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Abstract

We discuss properties of arithmetic functions of higher order defined through the introduction
of a new concept of divisor of higher order. We shall construct an infinite sequence of Euler-like
functions and the well known Euler function will be the first member of this sequence.
Asymptotic estimates of such functions are given and a study of error functions associated with
the Euler-like sequence is made. We would like to mention that the familiar number theoretic
functions become only the first members of an infinite sequence of functions of similar behaviour.

1. Introduction

If d and n are two positive integers and if d | n we say d is a first order
divisor of n and change the notation to d\,n. When a and b are two positive
integers, (a, b) rewritten as (a, b)r shall denote the largest divisor of a dividing
b. When (a, b)i = 1 we say a is prime to b first order.

If d and n are two positive integers then d is said to be a divisor of n of
second order, denoted by d \2 n if

0.1)

(This is the definition of unitary divisor). The symbol (a,b)2 represents the
largest divisor c of a satisfying c |2 b. If (a, b)2 = 1 we say a is prime to b order
2. Here comes the departure: A divisor d of n is a divisor of third order
(notation: d^n) if

(1.2) (J. .1) , -

The symbol (a, b), stands for the largest divisor c of a that satisfies c \3b. If
(a, b), = 1 we say a is prime to b order 3. We generalise by saying that d \,n
(read d is rth-order divisor of n) if
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10 Krishnaswami Alladi [2]

(S-
and

(S-
(1.4) (a, b),= max{c |, a: c \rb}.

If (a, b),= 1 then a is prime to b order r.

NOTE. The definition d \3n given by us differs from the two well known
extensions of the concept of unitary divisor given by Chidambaraswamy
(1967) and Suryanarayana (1971) respectively. The former defines d to be a
semi-unitary divisor of n if (d,n/d)2=l as opposed to our d\^n where
(n/d,d)2=l. The latter defines d to be a bi-unitary divisor of n if
(d, n/d)** = 1 where (a, b)** represents the largest common unitary divisor
of a and b. However in both these papers the concept of unitary divisor is just
extended one step beyond.

Our definition of higher order divisors is given in such a way that the
higher order divisors share many properties in common so that it is possible to
discuss together the properties of arithmetic functions of rth order, as we shall
see in the theorems that follow. In fact to discuss the entire system as a unit, it
becomes necessary to place n/d on the left side. Moreover the familiar
number theoretic results follow as corollaries if we set r = 1, and some of the
results of Cohen (1960) can be deduced if we set r = 2.

We now define rth order analogues to some well known arithmetic
functions. However as (a, b)r^ (b, a), in general these functions have interest-
ing dual functions. Denote by

(1.5) <p,(n,x)= 2 ] ; <pr(n,n)= ipr(n)

and its dual

(1.6) <P%n,x)= 2 1; <p*{n,n)=(p*{n)

for r S l . We define <po(n, x) = <p*(n, x) = [x] where [x] denotes the largest
integer S x and (a, n)n = (n, a)0 = 1 for all a and n. Note that cpi = ip* = <p
(Euler). We define the divisor functions

(1.7) ark(n)=Zdk and a*,k(n) = £ (4 )"
d\,n d\,n\U I

and

(1.8) o-,0(n)= o-*.o(n)=Tr(n).
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[3] Divisors of higher order 11

Before we take up the study of these functions we need to define some
more functions. Let {Fr}%0 denote the sequence given by

(1.9) F o = 0, F , = l, Fn = P . - , + FB _2, «S

Let l{y) and /*(y) denote respectively the least integer > and g y. Further
define

(1.10) fr(x)= l(^x) when r = l(mod2)

(1.11) f(x)^l*(~1x) when r = 0(mod2).

Let f^\x) denote the largest integer y with f(y) = x. And if n = II*,,p°" be
the canonical decomposition of n then let

(1.12) p,(n) = rip[.1(<")+1r>l, /3,(n)=n.

2. Properties of higher order divisors and arithmetic functions

We will now show

THEOREM 1. If n = UUipf' be the canonical representation of n as a

product of distinct primes, and ifd\,n then d\,n if and only if d = Tl'=i pf' where

P, = 0 or / , («,) g / 3 , S a, i = 1,2, • • - , « .

PROOF. For r = 1 by (1.9) and (1.10) /,(<*,) = 1 and so the theorem holds

trivially. For r = 2, / , ( « , ) = a, (again by (1.9) and (1.11)) and )3, = 0 or ft = a,

for a unitary divisor and the theorem is t rue.

Let r = 3 and d = U'.ipff satisfy d\^n. Clearly d\xn and so a, g / 3 ,

trivially holds. Now

If d |3 n then (n/d, d)2 = 1. Thus there is no divisor of n/d except 1 which is a

divisor of d of second order. This is possible if and only if

a, - Pi < (3, or p, = 0.

For if at - Pi § p, then pf'\t n/d and pf'\2d and this is a contradiction. Thus

a, - p, < p,. If a, - p, < p,, and p">\ n/d then O g ^ g a, - /3, < # so that

pf'|2<i. Hence (n/d,d)2= 1. Thus
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12 Krishnaswami Alladi [4]

Moreover /?, is an integer and so p, =g/3(ai) proving theorem for r = 3.
In general let the theorem hold for 1,2, • • •, r, r even. Now d |,+1 n if and

only if (n/d, d)r= 1 where n and d are represented as above. Now (n/d, d)T =
1 says that there is no divisor of n/d save 1 that is a divisor of d order r. This is
possible if and only if

(2.1) o , - / 3 , < ^ 1 j 8 l or ft =0.

For otherwise if at - p, g F,-,Fr//3; then one can find a f, satisfying

o, - A g V-, aFM(3i/F,

so that p"'|,(n/d) and p?\,d, a contradiction. Thus (2.1) holds. The sufficiency
of (2.1) is clear. We rewrite (2.1) as

(2.2) P,>~a,
•T,+ 1

and Pi is an integer. Thus p, g /r+i(a,) proving lemma for r + 1 odd. The proof
for the case r + 1 even is similar, only that /3, g Fra,/Fr+l will replace (2.2) for
(2.1) will be replaced by a weak inequality.

The higher order divisors share in common the property

THEOREM 2. (a) If a and n are integers, then for any nonnegative
integer A

(2.3) (a, n), = (An + a,n),= (An - a, n),.

(b) We have (n, a),= 1 if and only if

(2.4) (n,a),= (n,A/3,(n)+a),= (n,A/3,(n)-a),= l

where p,(n) is as defined in (1.12).

We omit the proofs of Theorem 2 as they are direct consequences of the
definitions in section 1. We shall need Theorem 2 in the discussion of error
functions.

We now take up the study of the functions defined in (1.5) to (1.8). We
shall always represent n in the canonical form n = Y\UiP°'.

THEOREM 3. <pr(n) = nil-,, (l j^j for r g 1.

PROOF. We know from (1.5) that
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[5] Divisors of higher order 13

<pr(n,x)= 2 2
0<aSx 0<iig

(a, n),= l (a, n),

Now (a, n)r > 1 if there exists d \,n, d > 1 with d |, a. We know from Theorem
1 that d\,n if and only if )3, = 0 o r / , ( « j ) ^ /3, S â . This implies that if pt \a and
p,| rn then p{r(Oi>|ia. Thus a simple combinatorial argument leads to

(2.5)

If we put x = n in (2.5) we get Theorem 3.
Now (2.5) also indicates that

COROLLARY 1. If e,(n, x) = xtpr(n)/n — <p,(n,x) then

er(n,x) =

PROOF. We can rewrite (2.5) as

THEOREM 4. Wif/i /3r(n) as in (1.12) we

PROOF. Going back to the definition of (p*(n,x) in (1.6) we find that
(n, a )r = 1 can arise out of two cases, tf (n, a), = 1 then (n, a), = (a, n), = 1. Or
(n, a) , > 1 in which case there is a p(\,n and pt |t a. As (n, a ) r = 1 even if d, |a,
d )( ,n for all d \, n. Thus p{'1(°')+11, a. Again a simple combinatorial argument
leads to

(2.6)

If we put x = /3,(n) in (2.6) and use Theorem 2 which for r = 1 gives
(p,(n, An + fi) = A<pi(n)+ (pi(n, fi) we get Theorem 4.
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14 Krishnaswami Alladi [6]

COROLLARY 2. / / e*(n, x) = xcp*(n, /3,(n))//3,(n)- <p*(n, x) then

We omit details of the proof which is similar to Corollary 1.
Similarly formulae can be found for ark(n), cr* k(n), and T,(n). These

are given below

(2.7) T,(n)=ri(a,-/r(a,) + 2)

and

(2.8) < r , t ( n ) = r i ( l + pf<-.>+ •••?!"')•

We are now in a position to prove the following which is somewhat
interesting since it is novel.

THEOREM 5. For any pair of integers n and k s 0 we have

(a) <p,(n)g<p,(n)g<p,(n)§ ••• S <p6(n)g <p4(n) ̂  <p2(n) g <po(n)

(b) ( 7 u ( n ) S a u ( n ) g ( r 6 . k ( n ) g ••• § cr, k(n) § o-1k(n) g o-lk{n)

(c) o - f . t ( n )go -? . ( l ( n )Sc r? . t ( n )g ••• g o-? . t (n)g o " l k ( n ) g CTT.*(«)

(d) yT(n ,^ , (n ) )^y^» , )33 (» ) )^«pK" ,^ (n ) )
/3,(n) " /3,(n) " /35(«)

£ y S(w, <36(n)) ̂  y !(n, /3«(n)) ̂  y !(n, /32(n))
/36(n) - j84(n) - j32(n) '

PROOF. We shall prove (a) and (b). The proofs of (c) and (d) are similar.
First we observe that F2k/F2k + i form an increasing sequence and F2i-,/FM

form a decreasing sequence both sequences converging to (V5 — l)/2. Further
if x < y then

(2.9) l(x)Sl(y) l*(x)^l*(y) and l{x)^l*(y).

These follow from the definitions of / and /*. Now (2.9) implies that for any
integer m we have

(2.10) / , ( m ) g / 3 ( m ) S / 5 ( m ) S ••• § / 6 ( m ) g / 4 ( m ) g / 2 ( m ) .

If we use (2.10) and Theorem 3 we get (a). Now (2.9) and (2.10) will give on
similar lines of reasoning the reverse inequalities for /7'(m). Then if we use
Theorem 4 we get (d).

To prove (b) and (c) it is enough to observe that (2.10) implies that

d 2n,n = > d \ 2 m + 2 n ; d \ 2 m + , n = > d | 2 m _ , n ; d \ 2 m n =^> d \ 2 m ^ n
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[7] Divisors of higher order 15

for any pair of integers m and m'. That is if Dm(n) denotes the set of mth
order divisors of n then

(2.11) D 2 (n)CD 4 (n)CD 6 (n)C ••• CD5(n)CD3(n)CD,(n).

Clearly (2.11) gives (b) and (c). This proves the theorem.

3. Asymptotic estimates

We saw in the last section properties of d\rn. Theorem 5 gave for
instance relations between <pn a,,k, <p* and a*ik for r = 1,2, • • • separately.
When we take up asymptotic estimates of these functions, we find that the <p 's
and the cr's are related. For example the average order of a,,k and cr*k

involve <p*-i and <pr_, respectively. We begin by proving

THEOREM 6. There, exists a constant c, so that

2 <Pr(n) = crx
2 + 0(x3l2+')Ve > 0 .

PROOF. We note that Theorem 3 implies that <p is multiplicative. Also if
n is square free then <pr{n) = <p,(n).

Decompose every number n as n = Nn' where n' is square free and
(n1, N) = 1. The number N has the property that if p \N, p-prime then p2\N.
(N is called a powerful number.) We call N the powerful part of n. Keep N
fixed and ask for those n § x for which TV is the powerful part. Sum over all
such N. Thus

(3.1) 2 M»
ISnSi

So we need to know the sum

<pr(Nn>)=

N-powerful n' square free
(np. N)=l

N-powerful M'squarefree
( n ' . N ) - l

(3.2)
m square free

(m.N)-l

mSx
(m. N)= I

2
|sds\'T
(d.N)=l

= 2 _

2
id's*

2
d'Sx/d

d' square free
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16 Krishnaswami Alladi [8]

The function /A used above is the Mobius function. It is not difficult to show
that the number of integers S x that are square free and prime to Nd is

cNdx

where

So the sum in (3.2) is of the form

(3-3) y S / • -
(d.N)=l

where kN is a constant depending on N and bounded for all N-powerful.
Substituting this in (3.1) we get

X (p,(n) = x:

| g n g x N^x •^-I ^
N powerful

Now every powerful number N is of the form SS' where S is a perfect square,
S' square free and S'|S. This decomposition is unique. So the number of
powerful numbers g x is

0 S T,(S) =0(x"2+')Ve>0.
\ ss' /
\S square /

This shows that the series

N =1 £11
N-powerful

so that if cr is the sum of this series we have

which proves the theorem.
It is interesting to observe

THEOREM 7. We have

y y
1 S 4 , n ,«4ix j8P(n)

PROOF. We begin by stating Abel's summation formula as in LeVeque
(1960).
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[9] Divisors of higher order 17

"Suppose that Ai, A2, • • • is a non-decreasing sequence with limit infinity,
that a,, a2,-- is an arbitrary sequence of real or complex numbers, and / a
function with a continuous derivative for x g A , . Put

A(x)= 2 *••

Then forx^A,

2 anf(Xn) = A(x)f(x)- [' A(t)f'(t)dt."
J

Clearly, by Theorem 6 and Abel's summation formula with An = n,
f(x)= l/x and an = <p,(n) we infer that

which proves half the assertion. The second half is more interesting. We have

(3.4)

= 2J <P r(a,m)= 2J <P r(n,m).

But

(3.5) y, <pr(n, m) — tn ̂  —— 4~ 0(w log tn)

by virtue of Corollary 1 and

(3.6) 2 <P*(n> m ) ~ m 2 ^ '^^n" + 0(m l o g m )

by Corollary 2 for

^ Ti(n) = 0(m log m).

Replacing m by x, dividing by x we see that (3.4), (3.5) and (3.6) give
Theorem 7.

We can now prove

THEOREM 8. 2,SnamTP(n) = 2cr_, m log m +0(m).

PROOF. Let us first give an interpretation to the sum
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18 Krishnaswami Alladi [10]

0 . 7 ) 2 T , ( » ) = E ^ i = E S i -
lSnSm d \j\ ISnSm (nld,d),-t-\

So (3.7) represents the number of lattice points (xn, y0) under the graph of the
hyperbola xy = m, x >0, y >0 with (y0, xo),-i = 1. We first count the lattice
points with x0 § Vm. They are given by

2 2 1= 2 ?,-,(<*, m/d)

(3.8) = ^

= V —

Now again Abel's summation formula and Theorem 7 tell us that the
summation in (3.8) is

2cr-,m log Vm + 0(Vmlog m).

Now the number of lattice points with yo= Vm is

2 2 1 = 2 _?*-i W»»/«0
ISdSV^ti d'^mld l S d s \ m

(d,d'),-l=l

which by use of Corollary 2 is

Again the use of Abel's summation formula and Theorem (7) gives that this
sum is

2c,-x m log Vm + 0(Vm log m).

The overlap in these two processes of counting is the points in the square
l £ i ( ) S Vm, 1 ^ y0 ̂  Vm, which is 0(m). Thus

2 T,(n) = 2c,-,m log Vm + 2c,-im log Vm + 0(Vmlog m) + 0(m)

= 2cr-im log m + 0(m).

COROLLARY 3. If r,(n) is the divisor function then

^ T](n) ~ m logm.
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[11] Divisors of higher order 19

PROOF. C0 = 1/2. Conclusion is clear.

COROLLARY 4. / / T2(n) is the number of unitary divisors of n then

2 T2(n) -2m log m.

PROOF. By Theorem 6, the constant Ci = 3/TT2. SO 2CI = 6/TT2 and

corollary holds.

REMARK. The average order of <p,(n) is 2crn, while the average order of
Tr(n) is 2cr-\ log n.

We now take up the asymptotic estimates of 07,k and <x*,k for k > 0 .
For fc > 0 define two constants

(3.9)

and

m m( 3 1 0 )

Our theorem is

THEOREM 9.

(a)

(b) f
PROOF. We shall prove the second part of the theorem. Part (a) will

follow on similar reasoning. We shall first need an estimate of

(3.H) 2 ak.
0<aSx. (a. n), - 1

Let A(n,r,s) denote the sth number ' a ' such that (a, n), = 1. It is obvious
that

<pf(n, A ( n , r, s ) ) = s.

But from Corollary 1 we infer that

<p,(n,A(n,r,s))= A ^ ^ yr(w) + 0(nf) = s

so that
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(3.12) A(n,r,s)=

Krishnaswami Alladi

ns n
<pr(n) <pr(n)

We deduce from Theorem 5 that for r g 0 <p,{n) g <pi(w)
known that n/cpi(n) = 0(log log n) we infer that

[12]

). Since it is

= 0(loglogn)

so that (3J2) is rewritten as

(3.13)

Thus

A(n, r, s) = ns 0(n')V>0.

>0

>0

where x is taken as g n.
We shall return to (3.14) after making a geometric interpretation of

Sff*,i. Consider the lattice points discussed in Theorem 8. Call these lattice
points 'good' and let G denote the set of good lattice points. Divide the
region under the curve into three non-intersecting regions A, OP, and B.
Clearly

xy = m

0 n S
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[13] Divisors of higher order 21

m
V * I \ V k

2,o-*.fe(«)= 2J y°
n = 1 (xo. yo)^G

which can be split up as

2J & r , k ( n ) — 2J y o + ZJ y o + ZJ y °

(3.15)
= 5, + S2 + S] say.

Clearly

To estimate S2, pick a point S' on OY at a distance n from 0 with n § Vm.
The sum of yk= nk over R'S' through S' is

n<xoSm/n;(n,x,,),-,-l

where
2 1-

Thus we have

52= 2 nk<p*-i(n,n,m/n)= 2 n"0(m/n) = 0(m(t+2)/2)
n - l n = l

= 0(mk+1/2) for fcsi.

To estimate 5, pick an S on OX and a distance n from 0, « S Vm. Draw RS
through it. The sum of y£ over y0 lying on RS is

(yo.")- - i - i

using (3.14) where x takes values n andjn/n =£ n. If we sum from 1 to Vm we
get 5, which is

= m y <pr-i(n) | 0 / m ^ - \
fc + 1 „ =, nt+2

,<-'»2 Y n/ !
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22 Krishnaswami Alladi [14]

If we substitute these estimates of SUS2 and S, in (3.15) we get part b of
Theorem 9. The proof of part a is similar with the following changes. We have
to replace <pr-^n)ln by <p *-i(n, j8r_i(n))/j8,_,(n) and use Corollary 2 instead of
Corollary 1 to get an estimate similar to (3.14). The proof is complete.

We deduce a few corollaries to our theorem.

COROLLARY 5. // cr(n) denotes the sum of the divisors of n then
m 2

2o"(n)~ —m2.

COROLLARY 6. J/oy k (n) denotes the sum of the kth powers of the divisors
of n then

where f is Riemann's £ function.

COROLLARY 7. Ifcr2, i(n) denotes the sum of the unitary divisors of n then

PROOFS. Corollary 5 follows from Theorem 9 if we estimate an. Clearly

_ « _ 1 Y 1 _ v2

0 , , - a , , - 2 Z n 2 - 1 2 .

Corollary 6 follows if we find alk which is f(fc + i)/k + 1. Corollary 7

comes out of an est imate of o-2, i

which is the result due to Cohen.

COROLLARY 8. For any k g 1 we have

a2. k = a4, k S a6. k g • • • g f f s l S as. * = «i. k.

These follow directly from Theorem 5.

4. Error functions

We finally take up a discussion of error functions associated with the
Euler functions. (A similar discussion for r = 1 is made in Alladi (1974).)
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[15] Divisors of higher order 23

We first calculate the average value of e,{n, x) and e*(n, x) for fixed n
when x is discrete.

THEOREM 10.

PROOF. From Theorem 2 we deduce

so that we get

£er(n,i)= -?,(n)/2.

Now Theorem 1 says

, , , .. \n + i , , . ... An + i . . , , . , ..
e,(n, An + i) = <p,(n, An + i) = ipr(n)- Aipr(n)- (p,(n, n

n n

= er(n,i).

Let m = An + /x for some non-negative A, where O g ^ < n . Clearly
— 2.e(n,i) = —2,e,(n,()+ • • •— Z «,(n,i)

1 V ^ M , . v

2fti m i-i 2n \ m

So that proceeding to the limit m —>«= we get the first part of the theorem
The second part follows on similar reasoning.

However the mean over the continuous variable vanishes. To be more
precise

f er(n,x) = 0; f"'' \*(n, x)dx = 0.
Jo Jo

The above statement is an immediate consequence of the following
statement:
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24 Krishnaswami Ailadi [16]

If / is Riemann integrable in [0, m ] and f(x) + f(m - x) = 0, for all but a
finite number of x £ [0, m] then fof{x)dx = 0. Clearly

\mf(x)dx = (""/(m -x)<fr = | f'/(*) + /("« - x)dx = 0.
Jo Jo ^Jo

Note that e,(n, x)+ e,(n, n - x) = 0 for all x except when (x,n), = l and
e*(n, x)+ e*(n, j3 ,(n)- x) = 0 except when (n, x), = 1.

We now study the properties of the additive error functions associated
with <pr and tp*. Define for 5 g 2

and
i - l / i - 1

i = l / i - l

We begin by showing

THEOREM 11.

(a) lim 2 er(n,a,,a2,

f=\ ~ , /3,(n)

and

hm — 2 , e*(n,aua2, •••,a,)= Z, ^ ^ ~ Z, Z, ^ ^ •
tn n n

PROOF. We only prove the first part. The proof of (b) is similar. We
know

(4-1) ^ 1 e,(n, a,, a2, • • •, a.) = ± ± v.(n, ± a,) - £ § ± <pr{n, a.)-

For any integer / we have

(4.2)

This implies that
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(4.3, ^ i

If in (4.3) we set / as 2 a,, and as a, and then use (4.1) and proceed to the limit
m —»°° we get Theorem 11 part (a). Part (b) follows by observing that

(4-4) Bm £ ! > p
m^~ m „ = ] n-i n

Note that the right hand sid,e of (b) and (a) are of the form

and

which resembles remarkably the forms of er(n, a,, a2, • • •, as) and
e*(n, aua2, •• • ,as).

In fact as (4.3) and (4.4) are true the following can be shown without too
much trouble.

(4.5) Hm £ £ e,(n, /) = 2c,i -

and

(4-6) lim ^ t e*{n,i)=2c,i - ± *^=o(i)

by virtue of Theorem 7. Compare (4.5) and (4.6) with Theorem 10.
We conclude by proving a necessary and sufficient condition for a

number n to be a power of a prime using er(n, a,,a2).

THEOREM 12. A necessary and sufficient condition for n to be a power of
a prime is that

(4.7) e,{n, «„ a2) S OVa,, a2<E Z+= {1, 2, 3, • • •}.

PROOF. The necessity part is easy to establish. We know that

<pr(n, a , + a2) = a,

(pr(n, a,) = a, -

where n = pm, p prime. Now as [x + y] g [x] + [y] the necessity part follows
directly.
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To prove sufficiency let (4.7) hold and let n = U'.ipt', s > 1. We shall get
a contradiction. Consider the two numbers pf<ft) and pf1"'' for distinct i,j with
1 S i < ;' g s. As these numbers are relatively prime, there exist integers x and
y positive so that

(4.8) Ixpf^-ypW'l = 1.
Without loss of generality let ypfw/ '> xp'c^'K Consider now an integer m
satisfying

(4.9) m =0(modp/r("')---p{'("-))

and let

(4.10) m'=Ylp{-lfi'K
i - l

One can show that (a, n)r = 1 if and only if

(4.11) (Am'+a,n) , = (Am' - a ,n ) r = l.

Now consider the intervals (0, yp''W(>] and (m - 2, m + ypf0*''- 2]. It is evident
from (4.11) that for every a with 0 < a ^ ypf'̂ '— 2 and (a, n), = 1 we have
equivalently an m+a satisfying m < m + a S m + ypf'"''- 2 and
(m + a, n), = 1. But by Theorem 1 neither xpf-(Pi> or ypf1"'' are prime to n
order r. Yet as (1, n)r = 1 we have (m — 1, n), = 1. Thus

(4.12) <p,(n, m-2,m+ yp',-^-2) = <pr{n,

which is the same as saying

er(n, au a2) = 1 > 0

if we set a, = m — 2 and a2 = pf<P/) in (4.12), a contradiction to our assumption
(4.7). Thus s = 1 which establishes sufficiency. The proof is complete.
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