less and less parallel increas-
ing the estimated genetic variance for slopes. A similar
result was observed in the simulation by Sae-Lim et al.
(2010) who examined optimal population structures
for estimating a genetic correlation between two en-
vironments, a measure of genotype-by-environment
interaction. The smaller the family size in each en-
vironment, the less accurately were family means in
each environment estimated, and thus the greater
the artificially introduced variance for the genotype-
by-environment interaction estimate (Sae-Lim et al.,
2010).

Our results also showed that for the normally
distributed pathogen burden, genetic correlation
between tolerance slope and intercept was biased
downwards when family size was low. An upward
(downward) bias in the slope of a family pushes the
intercept downwards (upwards), creating an artificial
negative genetic correlation. One solution for getting
accurate intercept estimates is to have a larger group
of uninfected individuals or to maintain a pathogen-
free control treatment. Accordingly, the genetic cor-
relation between tolerance slope and intercept was
much less biased, or not biased at all, when the
negative binomial distribution with pathogen burden
observations aggregated around zero was used.

(iii) Experimental designs: correlation between
pathogen burden and host performance

The results showed that when initial host performance
was related to pathogen burden, indicated either
as environmental or genetic correlation between in-
tercept and pathogen burden, estimates for genetic
variance for tolerance were upward biased, and an
artificial negative genetic correlation between toler-
ance slope and intercept was easily obtained. It is well
established that individuals with initially different
growth or life-history trait levels may be differently
exposed to infections, parasites and production dis-
eases (Arendt, 1997; Rauw et al., 1998; Moghadam
et al., 2001; Kause et al., 2005), confounding the
cause-and-effect relation between pathogen burden
and reduction in host performance in field datasets.

In full-sib and sire models, within-family variation
that includes both Mendelian sampling term and

environmental (co)variance is not specifically mod-
elled. In an outbred population, the Mendelian sam-
pling term is equal to half of the genetic (co)variance.
Thus, half of the genetic covariance between pathogen
burden and initial host performance is translated to
within-family covariance, and the effect is similar for
the respective environmental covariance; upward-
biased genetic variance estimates for tolerance slopes
appear.

One way of addressing this issue is to include initial
host performance as a covariate in the statistical
model. This is convenient for traits that can be re-
peatedly recorded from the same individuals, and
for experimental data where timing and amount of
pathogen challenge are known. However, in field
data, initial host performance under conditions of no
infection may be unknown, and individuals may not
have experienced a pathogen infection for the same
duration.

An eye fluke Diplostomum spp. (Helminth,
Trematoda) infecting farmed rainbow trout Oncor-
hynchus mykiss (Walbaum) is a potential target for
applying the method even when individuals are under
field conditions. Diplostomum spp. impairs vision by
causing cataracts in the lens of the fish eye, reducing
fish growth (Kuukka-Anttila et al., 2010). Number of
flukes within an eye (resistance) can be repeatedly
counted on live fish using a portable slit-lamp micro-
scope, and fish performance is easily repeatedly
recorded from thousands of individuals (Kuukka-
Anttila et al., 2010). The method can be potentially
applied also in sheep-breeding programmes, in which
the degree of intestinal nematode infection is recorded
from faecal worm-egg counts. This can be done under
natural infections or after experimentally infecting
animals in the field (Albers et al., 1987; Woolaston &
Windon, 2001).

In plant–herbivore interaction studies with natu-
rally occurring leaf damage, the concern has been
that microenvironment that affects plant fitness
can also affect herbivore density and thus amount
of leaf damage experienced by the plant (Tiffin &
Inouye, 2000). For example, if both plant fitness
and herbivore abundance are greater in more
sunny microclimates, then estimates of tolerance
may be artificially inflated. Such microclimate ef-
fects are challenging to correct for in the statistical
analysis.

However, in the present study, selection accuracy
remained moderate for all the simulated correlation
scenarios, confirming that artificial selection based
on family slope EBVs would be effective means for
genetic improvement. This is beneficial for practical
breeding attempts. Currently the major pig, poultry,
dairy cattle and aquaculture breeding programmes
are not selecting for tolerance to infections or pro-
duction diseases.
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An additional recording challenge is that many
pathogen-induced infections in animals are most
easily recorded as binary traits (e.g. 0=healthy indi-
vidual, 1=infected). Yet, it is likely that infected in-
dividuals differ in the degree of pathogen burden, or
that some seemingly healthy individuals are in fact
mildly infected, i.e. they have a subclinical infection.
Coding a normally distributed burden as a binary
trait can easily lead to over- or underestimation of
slope genetic variance. This artefact occurs because
in case of binary scale pathogen burden the x-axis
scale for tolerance regression ranges from 0 to 1, and
burden variance is always p(1xp), where p is pre-
valence of infected individuals. However, the real
unrecorded continuous scale pathogen burden can
have low or high variance depending on a disease,
time and environment. Changing the x-axis scale
while holding host performance observations un-
changed artificially changes the steepness of tolerance
slopes and thus alters slope variance.

Genetic variance for slopes becomes artificially
underestimated when the liability scale variance in
burden is low compared to the binary scale variance.
This makes family slopes more parallel, reducing
slope variance. In contrast, coding a liability scale
burden with high variance to be a binary trait with
lower variance makes family slopes artificially more
diverged, creating overestimated slope genetic vari-
ance. For instance, x-axis scale can be changed from a
range of ‘0 to 1000’ pathogens to ‘0 to 1’. In this way,
tolerance slopes become artificially steeper with high
genetic variance. Consequently, recording a normally
distributed pathogen burden as a threshold trait is not
a realistic way to obtain unbiased estimates for toler-
ance genetic variance.

In conclusion, sufficiently large family sizes, accu-
rate pathogen burden recording and control over the
relation between initial host performance and patho-
gen burden are needed for unbiased and precise
genetic analysis of tolerance. These are challenges
especially for field studies, but realistic designs can
be obtained by means of carefully planned exper-
imentation and data collection.

Two referees, Cheryl Quinton and the staff at the
Animal Breeding and Genomics Centre are acknowl-
edged for constructive comments. The study was
funded by the Wageningen University and Research
Centre.
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