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1. Introduction

Our title has become something of a misnomer, however we retain it since
drafts of this note have been quoted with it.

Unless otherwise stated our terminology and notation follow that in Hanna
Neumann's book [12].

The Oates-Powell Theorem ([12] p. 151) allows us to say that a variety is
Cross if and only if it can be generated by a finite group, and to assert that the laws
of a Cross variety are finitely based. A variety is just-non-Cross if it is not Cross but
every proper subvariety of it is Cross.

We asked in [9]: what non-Cross varieties have just-non-Cross subvarieties?
The answer is: all of them.

THEOREM 1. Every non-Cross variety has a just-non-Cross subvariety.

The proof is an easy application of Zorn's Lemma. If { ^ : X e A} is a descend-
ing chain of non-Cross subvarieties of a non-Cross variety such that the inter-
section 3) = A{%$x '• X e A} is properly contained in each 2SA, then the union of
the corresponding chain {Bx : X e A} of fully invariant subgroups of the word
group Xx ([12] p. 4) is not finitely generated, hence ® is not finitely based, and
a fortiori 3) is still non-Cross.

In [9] we claimed that for every primep the product variety 2Ip2lp is just-non-
Cross (2tp is the variety of abelian groups of exponent dividing p). Here we sub-
stantiate this as a consequence of a detailed description, in section 2, of the lattice
of subvarieties of 9IP« 8lp.

The variety 21 of all abelian groups and the varieties 2IP2IP are just-non-Cross
and nilpotent-by-abelian. The converse is also true.

THEOREM 2. The only nilpotent-by-abelian just-non-Cross varieties are 21 and
the 2Ip2lp.

This theorem is related to the so-called external result we state in section 3,
and is proved with it in section 5.
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2. The subvariety lattice of 9lp«?tp

In this section we give a description of the lattice of subvarieties of 2lpe,2tp.
Proofs are deferred to section 4.

Lattice terminology follows Birkhoff [1 ].
We begin with some notation. The set of positive integers is denoted by P. As

usual 9tn, 33n, %ln denote, respectively, the variety of abelian groups of exponent
dividing n, the variety of groups of exponent dividing n, and the variety of groups
of nilpotency class at most n. The variety of all groups will, for convenience, be
denoted 3la. Our description of the subvarieties of 2lp«2Ip will be in terms of these
varieties and one more family whose members will be denoted 3tnt. The variety
3ln. is the subvariety of 9Zn defined by the additional law Y\"=2 IX> xi > ' " ', xs-I >
xs+1, • • •, xn]. Note that 3lnm 3 9ln-1. For any particular prime p only certain of
these additional varieties are needed, namely those for which n is at least 3 and is
divisible by p. We therefore introduce for each prime p an ordered extension P(p)
of P defined by:

P(p) = {1,- • -,p-\,p*,p, • • -,pr-\,pr*,pr,- • -,co} for/> odd,
P{2) = {1, 2, 3, 4*, 4, • • •, 2 r - 1 , 2r*, 2r, •••,©}

with the order as indicated. The P(p) and {0, 1, • • •, a+1} taken in this order may
be considered as lattices - we do this. For each p the varieties 93pe and 2^,9^ for v
in P(p) play a distinguished role. We denote them 23(/?) and 9J(T, V) respectively.

With each subvariety $ of 2lp«2Ip we associate an element /J(3S) of {0, • • •,
a + 1} and elements v(0, 53), • • •, v ( a - l , SS) of P(p) as follows:

for T £ {0, • • •, a - 1 } ,

V(T, 35) = min {v : S3 <= SR(T, V)}.

The subvarieties of 2Ip*2lp are characterized by the above invariants:

2.1 If % is a subvariety of 2tp* 2tp, then

"A SR(T, V(T, S3)).

If a = 1, it follows that every proper subvariety of 2lp2lp is nilpotent, and
hence Cross because it has finite exponent. As 2tp2Ip is obviously not Cross, this
yields the following.

THEOREM 3. For every prime p the variety 2tp2tp is just-non-Cross.

This discharges a debt incurred in [9]. The proof here - due primarily to one
of us (MFN) - supersedes an earlier one which motivated the papers [4], [5] (and
in which the result was also announced).

It is clear that for all subvarieties 11, 2$ of 2tp«2tp
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S) = max

and V(T, U v « ) = max {V(T, U), V(T,

for all T in {0, • • •, a— 1}. The next point to prove is that the corresponding result
for meets also holds.

2.2 For all subvarieties U, 93 o

/}(

and
V(T, U A ©) = min {V(T, It), V(T, 23)}

for all Tin {0, • • % a - 1 } .

Now it follows from 2.1 that the mapping x : 33 H» (0($8), v(0, 33), • • •,
v(oc— 1, 23)) is an embedding of the lattice of subvarieties of 2Ipa2lp into the direct
product A of the lattice {0, • • •, a+ 1} with a copies of P(p). A sublattice of a direct
product of distributive lattices with descending chain condition is a distributive
lattice with descending chain condition.

THEOREM 4. The lattice of subvarieties of%pX%p is distributive with descending
chain condition.

The description of the lattice of subvarieties of 2tpa2lp is now completed by
giving its image under %. Let E be the subset of the direct product lattice A defined
by:

(P, v0, • • •, vx_1)eZ if and only if

Vp = • • • = v ^ - j = 1 for P < a,

v^_j < p for 1 ^ p :£ a;

vx for vz e {1, co},

< I V t - p + 1 for vt e P anrf vt > p,

pr for vT = p(r + l)* with reP,

2 for 2 ^ vt £ p;
Vz+2 = 1 /<"• Vt ^ 2 / 7 - 1 .

2.3 Tfte image of i is E.

While the description of the lattice of subvarieties of 2lp«2Ip afforded by all
this is adequate, it is somewhat ad hoc. Because the lattice is distributive with
descending chain condition, it follows (cf. section 2 of Chapter VIII of [1] -
suitably corrected) that every element of the lattice can be uniquely written as an
irredundant finite join of (finitely) join-irreducible elements. Moreover, a finite
set of join-irreducibles gives its join irredundantly if and only if no two distinct
elements of the set are comparable. Hence such a lattice can easily be reconstructed
from the partially ordered set of its join-irreducible elements. The reconstruction
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can be carried out so as to yield a faithful representation of the lattice in the lattice
of all subsets of the set of its join-irreducible elements. These facts suggest that a
canonical way of describing such lattices is to give the partially ordered sets of
their join-irreducible elements. We do this for the lattice of subvarieties of 2Ip«9lp.
An advantage of this approach is that our results are then more readily comparable
with related results of Brooks [2] and Bryce [3], and better suited for the extension
of the present results to a description of the subvarieties of WHn with square-free
n (to be given in [10]).

Given 2.3 and the explicit description of the sublattice I of A, it is an elemen-
tary exercise to derive the desired information. We simply give the result after a
hint to the derivation we used.

If an element (/J, v0, • • •, vx_1) of S is join-irreducible, then (/?', v0, • • •, va_1)
$ I for P' < P because

(fi, vo, • • •, v«_,) = (P, 1, • • •, l)v (p', v0, • • •, v . -J .

Similarly (0, v0,- • •, vt_1; n, vT+1, • • •, v ^ J ^ Zfor/i < vrandt e {0, • • •, a -2} .
Hence if va-l = v ̂  1, the conditions defining I determine P, v0 , . . . , va_2:

0 = j a for v < p,
\ a +1 for v ̂  p;
I a> for v = co,

v> + ( p - l ) ( a - l - T ) for v ̂  co except v = 2, x e {a-3, a -2} ;
v7_2 = 2, va_3 = 2p* for v = 2:

here, and in the sequel, v H> <V> denotes the mapping of P(p)\{co} to P which is
the identity on P and for which <pr*> = pr whenever pr* e P(p)\P. Finally,
if va_! = 1, then P = a+1 or the corresponding variety lies in 2lp«-i2Ip; if
P = a + 1, then v0 = " • * = va_2 = 1. It is straightforward to check that the
resulting elements of I are join-irreducible.

We can now describe the partially ordered set J(p*) of the join-irreducible
subvarieties of 2tp«2i(p. Clearly J(p°) consists of © and 9IP with 6 <= 9tp. For a in
P the set J(p*) consists of J(p'l~l) and for each v in P(p) a variety ^(p*, v) defined
as follows:

here the second term must be omitted when p = 2, and the fourth and fifth when
they are not meaningful (also, the third term is redundant when a is 2 or 3); for
veP(p)\{l,2,o},

, v) = «P.811,AS8P.A«

here the second term must be omitted when v ̂  p and the last term is redundant
when veP; and
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Note that the only non-nilpotent join-irreducible varieties in 9tp«2lp are the
2lp,2lp with T e {1, • • •, a}. In contrast to this Brooks [2] has shown that there is
an infinite number of non-nilpotent join-irreducible subvarieties in 2lp2Ip2.

It is a routine matter to check that the partial order on J{p*) is generated by
that on J{p*~l) and the inclusions:

", v) whenever \i, v e P(p) and 2 ^ \i < v;

if a > 1 then also

-, v) for all v in P(p)\{l, 2, co},

and if a > 2 then

«, 2).

It is easy to indicate diagrammatically the lattice in the case a = 1 and, say,

X

x 30'./'+0

x 30>./0

x

x x 3(p,/>*)

x
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3. External result on 3lp3tp

By an external result on a variety 23 we mean a result of the form: A variety
which does not contain 33 • • •. For example, a variety which does not contain 21
has finite exponent. For ^ 5 1 , , we can prove the following.

THEOREM 5. A soluble variety which does not contain 2lp2Ip cannot contain any
non-nilpotent p-group and therefore has a bound on the nilpotency class of its p-
groups.

The proof is given in section 5.
One might hope for a stronger result which we state as a problem.
In a variety which does not contain 9lp2Ip is every locally finite p-group nilpotenti
The local finiteness is needed in view of the result of Novikov-Adyan [13]

which implies that for all large enough primes p there are infinite finitely generated
groups of exponent p. Note also that this result implies the existence of just-non-
Cross varieties of exponent p.

A special case of the above problem is Jhe well-known question: is there a
bound on the nilpotency class of finite groups of exponent pi

It is perhaps worth recording some consequences of Theorem 5.

COROLLARY 1. A soluble variety which does not contain 9lp2(p has a bound on
the nilpotency class of nilpotent torsion free groups in it.

COROLLARY 2. A soluble variety in which the nilpotent groups do not form a
subvariety contains 3tp9Ip/or some prime p.

This discharges another debt incurred in [9].

COROLLARY 3. The variety generated by the two-generator free metabelian-of-
exponent-q groups for an infinite set of primes q contains 2lp2Ip/or some prime p.

The last statement is in fact valid for all/) but this requires additional argument
which is not given in this note.

4. Proofs for section 2

Most of the discussion is set in a free group H of 9tpa2lp of countably infinite
rank freely generated by {a, : i e P}. Much of the argument will involve the verbal
subgroups %(H), %(P)(H) and 9J(T, V)(H); we denote them Ap, B(0), N(x, v)
respectively.

We first write down relationships between the subgroups N(z, v). The first two
are obvious:

4.01 For all x in {0} u P and all n ^ v in P(p),

N(x, n) ^ N(x, v) and %p{N(x, v)) = N(x+1, v).

Further relations are easy consequences of some well-known results about
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commutators. We record here all such results which are used frequently in what
follows. Notation: [u, v] = u~1v~1uv, [u, v, w] = [[u, v], w], [u, Ov] = u and
[w, nv] = [u, (n—l)v, v] for all n in P. The identity is denoted <?.

4.02 For h,h1,h2,- • • in Handd in Ap,

[hi,h2h3] = [/»!, h2][hl; A3][/!i, h2, h3];

[hi,h2,h3] = [ A 1 , / i 3 , A 2 ] [ / i 3 , A 2 , A 1 ] ;

[d,ht, • • -,hm] = [d,hw,- •;hmil]

for all m in P and all permutations n of {1, • • •, m}\

[*i. K\ = fl [*i. ih2T"nim'iy' M all m in P;

in particular, since [d, hp] = e and [hp, h\\ — e,

and
p p

; = i j = i

The last two equations have the following immediate consequences.

4.03 For all x and all n in P,

A T ( T + l , n + l ) ^ N(x,n+p) and N(x + 2,l) g N(x,2p-l).

In fact a little more is true.

4.04 For all x and all r in P,

Before proving this, we introduce some further notation. For s, n in P with
2 ^ 5 < n, let

b(s, s) = [as,ai,a2,- • •, as-t]
and

b(s, n) = [b(s, n-l), an].

We denote by i the identity endomorphism of H, and by ntj with i,j in P the endo-
morphism which fixes all the generators except ah a} which it interchanges.

PROOF OF 4.04. Let ^ be the endomorphism of H which maps as to apr+1 if
pr+l ^ j g / ) ( r + l ) and to ay otherwise. From

P(r+1)

I! (b(s,p(r+l)WeN(T,p(r+l)*)
s=2
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it is easy to derive, using 4.02 and the inclusions

N(t+l,pr+l) ^ N(x,p(r+l)) ̂

(which hold on account of 4.03 and 4.01), that

h = f[b(s, pr+iy*+1 e N(
s=2

Then, applying i — 7t2>pr+1 to h and using 4.02, one gets

[a2, apr+i, ax, a3, a4, • • •, apr]
pT+1 e N(x,p(r+1)*)

and the result follows.
The story is completed by obtaining suitable generating sets for the N(r, v).
Let 38 be the subset of H denned by: b e 88 if and only if b = [ah nijaj,

mj+1aj + i , • • •, msas] w h e r e i > j ^ s; m , - l , mJ + 1, • • -,mse {0,- • -,p-\},

ms # 0; and if nij = p then firstly i ^ s implies m, < p— 1 and secondly mk = 0
whenever j < k < i and k ^ s.

4.05 77;e set 88 u {af : /e.P} w a free generating set for Ap as free %p*-group.

PROOF. It follows easily from 4.02 that Ap is generated by 88* — 88 u {af :
ieP}. If there were a non-trivial relation between the elements of 88* this would in-
volve only finitely many of {a{: i e P). It therefore suffices to consider for each k
in P the subgroup Hk of//generated by {at, • • •, ak} and to show that <Hp(Hk) n 88*
is independent in 9lp(//fc). By the Schreier formula for the rank of subgroups of
absolutely free groups, y{p{Hk) has rank (k—l)pk + l. On the other hand the num-
ber of elements in ^Hp(Hk) n 88* is

where the first term in {• • •} comes from counting the commutators with mi # p
and the second term from the rest. The sum comes to (k — 1 )pk +1 and the result
follows.

Note that this proof implies that every element of 88 can be uniquely written
in the way it is defined.

It follows that the commutator subgroup N(0, 1) of H is a free 9lpa-group
freely generated by 88. The other terms iV(0, n) of the lower central series of H are
a little more complicated to describe. This we do next after first defining weights
for elements of 8S.

The weight wt(Z>) of an element b = [at, nijOj, • • •, msas] ot88is 1 +Yjk=j mk-
The weight wt(Z>, ak) of b in the generator ak is 'the number of occurrences of ak

in b\ that is,
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0 if k £ {j, • • ; s} U {i},

mk if k e {j, • • ; s}\{i},
wt (b, ak) — \

mk+l if k = i G {j, • • •, s},

1 if k = i$ {j, • • ; s}.

4.06 For n in P the subgroup N(0, n) is generated by the set 3Sn of elements of the
form bpk where b e 3$, k e {0, • • •, a - 1 } , wt{b) + k(p-1) > n and k wt(6) # 2
unless n = 1.

PROOF. A routine argument from 4.02 shows that N(r, n) is generated by the
[ah, • • •, aim]pk with m > n, ke {T, • • •, a — 1} and it > i2 ^ i3 ^ • • * f= im-

From this and 4.03 one gets immediately that #(0, n) is generated by the set t? of
the elements [ah, • • •, aim]p" with m ^ 2, k e {0, • • •, a - 1 } , km # 2 unless n = 1,
w + (/»—1)A: > n and ^ > i2 ^ • • • ^ im. Clearly 3Sn is a subset of Sf. An induc-
tion on m using 4.02 shows that each element of Sf lies in the subgroup generated
by 38„. The result follows.

Note that if b^ e 38n and k < a - 1 , then bpk+1 e 3Sn. Thus for all n every
element of N(0, n) can be uniquely written {up to order) in the form J~[{= t b\(1)

wAere rAe bx are distinct elements of 3$n and the P{i)G{1, •••,/>— 1}.
Similar generating sets can be given for the N{0,pr*).

4.07 For pr* w P(p) the subgroup N(0,pr*) is generated by the union 3Svr of

(0 ®Pr,
(ii) the set of elements of the form b""*1 where b e 38, k e {0, • • •, a —2},

v/t{b) + {k+l){p-l) = pr, andkv/t(b) # 2, and
(iii) the set of elements of the form Y\pr

=2 b{s,pr)\j/ where \j/ is an endomorphism of
H such that a^ = at. where it ^ i2 ^ • • • ^ ipr and no p of i2, • • •, ipr are
equal.

PROOF. The argument is essentially the same as that in the proof of 4.06. It is
routine to derive from 4.02 that N{r,pr*) is generated by the [ah, • • • aim]p with
m ^ pr+1, k e {T, • • •, a — 1} and it > i2 ^ • • • ^ im, and the

1 T Vn n - ~\PX 'f\y ' <T i *""" • • • <C i

Hence, by 4.03 and 4.04, N{0,pr*) is generated by the set of elements [ah, • • -, aim]pk

with m ^ 2, £e{0 , • • •, a - 1 } , km # 2, (A:-l)w^2r ^ 2, m + {p-l)k ^pr + Sk0

(where 5UU = 1 if u = v and 0 if u # i>), and it > i2 ^ i3 ^ • • • ^ «m, and the
elements

Y[ [a,,, flj,, • • •, a,-,_,, fljs + 1 , • "', o-i J with i t g i2 < • • • ^ ipr.
s=2

An induction on m (using some ideas from the proof of 4.04) then yields the result.
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Observe that an element of 8ft occurs in at most one of the products in (iii)
above. It follows that every element of N(0,pr*) can be uniquely written (up to
order) as Yl'i=i tf{l) where the b{ are distinct elements of 88pr, and each P(i)s

It is a straight-forward consequence of 4.01 and the remarks after the proofs
of 4.06 and 4.07 that the N(x, v) for x in {0, • • •, cc-1} and v in P(p)\{co} are
non-trivial and distinct and that the following relations between them hold:

4.08 For all x,

N(x, n) n N(T + \, 1) = | N(x+1, n-p + l)N(x + 2, 1) for p < n < 2p,

liV(T+l,2)iV(T + 2, 1) f

N(x, pr*) n N(x+1, 1) =
V [ N(x + l,2)N(x + 2,l) forr=l;

fj N(x, n)N(x + l, 1) = N(x + 1, 1).
neP

The next step is to prove that every fully invariant subgroup of H can be ex-
pressed in terms of the B(f5) and the N(x, v).

4.09 / / V is a fully invariant subgroup of H, then there is a unique element, call it
P(V), in {0, • • •, <x+l} such that V = B(fi(V))(Vn N(0, 1)).

Observe that if 33 is a subvariety of 9lp«9lp, then ^(S8) (see section 2) is the
same as P{%(H)).

PROOF OF 4.09. Recall that A (̂0, 1) is the commutator subgroup of H. Clearly
there is precisely one P in {0, • • •, a + 1} such that VN(0, 1) = B(P)N(0, 1). Then
ai' = vd where v e V, de 7V(0, 1). Applying to this the endomorphism of H which
maps a1 to al and all the other generators to the identity yields a?" e V. Thus
B(fi) ^ V and the result follows.

4.10 For x in {0, • • •, a—1}, / / V is a fully invariant subgroup of H contained
in N(x, 1), then there is just one element v(x, V) of P(p) such that
V = N(x, V(T, F))( V n N(x +1, 1)).

Observe that if SS is a subvariety of 2Ip«2lp then

v(t, 93) = V(T, S3V(9?(T, 1)A%^P))

so that
V(T, 95) = V(T, SS(/f) n N(x, 1)).

4.10 is proved in two stages. The first will be stated as a separate result. The
endomorphism of H which maps a,- to e and fixes the other generators will be de-
noted dj.

4.11 Let n— 1 be inP andx in {0, • • •, a—1}. Ifp does not divide n orifp = n = 2,
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there is no fully invariant subgroup of H strictly between N{x, ri)N(t +1 ,1 ) and
N(z, n-\)N(x+\, 1). Otherwise n = pr and N(T,pr*)N(r + l, 1) is the only fully
invariant subgroup of H strictly between them.

PROOF. Let V be a fully invariant subgroup of H such that N{x, n)N(x + 1,1)
< V ̂  N(i, n—\)N(r+\, 1). There are two cases.

(a) If Vcontains w = f]'= i bf(i) where the bt are distinct elements of £% (of 4.05)
of weight n, each fi(i)e{pz, 2p\ • • •, (p — l)p*} and wt(6;, aj) = p for some / and
some j , then V = N(T, n -1 )N(r +1, 1).

Clearly it suffices to consider the case wt(bi, aj) = p. Put /(0) = 0 and
f(k) =f(k-l) + wt(bl, ak) and let 0 be the endomorphism of H which maps ak

to a/(t_1) + 1 • • • af(k) [to the identity iff(k-l) = f(k)]. Using 4.02 gives

w0 fl («- Sm) = f l Kf(j -1) + s, n)W
m = l s = l

where
r = ±(p-l)!nwt(&i. «*

w ' e # ( i , n)7V(x + l, 1) and 6(1, n) is interpreted to be the identity. Hence V
contains Y[s= i HfU~ ^) + s> nY* because pz + 1 does not divide r. Applying
i-7t1>/(j._1) + 2 to this and using 4.02 yields that b(J(j-l) + 2, «)pT is in V and
the result follows.

(b) The only products of the form YYi = i ^?<0 where the bt are distinct elements
of 38 of weight n and the /?(/) 6 {p\ • • •, (p-l)pT} are such that wt(6,-, aj) < p for

alii, 7-
For k in P u {0} and w in {1, • • "•, p -1} let IIk m be the set of products of the

above form in V in which wt(Z>,-, ak) ^ m for all / [take wt(6j, a0) = 0], and for
ally exceeding k the wt(6;, a,-) are independent of i and equal to 0 or 1. Let Vkm

be the fully invariant closure in H of H t m and A^(T, « ) A ^ ( T + 1 , 1). Clearly
Vk,P-i ^ Vk+Ul and Vkim£ VKm+1 for all A: and m in { l , - - - , p - 2 } . If
w e i 7 t + 1>1, then both w(i — <5fc+1) and M><5fc+1 are in IIk p_1; hence w is in VkiP-l

and Fk + 1 1 = f̂  p _ j . The argument which follows establishes VKm = VkiM+l.
Let 6, \\i be the endomorphisms of H denned by:

for j < k,

• •, k + m},

for j > k + m.
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It is easy to verify, using 4.02, that if we nkm+l, then wt = w6(i — 8k)---
(i-dk+m) is in VkA and H»("I + 1 ) ! ( W 1 I ^ ) ~ 1 is in Vkm, and hence that w is in Vkm.
From these equalities it follows that V = F o p ^ ; that is, Fis the fully invariant
closure of N(x, n)N(x + \, 1) and the products of the form f]"=2 b(s> nY(s) ( w i t n

P(s)e{0,p\ •••, {p-\)pz}) which lie in it. If w = f]"=2 b{s, n)e(s) e V, then
w(i-ns,,)eV for Ms, ' i n {2, • • •, n}. But w(»-*,,,) = [a., a,, alt • • •]'<*>-"«>
by 4.02, so F = JV(T, w - 1)N(T + 1, 1) or fi(s) = P(t) for all s, t and all relevant w.
In the latter case V is the fully invariant closure of N(x, n)N(x+\, 1) and x =
]~I"=2 K*> «)"*• If « = 2, then F = # ( T , W - 1 ) # ( T + 1, 1). If n # 2 and/> divides n,
then F = N{x, n*)N(x+l, 1). If/? does not divide n, then x(i-7i1 ) 2) = 6(2, «)"pt

e F and so F = 7V(T, n- l)N(z+1, 1).

PROOF OF 4.10. It follows from 4.06 and 4.07 that if \i # v in P(p), then
7V(T, V)N(I+ 1, 1) # A^(T, H)N(X+ 1, 1). Thus there is at most one v in P(p) such
that V = AT(Tj v ) ( F n JV(T + 1, 1)). If F ^ N(x + \, 1), put V(T, F) = tu. If
V S N(x+1, 1), then by 4.08 there is an n in P such that V ^ A^(T, n - 1)W(T + 1,1)
but F S N(x,n)N(x+l, 1), and it follows from 4.11 that FW(T, TJ)W(T + 1, 1)
is either (a) N(x,n-l)N(x+l, 1) or (b) N(x,n*)N(x+l, 1).

Case (a): This implies N(x,n-l)^ VN(x, n)N(x +1, 1). It follows that
N(x,m-\) g F7V(T, m)N(x + \, 1) for all m in P with m ^ n. Hence AT(T, n - 1 ) ^
K/V(T,/>«)iV(T+l, 1). Therefore b{2,rif = f E[f = I *?(° w h e r e y 6 F> t h e bi a r e

distinct elements of £8, pz divides each /?(*), and for each i either wt(^;) > pn or
pT+l divides P{i). By a standard argument (applying in turn the mappings i— dlt

i -<52, • • •) it can be assumed that, for all /, wt(6;, a ;) ^ 1 for; ^ n and wt(bh aj)
= 0 for j > n. Hence wt(Z),) 2: « and y + 1 divides /?(/) for all i, because no
element b of ^ satisfies wt(Z>) > /?« and wt(&, a^) = 0 for all j > n. Thus
b(2, nY e VN(x+l,n-l) and so N(x,n-l) ^ K A T ( T + 1 , / I - 1 ) . It follows that
N(p,n-\) ^ VN{p + \, n-\) for all p t x. Therefore N(x,n-l) ^ V. But
F ^ JV(T, n-l)N(x+l, 1) and so the result follows with V(T, F) = n-l.

Case (b): Now n = pr ^ 3 and N(x,pr*) S VN(x,pr)N(x + \, 1). By 4.02,
[flf^H5./"1). V+iK'-^.pr+i) = [a2,apr+i,au---,apr\. Hence N(x,pr)^
VN(x,pr+l)N(x+l,l) and so N(x,pr*) ^ VN(x,p2r)N(x+\, 1). Therefore
arguing as in (a) we obtain that

s=2 s=2 i=l

where v e F, the Z>f are elements of J 1 of weight at least pr+1 and />t + 1 divides
each /*(.?) and jS(/'). Let n denote the automorphism of H which maps at to ai + i if
2 ^ / ^ /?/-, apr to a2. a n d fixes all other generators. Apply the mapping Ylm = o n"
to the last displayed relation above: since pr—l is prime to p, it follows that
Y[p

s
r
=2 b(s,prY e VN(x+l,pr*). Hence N(x, pr*) S VN(x+l,pr*). Then arguing as

in (a) shows that the result holds with v(x, V) = pr*.
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PROOF OF 2.1. Let 23 be a sub variety of 2tpa2Ip. By 4.09 and repeated applica-
tions of 4.10,

23(H) = fl(J(S3(H)))ri N(r, V(T, S3(H) n AT(T, 1))).
T = O

It follows from the observations after 4.09 and 4.10 that

T = 0

Going over to varieties gives the result.

PROOF OF 2.2. It follows from the argument in the proof of 2.1 that

(U A ®)(H) = U(H)23(ff) = B(P(U))B(P(%))Y\ N(T, V(T, U))JV(T, V(T,
1=0

Since the B( )'s and the N(x, )'s are linearly ordered,

(U A SB)(H) = B(min {/J(U), ?(%)}) U N(x, min {V(T, It), V(T, 58)}).

It follows from 4.09 that

/ ( S S ) = min
and

(U A »)(H) n iV(0,1) = " n JV(T, min {V(T, U), V(T, S3)}).
T = O

An induction on p, using 4.10, yields

v(p, (U A S3)(#) n JV(p, 1)) = min {v(p, U), v(p, SS)}
and

(U A »)(/*) n AT(p+1) = " n M T , min {V(T, U), V(T, 23)}).
t=p + i

Hence, by the remark after 4.10,

V(T, U A 33) = min {V(T, U), V(T, S3)}
as required.

Before proving 2.3 we need one more result.

4.12 For $ ^ 1

I N(p-l,p*)N(p, 1) for p odd.

PROOF. The result is an easy consequence of the case fi = 1 so we only prove
that. For p = 2 this is an immediate consequence of the well-known fact that all
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groups of exponent 2 are abelian. hetp be an odd prime. Since N(0, 1) ^ B(l) n
N(0, 1) ^ N(l, 1), it follows from 4.09 that there is a v in P(p) such that B(\) n
7V(0, 1) = N(0, v)7V(l, 1). There are metabelian groups of exponent p and class
precisely/* (see [11] Satz 3 or [4] Example 3.2), so v > p-\. By 18.4.13 of [6],
[a2, 0 > - l K ] e (5(1) n N(0, l))N(0,p). By 4.06, [a2, (p- l)a,] $ N(0,p)N(\, 1),
so v < p. Thus v = p* and the result follows.

PROOF OF 2.3. Clearly the set £ is a sublattice of the direct product lattice A.
It is a straight-forward matter to calculate using 4.08 and 4.12 that

for T < /?— 1,

for T = /?— 1 and p odd,

for T = /? — 1 and p = 2,

for T ^ j8;

and /J(«R(T,V)A81P.8IP) = a +

CO

V

v(p,

V

1

for p < T,

for p = T,

V)A2IP«21P) for p > T and v > 2p-l,

for p = T + 1 and v ^ 2p—1,

for p > T + 1 and v ^ 2p — 1,

where v =

for v e {1, a>)

v — p + l f o r v e P and v > p,

pr for v = p{r+l)*,

2 for 2 ^ v g p.

Hence ( 3 3 ( ^ ) A 2 I P . 9 I P ) Z and (9?(T, V) A 2lp« 2tp)z belong to 1 and so the image of/
lies in £. Moreover it follows that if (/?, v0, • • •, vx-t) e I, then

a - l

A A SR(T, vt)A2tp«9Ip)z = (J8, v0, • • -, v._,).

5. Proof of Theorems 2 and 5

PROOF OF THEOREM 5. Since a group G is nilpotent if it has a nilpotent normal
subgroup N such that G/'H(N) is nilpotent (P. Hall [7] Theorem 7), it suffices to
prove the theorem for metabelian varieties. Let SS be a metabelian variety which
does not contain 9lp9Ip; then there is a positive integer c such that $ A 2 1 P 2 1 P Q
yic-i. We show that every/7-group in 33 lies in 9fc-i . Suppose not; then there
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would be a finitely generated, and therefore finite, /?-group in SBXSftc-i. Since all
finite /^-groups are nilpotent, it would follow that there is a p-group in (5? A -Ke)\
9tc_!. The result is therefore a consequence of the following more precise lemma.

LEMMA. 7/23 is a metabelian variety such that $ A 2 1 P 2 1 P £ W^/or some v in
P(p), then for each \i in P(p)\{a>} with n > v there is a positive integer k not divisible
by p such that %*%<=%%.

PROOF. There is nothing to prove if v = a>. If v # <x>, then it clearly suffices to
prove the result when fi is the first positive integer exceeding v - call it c. Let G be
a free group of 2191A yic freely generated by {glf • • -,gc}, let V = 3S(G) and
K = yiv(G). We will show there is an element y of K such that ypw e V where

w = [gi, • • ;gc] if v = c-\ and w = YIU2 [ffs,ffi,- ' ; ffs-i, ffs+i,' • % # J if
v = c*. Since A' is finitely generated abelian and the fully invariant closure of w,
it will follow that KVfVis a finitely generated abelian group in which every element
has a /7-th root; hence that KV/V is a finite abelian group of order k not divisible
hyp; and therefore 33A 9?C £ ^ % a s required. Since 23A21P21P £ 9?v it follows
that K<LVD where Z> = 2tp9tp(G) and hence w = vodo with v0 eV,doe D. For
each i in {1, • • •, c] let e; be the endomorphism of G which maps g} to ^ for; # /
and ^j toe. We now define »,, ••-,?;,.£ F a n d J l 5 • • •, dce Dbyvt = ^;_ !(£>,_ ^ j ) " 1

and J; = (rfj-ie,)"1^,-.!. It is easy to check for all / that (vi_lei)(di_1£i) = e,
w = Vjdi and d-tZj = e for ally ^ i. It follows ([12] 36.32) that dc can be uniquely
written in the form \\c

s = 2 [gs, 9\, ' • •, gs-i,0, + i,- * % ^cf
(s)- Let i7 be the free

group of 9tp9tp defined in section 4. Let 0 be the homomorphism of G into H/N(0, c)
defined by gfi = afJV(0, c) for all iin {1, • • •, c}. Then, as D0 = {N(0, c)},

f\ b(s,cY^N(G,c) = dc9 = JV(O,c),

and so/7 divides [5(s) for all J. Therefore dc has a/?-th root fe in 9fJc_1(G) and w =
t;cZ>p. Ifc = 2or/)does not divider, then 9ZC_1(G) = ^Tand the proof is complete.
Let n denote the automorphism of G which maps g1 to gl, gt to gi+1 when
1 < i < c, and gc to g2; put t/' = Xm"lo 7tm. If/? divides c and c ^ 3, then applying
i/> (cf. the last paragraph of the proof of 4.10) yields wc~l = vcip(b\j/)p and 6i/f e A".
The result follows because /> does not divide c—1.

PROOF OF THEOREM 2. Let II be a nilpotent-by-abelian just-non-Cross variety.
If 91 £ U, then U = 21. If 21 $ U, then U has finite exponent, t say. Hence U is
generated by its finite groups. We will show that there is a bound, t', on the order
of chief factors of finite groups in U. By the Corollary in [8] applied to the class
of finite groups in 11, there is no bound on the class of finite nilpotent groups in U
and the result follows from Corollary 2 of Theorem 5. Let H/K be a chief factor
of a finite group G in U. Clearly HjK is an elementary abelian /7-group for some p
dividing t. Let C be the centralizer of H\K in G; then G/C is an abelian group which
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has a faithful irreducible representation over the field of p elements. Hence G/C
is cyclic and so has order dividing t. Therefore the order of H/K is at most t' as
required.

REMARK (added in proof, 9 December, 1970). The problem stated in sec-
tion 2 has a negative solution on account of the results of Bachmuth, Mochizuki,
and Walkup ['A nonsolvable group of exponent 5', Bull. Amer. Math. Soc. 76
(1970), 638-640] and O. Yu. Razmuslov [to appear]: for all primes p ^ 5, there
exist nonnilpotent locally finite varieties of exponent p. Our Theorem 2 has been
superseded by results of J. M. Brady ['On the classification of just-non-Cross
varieties of groups', Bull. Austr. Math. Soc. 3 (1970), 293-311; 'On soluble just-
non-Cross varieties of groups', ibid. 313-323] and O. Yu. Ol'shanskij [to appear].
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