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ON THE DISTRIBUTION OF SUPERSINGULAR PRIMES 

ETIENNE FOUVRY AND M. RAM MURTY 

ABSTRACT. Let E be a fixed elliptic curve defined over the rational numbers. We 
prove that the number of primes p < x such that E has supersingular reduction modp 
is greater than 

0og4*)l+* 

for any positive 6 and x sufficiently large. Here log^x is defined recursively as 
log(log .̂_1 JC) and log! x = log*. We also establish several results related to the Lang-
Trotter conjecture. 

1. Introduction. Let E be a fixed elliptic curve over Q. Let/e be itsy-invariant. A 
supersingular prime for E is a rational prime p such that E has good reduction at p and 
Endp (E) is a maximal order in a quaternion algebra. Let TTO(X) be the number of such 
primes p <x.lfE has complex multiplication, Deuring [De] showed that 

7To(x) 
2 log* 

as x —* oo. If E does not have complex multiplication, then the asymptotic behaviour 
of 7TO(JC) is at present unknown. Lang and Trotter [L-T] conjecture the existence of a 
constant CE > 0 such that 

log* 
as x —> oo. The constant CE is defined in terms of representations of the Galois group 
Gal(Q(£tor)/Q)9 where Q(£t0r) is the field obtained by adjoining to Q all the torsion 
points of E. This constant seems to be rather complicated to compute in a general situa­
tion. 

Elkies [Ell] made the first breakthrough in this direction. By an ingenious argument, 
he proved 

fl"o(*) -^ °° 

as x —* oo. Elkies and Murty (see [E12] p. 21) obtained the lower bound 

7ro(x) > log2x 

for all sufficiently large JC, assuming the Riemann Hypothesis for the classical Dirichlet L-
functions L(s, x). We denote by log^ the A:-fold iterated logarithm function. (Brown [Brl] 
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82 E. FOUVRY AND M. R. MURTY 

obtained the weaker estimate TTO(X) > log3x assuming the same unproved hypothesis). 
They also noted that 7ro(x) = 0(x*) follows unconditionally using a result of Kaneko 
[Ka] (see [E13] and also [Mu] for a slightly different approach to the lower bound). 

Our goal is to prove unconditionally 

THEOREM 1. For any elliptic curve E and for any positive 8, there exists XQ(E,8) 
such that the inequality 

vroW > -^ 
(log4*) 

holds for x > XQ(E, 8). 

THEOREM 2. For any elliptic curve E, we have the equality 

7ro(x) = Q(log2x) 

Recall that we write/(x) = Q(g(x)) if there is a constant c > 0, such that the inequal­
ity \f(x)\ > cg(x) holds for infinitely many x —* oo. 

Both of these theorems will follow from the stronger theorem 

THEOREM 3. For any elliptic curve E and any e > 0, at least one of the two following 
statements is true 

(i) TTOM = Q((logx)2-£) 

(ii) 7ro(x) > \og2xforx > x0(E). 

Instead of considering one fixed curve, one can work with a family of curves and 
study the behaviour of iro(x) for this family. We thus obtain the average Lang-Trotter 
Conjecture: let Eaj, be the elliptic curve 

y1 = x* +ax + b 

with a,b E Z. Denote by 7ro(x, a, b) the number of supersingular primes ofE^b less than 
x. 

We will prove the following result 

THEOREM 4. Let A > I, B >l. Then for every C> 0, we have the equality 

Y, £ Mx,a9b) = -£ AB f -T= + 0((A + B)x* +x? +AB^/x(\ogx)~c). 
\a\<A\b\<B 3 Jl V' log/ 

It is easy to see that under the conditions 

(1.1) A>xHe; B>xl+£ 

we have 

(1.2) £ £ Mx,a9b)~£ % AB ^ 
\a\<A\b\<B log* 
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Such a result allows to say that the Lang-Trotter Conjecture is true on average. Nev­
ertheless, we must check that in the sum considered in Theorem 4, the dominant term 
does not come from the curves Ea^ with complex multiplication, which, by Deuring's 
Theorem, have many more supersingular primes. It is well known that E has complex 
multiplication if and only if J'E belongs to a set of thirteen values. So, there are thirteen 
families of CM-curves E0lb, two of them are the families E^ and Ea$ with a and b G Z*. 
The other eleven families are parameterized by Ea.ti^, with t G Z* and (a,, /?,-) is in an 
explicit set of eleven pairs of integers. With these remarks, we deduce that 

Ys X *o(x,<*,b) = 0(-^- • m*x(A,B)) 
\a\<A \b\<B V l 0 § * J 

EaJb i s CM 

which is negligible compared with the main term. 
Let 

9f = { ( a , 4 ) € Z V | f l ^ N . 

The set WL (set of minimality) has been introduced to ensure that two different elliptic 
curves with parameters belonging to #f, are never isomorphic over Q. We will shortly 
give the proof of the following theorem, which can be improved in several directions: 

THEOREM 5. Let e > 0, x, A, B be real numbers satisfying 

A,B > JC1+£; AB > x2^ m i n ( A ^ ) . 

Then, for JC —» oo, we have 

kfe< ms 3C(io) log* 
(a,b)e!\{ 

A natural question is to weaken the condition (1.1) so that the relation (1.2) continues 
to be true (the shorter the averaging is, the closer we are to the Lang-Trotter Conjecture 
itself). Using a particular case of the classical Weil's bound, for exponential sums (see 
Lemma 8 below), we will notably improve the condition (1.1), by proving 

THEOREM 6. Let e > 0, x, A, B be real numbers satisfying 

A,B>xL2+£; AB>x12+£. 

Then, for x —> oo, we have 

\a\<A\b\<B J 10&X 

In paragraph 8, we develop other types of averagings, which rather depend on alge­
braic number theory, and in the last paragraph, we discuss the size of least supersingular 
prime of an elliptic curve. 
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2. Lemmas. We first recall how to detect supersingular primes (see [El 1 ] pp. 561— 
562). For brevity, we restrict ourselves to odd primes. 

Let D = 0 or 3 (mod 4) and denote by On the order 

Cb = z[ 
of discriminant —D. Given an elliptic curve E over Q, let p be an odd prime of good 
reduction for E and Ep the reduction of E (mod /?). The criterion of Deuring [De] states 
that/? is supersingular if and only ifEp has complex multiplication by some Ob such that 
p is ramified or inert in Q(\/—D). It is well-known that, given D, there exist only finitely 
many isomorphism classes of elliptic curves over Q with complex multiplication by Ob. 
Moreover, they-invariants of these isomorphism classes are conjugate algebraic integers. 
Let PD(X) be the modular polynomial associated to Ob- It is a monic and irreducible 
polynomial of Z[X], the roots of which are the abovey-invariants and it makes sense to 
considerPD(X) (mod/?). 

By Deuring's lifting lemma [De, p. 259], complex multiplication in characteristic p 
can be lifted to characteristic zero and so the roots of PD(X) in characteristic p arey-
invariants of curves with an endomorphism \(D + y/—D). 

That is, Ep has complex multiplication by some Ojy for some D'\D with D/D' a per­
fect square if and only if PD(X) (mod p) hasy*£ as a root. If, moreover, — D is a quadratic 
non-residue mod/? or the highest power of/? dividing D is odd, then/? is a supersingular 
prime for E. We summarize this in: 

LEMMA 1 (DEURING). Let p an odd prime of good reduction for E. Then p is a 
supersingular prime for E if and only if there exists some D = 0or3 (mod 4) such that 
D divides the numerator ofPoiJE) and {^y) = — 1 or the highest power ofp dividing D 
is odd. 

We continue by recalling the following lemma from Elkies ([Ell], Proposition): 

LEMMA 2. Let I be a prime = 3 mod 4. There are polynomials R(X), S(X) E Z[X], 
such that, modulo I Pj(X) andP4i(X) factor into (X- \23)R(X)2 and(X- \23)S(X)2. 

REMARK. Another proof of Lemma 2 appears in Kaneko [Ka]. 
It is easily seen that for / prime = 3 (mod 4),yQ(l + V—ij) andy(\/^/) are the only 

real roots of P/ and P4/ respectively, the other falling into complex conjugate pairs. From 
the Fourier expansion ofy, we see 

jXz) = e~2™ + 0(\) 

as Im(z) —•+ oo, and hence as / —+ oo, the real root of Pi (P4j resp.) goes to —oo (goes to 
+oo respectively). Thus, for / sufficiently large, we have PI{JE)PAI{JE) < 0. See [Mu] for 
explicit estimates. 
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LEMMA 3. Let pupi, ...9pk a given set of primes. The number of primes 1=1 
(mod 8) such that (^) = lfor 1 < i < k and I <xis 

1 x 

log* (pxpi'-pk? 

providedx >(p\P2" 'Pkf>for some absolute constantB > 0. 

PROOF. This essentially follows from the proof of a classical theorem of Linnik (see 
[Bo] p. 56): let (a,m) — 1 and denote by ir(x;m,a) the number of primes/? < x with 
p = a (mod m). For x > m10, we have 

1 x 
7r(x;m,0)> r. 

logx m5 

In our context, the /'s we seek lie essentially in some arithmetic progression mod 
%P\" 'Pk, and so the result follows from Linnik's Theorem. Note also that any improve­
ment of the exponents B or 3 in the statement of Lemma 3 has almost no influence on 
Theorems 1, 2 and 3. 

LEMMA 4. Let l\ and h be two distinct primes = 3 (mod 4). Ifp divides the numer­
ator of both Ph(jE)P4h(JE) and Ph<jE)P4h(JE), thenp < 4l{l2. 

A lemma of that type was firstly proved by Gross and Zagier [G-Z], then generalized 
by Dorman [Do]. Our lemma is an easy consequence of Theorem 2 of Kaneko [Ka]. 
This theorem has the advantage of giving a result for the prime divisors of the resultant 
of the polynomials PDY {X) and PD2 (X), when D\ and D2 are distinct discriminants, not 
necessarily fundamental. 

LEMMA 5. Let h denote the class number o/Q(\/^/). Then, there exists an absolute 
constant CQ, such that the inequality 

\PI{JE)PAI(JE)\ < 24h exptcoCV/log21) 

is true with C = log(|/^| + 745). 

PROOF. From [Mu] Lemma 5, we have the inequality 

| / > / f e ) | < 2 2 A e x p ( c v / / E - ) 

where the sum is over the classical set of representatives of h classes of quadratic forms 
of discriminant —/, which means quadratic forms 

tfjjc2 + bjxy + q y 2 

satisfying b\ — Aa^i = —/, (a,-,6,-,Cj) = 1, —a/ < bt < at < c, or 0 < b( < at = c,-. 
Since the congruence x2 + / = 0 (mod a,-), has at most 2 ^ solutions (o;:number of 
prime divisors), we get the following inequality 

1 2 ^ / 2 \ 
E ; < 2 E —< n i + -^T)«dog/)2. 

i<'<*a' \<a<v\ a
 P<vr P ~ I J 
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To bound \PAI{JE% we start from [Mu] Lemma 6 (where the factor 2h has to be replaced 
by 23h) and follow the same technique as above. Hence Lemma 5 follows. Therefore this 
lemma implies that the numerator of PI{JE)PAI{JE) satisfies 

Num(P/fe)P4/(/£)) « exp(C,(^)V7(log if) 

with C'(E) depending only on E (an easy consequence of the inequalities 

deg(P/(J0A/W) = 0(h) andh = 0 (0 log / ) ) . 
The following lemma (see Jutila [Ju] Lemma 8) gives an upper bound on average for 

a sum of characters at prime arguments. We have 

LEMMA 6. Let 

S(D,X) = £ I E A(n)(-)\ 
|«f|<D'3<»!<* n ' 

where d is a non square integer. Then with Do = exp(co(logX)2), we have, for 3 < D < 
Do, the inequality 

S(D,X) < x(exp(-ClD-£ logJQ + exp(-c2(log*)*)) 

where c\ — c\(z) and C2 are positive constants. Also, 

S(D,X)^XD£ 

for Do <D<X\and 
S(D,X) < (XD)-s+£ 

_49 

forX'4 <D<Xso. 
49 

In particular, for every C> 0, uniformly for 3 < D < X™, we have 

S(D,X)<£XD(\ogX) -c 

The above estimations ofS(D,X) remain valid if the variable of summation n satisfies 
n = 3 (mod 4) (resp. n=\ (mod At)). 

To prove the last part of this lemma, we can, for instance, detect the odd primes n = 3 
(mod 4) by the function \ (l — ( ^ ) ) , and then apply the first part of the lemma. 

LEMMA 7. Letp be a prime, a and /3 two integers. Define 

M{A&a9p9p) 

= \{(a,b);a = a (modp),b = P (mod p),(a,b) G fW, \a\ <A,\b\ <B}\. 

Then, for every positive e, we have the equality 

M(A,B,a,(3,p) = ^ 4 ^ 1 ( ) ) • (1 +0(p-1)) • ( l + 0((logAB)-*)) 

(A+B 
+ o( +(ABf +min(^' ,55)V 
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Note that this lemma is interesting only when A and B are large enough compared 
with/?, for instance 

A9B>pl+£; — >min04*,£s). 

PROOF. We start from the formula 

M(A,B,a,p,p) = 2>(<0|{(a,b);ab^0,a = a (modp\b = (3 (mod/?), 
d 

<fi\a9<fi\bM<*M<B}\ 

•°f-r-)-
Note that in the above formula, we may suppose that d satisfies 

d <mm(A*,B*) 

(2.1) 

When d has all its prime factor less than yJXogAB, we use the formula 

\{{a9b)\a = a (modp\b = (3 (modp),d*\a,#\b9\a\ <A9\b\ <B}\ 

where </?(«,/?, d*) is equal to pd4 ifp jfd.d4 if p\d and a = 0 (mod p) and <p(j3,p, (fi) 
defined similarly. When d has a prime factor greater than y/\o%AB(so d is greater than 
this bound) we use, for the cardinality studied in (2.1), the trivial bound 

where [m, n] is the least common multiple of m and n. 
In the case/? /<*/?, by a classical computation, we have 

4AB f 1 \ 
i,B,a,l3,p) = -^ n ( l - - i o ) M(A, 

q prime ^p 
q<s/\ogAB 

• o((ABY + ( ^ - ^ ) + ^QogAB)-$ + m i n ( A ^ ) l 

which gives Lemma 7 in that case. In the other cases (p\ot(3\ the computation leads, in 
the above formula, to a slightly different product over q which is nevertheless also of 
the form C(IO)"1 • (l + 0(p~lj) • ( l + 0((logAB)-4)\ This completes the proof of the 
lemma. 

The following lemma is a particular case of [Sc] Corollary 2F: 

LEMMA 8. Let u and v be integers such that at least one of them is not divisible by 
the prime p. Then, we have the inequality 

tfz\ (unA + vne 
*-> (urr + vrr\\ 

£*(—-—)\<5VP 'll=0 V P 
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3. Proof of Theorem 3. Let/?i,... ,pk be the first k supersingular primes for E. By 
Lemma 3, we can find 

1 x 
E log* (pi • • -pkf 

primes/ = 7 (mod 8) such that/ < x, ( f ) = 1 for 1 < i < Jfc, and ( f ) = 1 for 1 < i < 
/(where them's are the primes where E has bad reduction) provided* > (p\ • • -pk)

B andB 
a sufficiently large constant, depending only on E. Note that these congruence conditions 
are compatible when 2 is one of the/?/'s or #/'s. For such /, we have by Lemma 2 and by 
the fact that 2 divides deg(Pi(X)P4i(X)), the equality 

^Num(P/fe)P4/fe)) 

) - • • 

On the other hand, by the remark following Lemma 2, Num(JP/(/£)P4/(/£)) is a negative 
rational integer = —Ni (say). Then, we have 

rN, 

(?)--• 
By the choice of/ in the lemma, not all the primes dividing Ni can be among 2,p\,... ,pk, 
qx,...,qt. Hence, by Lemma 1, there is aprime/^+i (J) which is a new (odd) supersingular 
prime for E. 

Thus, to each /, we can associate a supersingular primepk+\ (/)• If all these are distinct, 
then we have 

, _ 1 x 
no(T) > £ i 7 77 

logxfa ~'pky 
where 

T = max A//. 
/<JC 

By the remark following Lemma 5, we have 

r<exp(C /(£)v^(logjc)2) 

Choosing x = (p\- PhY, for a sufficiently large A depending on E, we find the lower 
bound 

(3.1) iroiy) > (log>02-£ 

for>> = Qxp\A(p{ • • -p^)^(log(pi • • -pk)) J. 

If for infinitely many k, the/?£+i(/)> constructed as above, are all distinct, then (3.1) is 
established for infinitely many y —* oo, hence the first part of Theorem 3. 

Suppose now that it is not the case. Then, for all k sufficiently large, there are l\ and h, 
such that Num(P/, {JE)PAIX OE)) and Num(P/2(/£)P4/2(/£)) have, at least, a common prime 
factor calledpk+\. By Lemma 4, this new supersingular prime satisfies 

Pk+\ < 4/i/2 
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and by Lemma 3, we find 

PM <^(p\-"Pk)2A-

This recursive inequality yields 

7T0(X) > l0g2X 

for all sufficiently large x. This completes the proof of Theorem 3. Theorem 2 is an 
immediate corollary. 

4. Proof of Theorem 1. Actually, the proof of Theorem 3 investigates two opposite 
situations: in the first case a construction of a lot of new supersingular primes, but ap­
parently very far from the old ones, and in the second case, the construction of only one 
supersingular prime but rather close to the old ones. In some sense, Theorem 1 covers 
both these cases. 

Let S > 0, then Theorem 2 implies that there exists an arbitrarily large real number 
JCO, such that 

log2x0 

0og3*o)1+* 

so, maybe by forgetting some supersingular primes less than JC0, we assert that there exist 
p\,... ,pk, supersingular primes less than xo, with 

lQg2*o < k < log2*o + 1 

(log3*o)1+* " (log3*o)1+* 

We follow now the proof of Theorem 3, and define x\ = y in the first case, or x\ = 
4(/?i • • 'Pk)14 in the second one. In both cases, it is easy to see, using the inequality 

logfa ' ' Pk) < f *°g2*° , + 0 l08*<> V(log.xo)1 J <(log3*o) 

thatxi satisfies the inequality 

logxi <(logxo)(log2xo). 

In the first case, we have trivially 

(4.1) ^ r , ) > l 0 & X l 

(log3*,)1+6 

and, in the second one, by construction of pk+\, we know that 

log2 xo 
MX\) > MXO) + 1 > Tffi + 

(\og3x0y 
but, in that case, since 

*'H3"l08""feSH)' 
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we have 

)g3*i)' (logjxo)1 (log3*o) (log; 

So, in both cases, (4.1) is valid. By replacing x0 by *i and so on, we construct an 
infinite sequence (x„)„>o tending to infinity, such that: 

(4.2) * o f c ) > J 5 & * 
(logs**)1 

and 

(4.3) log2 x„ < (logxn-1 )(log2 xn-1). 

Now, if x is any large real number, it satisfies, for some n, the inequality 

xn < x < xw+i 

from which we deduce, by (4.2), 

/ \-> / \ ^ log2xw 

Qog3xH)™' 

we have also, by (4.3), 

_ Jog3* < tog^i < l0g2X ( } < _ l 0 g ^ < 

(l0g4JC)1+2* - G0g4^ l ) 1 + 2 f i " (l0g3Xw)1+^V ^ - (l0g3^)1 +^ " 

Hence the end of the proof of Theorem 1 with 6 replaced by 25. 

5. Lang-Trotter conjecture on average. It is well known that the total number 
of equivalence classes of elliptic curves over ¥p with /? + 1 points is equal to the total 
number of classes of ideals of OAP. The latter quantity is the Kronecker class number 
H(—4p) (see, for instance[Bi], pp. 58—59). Now an elliptic curve over ¥p can be written 
as (for/7 ^ 2,3), Eaj, with a,b e¥p. The curves isomorphic to Ea,b are the curvesEai^bui,, 
with u £ F*. So, the number of curves isomorphic to the elliptic curve (over ¥p) Ea^ is 

£=p for a = 0, b ^ 0 (mod/?) and/7 = 1 (mod 6) 
£ p for b = 0, a ^ 0 (mod/?) and/? = 1 (mod 4) 

&Y- in the remaining cases. 
Since there are 0(1) isomorphism classes over F^ containing a curve of the form £o,z> 

or Ea,o, we deduce that the number of elliptic curves Ea^ with 0 < a, b < p having/? + 1 
points over ¥p is equal to 

P-.H{-Ap) + 0(p) 
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It remains to study the curves Eaj, with \a\ < A and \b\ <B,to write, under the assump­
tions of Theorem 4, 
(5.1) 

£ E#;^)=k(-+o(i)).(- + o(i)).^ 
\a\<A\b\<B Zp<xyP f yP / 

(H(-4p) + 0(\)) + 0(AB) 

= 2ABJ2 ^^-^OUA+B)^- +^loglogjc+ - ^ - ) 
p% P V logX log*/ 

where the error 0(^45) comes from the primes 2 and 3 which are supersingular for 
some Eajb and from the p which are supersingular for curves with non-minimal equa­
t ion Ea,p4ib,p6. 

The equality 
H(-4p) = K-4p) + h(-p) 

and the Dirichlet class number formula 

wvd 
h{-d) = ^-L{\,X„d) 

for d = 0 or 3 (mod 4), w = 6,4, or 2 when d =3,4ord >1, and X-</ the Kronecker 
symbol (—) transform the study of (5.1) into a sum of Dirichlet series at the point s = 1. 
The right hand-side of (5.1) becomes 

(5.2) ™( £ ^ I i ^ + 2 £ ^ ^ W 
^ V p<x \JP p<x yJP J 

p=3 (mod 4) 

By partial summation and Polya-Vinogradov inequality, we have, for any parameter U > 
1, the equality 

(5-3) L(i,x-P)= Z, —^— + o( ^———) 

and the same equality for —4/?. 
We choose 

U = x*. 

To obtain cancelations on the summation over/?, we introduce the Legendre symbol, so 
we recall the formula 

Ifp = 3 (mod 4) then x-/>(") = ( p and if/? > 3 then 

(,4) * - M - ® (-.)*•*(!) 
the right hand side of this formula being understood to be 0 when n is even. 
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We will mainly concentrate on the sum 

1 (-) 

n<Un p<x y/P 
p=l (mod 4) 

If n is a perfect square, the inner sum is equal to 

1 fx dt 

2. \£^t+0^^-^ 
by the prime number theorem and partial summation. This gives rise to the following 
main term for &l\U9X): 

(5-5) w£vrki+°(^irl+^-v^^))) 
We now estimate the sum when n is not a perfect square. If xi = jcexp(—c^/logx), for 
an appropriate constant c, we begin by noting, that we trivially have 

(5.6) £ ' " £* 4 ; « ^ ( l o g ^ « P ( - 5 Vf°8*) 

where the prime on the summation indicates (henceforth) that n is not a square and the 
star that/? = 3 (mod 4). 

It therefore remains to estimate 

1 (-) 

n<U n xi<p<x \/P 

Using dyadic decomposition, (that is, decomposing the sum into intervals of the form 
(V,2 V)\ we see that the above sum is 

(5.7) « Qogx)\^\V)\ 

for some V satisfying 3 < V < U and 

1 (-) 

V<n<2Vn Xi<p<x y/P 

By partial integration, we get 

ra<'>(F)< i _ • £ ' |E* iog/>(-)|+fv>(0 E' |E* \ogp(n-)\dt 
-y/XlOg* v<n<2V{xi<p<x yPn Jx* V<n<2V*x\<p<t XPJ ' 

where ^(f) is the derivative of the function J . A direct application of Lemma 6 gives 
the bound 

(5.8) ^ ( F ) « ~ ^ 
(logx)c 
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for every positive C and every V < U. 

It remains to apply the same technique for the sum in (5.2) containing L(l,x-4p)> 
using now the formula (5.4). The main term coming from this sum is 

<59)2 ,?„ i;£j?-T-£ifci*0(*i'r>*-«-fci»)-
Gathering the formulas (5.1), (5.2), (5.3), (5.5), (5,6), (5.7), (5.8) and (5.9), we complete 
the proof of Theorem 4. 

6. Sketch of the proof of Theorem 5. Let p a prime less than JC, and let A, B and 
x satisfying the assumptions of Theorem 5. Then the quantity M(A,B9a,(3,p) studied in 
Lemma 7, satisfies 

A AD , x 

(6.1) M(A,B, a,(3,p) = ^ ^ ( l + 0(p~x) + 0((logxT4)), 

now, following the beginning of the proof of Theorem 4, we have the equality 

£ £ 7r0(*,fl,i) = E E E ^ * ^ f t / 0 
\a\<A \b\<B p<x a (3 

(a,b)eM 

where the inner sum is made over 0 < a, /3 < p, Ea^ is an elliptic curve (mod p) with 
exactly/? + 1 points. 

By (6.1), this last quantity is equal to 

H E ^ = ^ ( l + Oip-1)+ O(dogx)-4)) + OiABlogx). 

The proof now follows the evaluation of (5.1). 

7. Use of exponential sums. Proof of Theorem 6. Let p be fixed. In each of the 
H(—4p) equivalence classes of elliptic curves over ¥p9 with/? + 1 elements, we choose a 
curve 

E<x,p • y1 = x3 + ooc + /} 

with 0 < a, j3 < p. There are H(—4p)—0(1) of these classes with Ea^ such that a/3 ̂  0. 
To prove Theorem 6, we may suppose that A and B are integers plus \. We dissect the 

interval [—A,A] into subintervals of length/?, the first one being [—A, —A +/?], the last 
one, if not complete is denoted by A. The same procedure is applied to [—B9 B], the last 
interval is called (B. With these notations and the notation [x] for the integer part of JC, we 
can write under the assumption a/3 ^ 0, the equality 
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|{(a,6);|a| <v4,|o| <B,Ea£ (mod p) is isomorphic to Ea^}\ 

2Ai [2B-\ 

(7.1) 

2A1 

P J 
1 

+ - • 
2 
1, 

.Ezi+I . 
/> J 

IB 

P 

2A^ 

2 LpJ 
— |{« € F;,/3I/6 G S (mod/>)}| 

r2/?i 
[—] |{wGF; ,aw 4 G^ (modp)}| 

+ xK" € Fp><™4 € -# (mod/?),/3w6 G « (modp)}| 

+ 0 ( m i n ( ^ / / , Z ? / / ) ) 

where the error term comes from the curves Ea^pAk^p6k, (k> 1). We write the charac­
teristic function of Ji (mod/?)as 

h=(\nCZ<Z V P ' 

and the last term in (7.1) becomes 

1 P=i P~i P=i (h(au4-a) + l(Pu6-b) 

^ I, X, Z, I, 2>l 
LP h=0a<EAl=0be<Bu=\ V P 

Since SI and (B are intervals, we deduce that this term is equal to 

) • 

where ||x|| is the distance between x and the nearest integer. 
An application of Lemma 7 says that this quantity is equal to 

and applying a similar technique to the second and the third term of (7.1), we get 

|{(fl,6);|tf| <v4,|6| <B,Eab (mod/?) is isomorphic to Eap\| 

p - \ 
2 

+ i 
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[2Ai + A = 2A 
J P P 

p - \ 4AB 

Using the equality [—] + — = —, we get 

2 

Now, summing over the H(—4p) — 0(1) classes of isomorphism with a(3 ^ 0 (mod p), 
we arrive at the formula 

J2 E n(x,a,b) = 2ABY,^^+0(x2\og3x + 
\a\<A\b\<B p<x P 

where the error term 0(AB log JC) comes from the curves Eaj> with/?|a6. 
The proof follows the proof of Theorem 4. 

8. Other types of averagings. In Theorems 4,5, and 6, we considered a very large 
family of curves in two parameters a and b. The aim of this paragraph is to present 
examples of studies of the function iro(x,a,b) over a thinner family of elliptic curves 
which is parameterized in one variable only. Some of these results will depend on GRH 
(i.e. the hypothesis that the zeta-fimction of any number field has no zero with a real 
part greater than \) but all of them are based on the fact that the study of the number 
of zeroes of PD(X) (mod p), denoted by i/(D,p), on average, via Chebotarev Theorem, 
requires the introduction of Ho, the Hilbert class field of the field Q(\/—D). 

We will prove 

THEOREM 7. Let <zo and bo be two non-zero integers . If we suppose that GRH is 
satisfied for all the CJJD, then there exist three constants c\, c\ and c^ > 0, such that we 
have 

(8.1) £ 7T0(x,ao,ft)<ct*r^ 

uniformly for B >x> xo(tfo) 

(8.2) ciAj£- < £ 7roQc,a,Z>o) < c\A^ 

uniformly for A>_x>_ JCo(fto)-

In the case where no particular hypothesis is assumed, there exists a 0 > 0, such that 
the following lower bound holds 

(8.3) £ ir0(x,a,bo)>cTA(\ogxf 
\a\<A 

uniformly for A > x > xo(bo). 
Note that (8.1) and (8.2) give for Tro(x,a,b) average upper and lower bounds which 

are compatible with the Lang-Trotter Conjecture and that (8.3) produces a much better 
bound than Theorem 1 but always on average (compare also with Theorem 3(i)). 

Since PD(X) is an irreducible polynomial, Nagell's Theorem asserts that on average 
over/?, v(D,p) behaves like 1. But we will work with an unbounded number of poly­
nomials PD(X), so we require a rather large uniformity over D. By classical techniques 
from analytic and algebraic number theory, we will prove 
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LEMMA 9. Under GRH, uniformly for x > 2 and D = 0, 3 (mod 4), we have the 
equalities 

YJ K A / 0 = HJC + 0(JC5Z)5 logDjc), 

£ KA/>) = -z HJC + 0(x5£)5 loglte) 

/><*,(f )=-l 2 

X) K A p ) = 7 UJC + 0 ( x ^ logDx) 0br D ^ -3m2; . 

/?=2 (mod 3) 

All these equalities remain true if i/(D,p) is replaced by i/*(D,p), the number of dis­
tinct roots of PD(X) (mod p). 

Note that the above equalities give an asymptotic formula for D < xl~£ which is quite 
satisfactory, since we will use Lemma 9 for D <^ yfx. 

The proof of this lemma requires two lemmas: 

LEMMA A. Letf(X) £ Z[X| be an irreducible polynomial of degree n. Let n(f9p) be 
the number of solutions of fix) = 0 (mod p). Assuming GRH, we have 

£/*(/» = li* + 0(xi*(S(/) + logx)) 
p<x ^ ' 

where 
8(f) = Z) log/? + log « 

p\D(f) 

and D(f) is the discriminant off 

PROOF. Let K = Q(0) with/(0) = 0. If dK is the discriminant of A:, then the standard 
methods of analytic number theory yield that the number of prime ideals of degree 1 in 
K is 

TTK(X) = \ix + 0(x? \ogdKx"). 

(see e.g. [Ho] pp. 55-56, [Dave], [He]). 
The result stated in Lemma A follows from two observations. First, n(f,p) is the num­

ber of prime ideals of degree 1 in K, lying over/?, provided p )(D(f). Thus 

E"<r,p) = **(*)+o(i E 0 
P<x V p\D(f) 7 

(see [He] p. 229 for instance). Second, by a result of Hensel (see [Se] Proposition 6, for 
instance), we write 

log dK <n E log/7 + n 1°8 n 

p\Dif) 

which completes the proof. 
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LEMMA B. IfK is a number field, f{X) E 0[X] is irreducible over K, of degree n 
and n(f, ty) denotes the number of solutions off(X) = 0 (mod 5)5), then assuming GRH, 
we have 

£ n(f,$) = lix + o(xi2[K:Q]n(6(f) + logx)) 

where 

« ( / ) = £ l o g ^ + logw. 
WW) 

In that expression N^$ is the absolute norm of the prime ideal !p and the implied 
constant is absolute. 

PROOF. The number of prime ideals of K of relative degree from K to Q greater or 
equal to 2 and of absolute norm less than x is 

0([K:Q]xi). 

The number of prime ideals of K{&) lying over a given prime is at most n. Thus the result 
follows from Lemma A. 

PROOF OF LEMMA 9. The first part is immediate from Lemma A, since only prime 
divisors of D divide 8(PD). 

If we take K = Q(y/—D) in Lemma B, we obtain 

£ n(PD,y>) = \ix + 0(xlwhogDx)). 
Nty<x 

Thus 

(*) £ v{D9p) = \ lix + 0(xlW* logDx). 
P<x,(f)=l 2 

Subtracting from the first assertion gives the result. 
Finally, if K = 0 0 / ^ 3 ) , we note that PD(X) is still irreducible over Q(>/=3, V^D) 

(this is because ramification implies that the fields are disjoint whenD ^ —3m2). Hence 
working over Q(\/—3, y/—D\ we find 

(**) YL V(P>P) = 7 l i* + O(**0* logDx). 
P<x,(f)=l 4 

/?=1 (mod 3) 

Subtracting (**) from (*) yields 

(* * *). X) K A / 0 = T li* + 0(*5D5 logDjc) 
P<xXf )=i 4 

p=2 (mod 3) 

https://doi.org/10.4153/CJM-1996-004-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-004-7


98 E. FOUVRY AND M. R. MURTY 

Now consider 

E HD,p). 
p<x 

p=l (mod 3) 

This can be interpreted as follows: 
Consider K = Q(>/--3) and look at the number of solutions over this field of PD{X) = 

0 (mod !)i). By Lemma B, this is 

2 Y, K A p ) = liJc + 0(x?D? \ogDx). 
P<x 

p=\ (mod 3) 

Thus, we have, after subtracting from the first part of Lemma 9, the equality 

Y, HD>P) = o lix + Ofr*D* logDx). 
P<x 2 

p=2 (mod 3) 

To complete the proof, it remains to subtract from (* * *) the above expression. 
The following result of Kaneko gives a bound for the least D such that Deuring crite­

rion is satisfied (Lemma 1). We have 

LEMMA 10 ([KA], THEOREM 1). Let E an elliptic curve over Q andp an odd super-
singular prime for E. Then there exists a D < -4=y/p such p\Num(PD(JE))> (-jp) = — 1 
or the highest power ofp dividing D is odd. 

A. PROOF OF (8.1). To control the size of the supersingular primes we are counting, 
it is sufficient to prove for X < x the upper bound 

(8.4) <B&,B) = £ [*o&,ao,b) - 7r0(|,a0,fe)] = °(B^j) 

Since for X large enough, any D <C \ /^has no prime divisor greater than j , Lemma 10 
implies that <B(X,E) satisfies the inequality 

<B(X,B)< E E E * 

(8-5) / a 

« Z Y, ( E E ' 
D<&y/Xj<p<X a(modp) b (mod/?) 7 P 

PD(a)~0 (modp) 
where the variable of summation satisfies the equation 

4<z3 

This quadratic equation in b has at most 0(1) solutions (more precisely, at most 2, if 
p /3tfo)- Hence, by (8.5), we find the relation 

(B(X,£)«£ £ £ ^ £ > . 
D<Z.\[x\<p<X P 
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Lemma 9 is applied under the form 

X \ 

£"<D-»=°(i^) 
<p<X 

which gives (8.4) and this proves (8.1). 

B. PROOF OF (8.2). The proof of the upper bound works like in the case of (8.1), 
except we meet the cubic equation 

1 7 2 8 4 ^ = ^ ( m ° d ^ 

which has at most three roots if/? is large enough. For the lower bound we use the in­
equality 

&{x9A) = E \no(x9a9bQ)-Tro(-9a9bo)) 

E E ( E E i ) 
f <D<X § <p<jc;(^)=-l V P (modp) a (mod/?) 

(8-6) > ^ ^ ( ^ ^ M 

withX = ^ , where the variable of summation a satisfies 

4a3 

(8.7) 1728
4a3+27Z>2 = P ( m ° d P)'9 4a" + 2 ? ^ ^ ° ( m ° d P ) ' 

The value of X has been chosen to ensure that Lemma 1 produces different supersingular 
primes by Lemma 4. The relations (8.7) are equivalent to the unique equation 

(8.8) 4(1728 - /3)a3 - 21(3b2
0 = 0 (mod /?) 

for/? large enough. If we impose the conditions/? = 2 (mod 3) and (3 ^ 1728 (mod /?), 
(8.8) has at least one root; we deduce the lower bound 

(8.9) *(x9A)>A £ £ V^^--E 
f<D<Jf<p<x;(f)=-l P 

p=2 (mod 3) 

In that expression E is the error term coming from the contribution of terms with 
P\PD(172$). For D large enough and for an absolute C, we have the inequalities 

1 < |P/>(1728)| = 0(exp(C\/D log? DJ) 

(the proof is the same as for the inequality for PI(JE) mentioned in Lemma 5) and 

v\D9p)<K-D) 
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from which we deduce 

(8.10) E<^Ax~l Y, h(-D)VDlo^D<^Ax£. 
D<X 

It is easy to deduce from (8.6), (8.9), (8.10) and Lemma 9 the lower bound of (8.2). 

C. WITHOUT GRH. TO obtain (8.3), we proceed by using the unconditional version 
of the Prime Ideal Theorem. By standard analytic number theory, we obtain the relation 

nK{x) = lix + O(lijc^) + O xexpf - J p ^ j - J I 

with the notation as in the proof of Lemma A. Using Stark's bound for the exceptional 
Siegel's zero p ([St] Theorem 1', [MMS] p. 279): 

/ ?<max( l • i « 

we obtain a uniform result for the sum 

4 log*' dp 

; KAP) 
P<x,{=?y=-i 
p=2 (mod 3) 

only for D < Qogxf, for some 0 > 0. 

REMARK. With more care, we can remove the influence of the Siegel zeroes, thus 
improving the value of 9. 

9. On the least supersingular prime. The aim of this paragraph is to deal with the 
following question: 

Let Eajb be a given elliptic curve. What is the size ofp\(a, b), which is the least super-
singular prime of EajP. Actually, using techniques of the large sieve, we will only prove 
that/?i (a, b) is very smaller almost all elliptic curves. In some sense, this result has to be 
compared with the result concerning the size of the least non quadratic residue (mod p) 
(see, for instance [Bo], p. 7). We will prove the following 

THEOREM 8. Let 2 < y < y/x. Then we have the inequality 

(9.1) \{(a,b);\a\ <x,\b\ <x9Pl(a,b)>y}\ « , * V ~ * log^y 

for every K > 1 — | . 

This theorem asserts that in this set of ~ JC2 elliptic curves, almost all of them have 
their least supersingular prime rather small, less than y (say), for instance with>> = yjx, 
the number of exceptions is 0(JC5 -y/logx). We are concerned by bounds >>, which are much 
smaller than the bound which would emerge by closely following the proof presented in 
paragraph 3 (with k = 0). Note also that the proof of (9.1) is quite straightforward for 
« ; > 1 . 

The starting point of our proof is a generalisation in several dimensions of the large 
sieve; we have: 
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LEMMA 11. For each prime p, let Q(p) be a subset of cardinality u)(p) of the group 
Zn/pZn ofn-dimensional vectors modulo p. 

Let X > 1 and E(X) be the number ofx = (x\,..., xn) with max |x, | < X, for which x 
(mod/?) ^ Clip), for each prime p. 

Then, for X > P2, we have the inequality 

£<Wl?/<«>E^)-q<P p\q i 

Such a result is Lemma A of [Ga] and follows from an ̂ -dimensional analogue of the 
large sieve inequality (see for instance [Hu] Theorem 1 or [HI]). 

To go from Lemma 11 to Theorem 8, we choose n = 2; P = y andZ = JC. For each/?, 
we define 

Q(p) = {(a, /3) (mod /?); Eag (mod p) is an elliptic curve with p + 1 points} 

so we have 
o;(/>) = | / /(-4/>) + 0(/>) 

and we note the implication, 

(a, b) (mod /?) G Q(p) => p is a supersingular prime for Ea,b. 

(We could get an equivalence above with some care about the minimality of the equation, 
that is, by considering (ap~4k,bp~6k) modp where k is the largest possible integer.) So, 
we have by Lemma 11 the relation 

\{(a,b);\a\ <x,\b\ <x,pl(a,b)>y}\^x2/^{(y) 

with 

1<y p\qP -"IP) 

and u(2) = o;(3) = 0. In paragraph 5, we proved the relation 

and, if we use the trivial inequality 

u(p) 
^(y)>E 

p<yP2-U(p) 

we obtain Theorem 8 for any K = 1. The improvement comes from taking into account 
the contribution in 9((y\ of integers q which are not prime. We define the multiplicative 
function g(n) by the formula 

P\„Pl-u(P) 
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then, by partial summation of (9.2), we see that g satisfies 

(9.3) Eg(p) log/>= (a+ <?(!))>' ( v - o o ) , 
p<y 

with a = | . The problem is now to find a lower bound for the summatory function 
G(x) = £w<xg(w). The problem of the upper bound is more popular in the literature, and 
we were unable to find a published result, which fits to our requirement. 

The proof of the following lemma was communicated by G. Tenenbaum: 

LEMMA 12. Letga multiplicative function satisfying (9.3) (for a strictly positive a) 
and the relation 

(9.4) g{p) > 0 for every p and ]T —— < oo. 

Then we have the equality 

Gix) = £ M2(«)g(«) = *(log*r1 + o ( 1 ) . 

The upperbound for G(x) is treated by the inequality of Halberstam and Richert under 
the form 

Gix) « r±- E ^ ^ « r^~ exp E ^ « * 0 o g * r ^ l o g x ^ « log* ^ /? 

the last inequality coming from (9.3) after a partial summation. 
For the lower bound, we start from the inequality 

Gix) > E E Sim)gim)g(p) » E M 2 ( « ) — • r £ -
m<x* x*<p<xIm m<x* 

by (9.3). Put z = X3, / = ẑ  and denote by P(/w) the greatest prime factor of w, then we 
have 

(9.5) L / i ( « ) > 2J M (m) X, P (m) • 
m<z m P(m)<t m P(m)<t m 

m>z 
By (9.4), the first sum is greater than 

We appeal to Rankin's method to bound from above the second sum, we choose oc= ^-t 

and write 

P{m)<t m P{m)<t m \ZJ p<t\ p ) 
m>z 

< * - ' / « e x p f e ^ + 0{«E ^ *gp) ) « e->/« e x p E ^ 

https://doi.org/10.4153/CJM-1996-004-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-004-7


DISTRIBUTION OF SUPERSINGULAR PRIMES 103 

by (9.4). We fix a very small value to e, and by (9.3) and (9.5), we get 

E,»^»expE^-(log^1> 
m<z m p<t P 

This ends the proof of Lemma 12. 
For the proof of Theorem 8, we are concerned by a lower bound for ?((y), in that 

context the function g(p) satisfies g(p) = 0(p£), so (9.4) is satisfied. The trivial inequality 
M(y) > 5=r ends the proof of Theorem 8. 

10. Concluding remarks. These results can be generalized to the context of super-
singular Drinfeld modules. This has been done by C. David [Davi] in her doctoral thesis. 
Indeed, since we have the analogue of the Riemann hypothesis in the Drinfeld context, 
stronger results can be established unconditionally which improve upon Brown's results 
[Br2]. 
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