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1. Introduction

Our title has become something of a misnomer, however we retain it since
drafts of this note have been quoted with it.

Unless otherwise stated our terminology and notation follow that in Hanna
Neumann’s book [12].

The Oates-Powell Theorem ([12] p. 151) allows us to say that a variety is
Cross if and only if it can be generated by a finite group, and to assert that the laws
of a Cross variety are finitely based. A variety is just-non-Cross if it is not Cross but
every proper subvariety of it is Cross.

We asked in [9]: what non-Cross varieties have just-non-Cross subvarieties?
The answer is: all of them.

THEOREM 1. Every non-Cross variety has a just-non-Cross subvariety.

The proofis an easy application of Zorn’s Lemma. If {8, : 1 € A} is a descend-
ing chain of non-Cross subvarieties of a non-Cross variety such that the inter-
section D = A{%B, : e A} is properly contained in each %B,, then the union of
the corresponding chain {B; : A€ A} of fully invariant subgroups of the word
group X, ([12] p. 4) is not finitely generated, hence D is not finitely based, and
a fortiori D is still non-Cross. "

In [9] we claimed that for every prime p the product variety 2, %, is just-non-
Cross (U, is the variety of abelian groups of exponent dividing p). Here we sub-
stantiate this as a consequence of a detailed description, in section 2, of the lattice
of subvarieties of % . %,.

The variety % of all abelian groups and the varieties A, %, are just-non-Cross
and nilpotent-by-abelian. The converse is also true.

THEOREM 2. The only nilpotent-by-abelian just-non-Cross varieties are 3 and
the A, ,.
This theorem is related to the so-called external result we state in section 3,

and is proved with it in section 5.
129
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2. The subvariety lattice of p=¥p

In this section we give a description of the lattice of subvarieties of . %,.
Proofs are deferred to section 4.

Lattice terminology follows Birkhoff [1].

We begin with some notation. The set of positive integers is denoted by P. As
usual U, B,, N, denote, respectively, the variety of abelian groups of exponent
dividing n, the variety of groups of exponent dividing », and the variety of groups
of nilpotency class at most n. The variety of all groups will, for convenience, be
denoted N,,. Our description of the subvarieties of %2, will be in terms of these
varieties and one more family whose members will be denoted ,,. The variety
N, is the subvariety of N, defined by the additional law [ [, [x,, x;, " ", Xy,
Xs11-° " X,]. Note that N,, 2 MN,_,. For any particular prime p only certain of
these additional varieties are needed, namely those for which # is at least 3 and is
divisible by p. We therefore introduce for each prime p an ordered extension P(p)
of P defined by:

P(p)={1,--,p—1,p%,p, -, pr—1,pr,pr,- -, 0} for p odd,
P(z) = {1’ 2’ 3a4*547' T 2r—152r*, 2", . ',(1)}

with the order as indicated. The P(p)and {0, 1, - - -, «+1} taken in this order may
be considered as lattices — we do this. For each p the varieties 5 and 2. N, for v
in P(p) play a distinguished role. We denote them B(B) and R(z, v) respectively.

With each subvariety B of ., we associate an element B(B) of {0, - -,
a+1} and elements v(0, B), - - -, v(a—1, B) of P(p) as follows:

B(B) = min {#: B = B(B)};
for 7€ {0, -, a—1},

v(t, B) = min {v : B = N(z, v)}.
The subvarieties of 2., are characterized by the above invariants:

2.1 If B is a subvariety of U, then
=1
B =W W, ABB(B)A N\ Rz, v(z, B)).
=0

If « = 1, it follows that every proper subvariety of %, is nilpotent, and
hence Cross because it has finite exponent. As QIPQIP is obviously not Cross, this
yields the following.

THEOREM 3. For every prime p the variety U, N, is just-non-Cross.

This discharges a debt incurred in [9]. The proof here — due primarily to one
of us (MFN) — supersedes an earlier one which motivated the papers [4], [5] (and
in which the result was also announced).

It is clear that for all subvarieties 1, B of U,
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B v B) = max {B(11), B(T)}
and v(t, v B) = max {v(r, U), v(r, B)}

for all 7 in {0, - - -, «—1}. The next point to prove is that the corresponding result
for meets also holds.

2.2 For all subvarieties U, B of AU,
B(LA B) = min {(11), p(BV)}

v(t, UA B) = min {v(z, N), v(z, B)}
Sor all vin {0, - -, x—1}.

Now it follows from 2.1 that the mapping x: %8 - (B(8), v(0, B), - - -,
v(x—1, B)) is an embedding of the lattice of subvarieties of €., into the direct
product A of the lattice {0, - - -, a+ 1} with a copies of P(p). A sublattice of a direct
product of distributive lattices with descending chain condition is a distributive
lattice with descending chain condition.

and

THEOREM 4. The lattice of subvarieties of U ,. N, is distributive with descending
chain condition.

The description of the lattice of subvarieties of ,.%, is now completed by
giving its image under y. Let 2 be the subset of the direct product lattice A defined

by:
’ B, vo, " V1) € X if and only if
V==V, =1 for B <aq,
Vg—1 <P Cfor 1B
v, Sor v.e{l, w},
by < v.—p+1 for v.e P and v, > p,
pr Sor v, = p(r+ 1)+ with re P,
2 Jor 2 v, £ p;
Vogp =1 SJor v, £2p—1.

2.3 The image of y is 2.

While the description of the lattice of subvarieties of 9. %, afforded by all
this is adequate, it is somewhat ad hoc. Because the lattice is distributive with
descending chain condition, it follows (cf. section 2 of Chapter VIII of [1] -
suitably corrected) that every element of the lattice can be uniquely written as an
irredundant finite join of (finitely) join-irreducible elements. Moreover, a finite
set of join-irreducibles gives its join irredundantly if and only if no two distinct
elements of the set are comparable. Hence such a lattice can easily be reconstructed
from the partially ordered set of its join-irreducible elements. The reconstruction
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can be carried out so as to yield a faithful representation of the lattice in the lattice
of all subsets of the set of its join-irreducible elements. These facts suggest that a
canonical way of describing such lattices is to give the partially ordered sets of
their join-irreducible elements. We do this for the lattice of subvarieties of 2. %,,.
An advantage of this approach is that our results are then more readily comparable
with related results of Brooks [2] and Bryce [3], and better suited for the extension
of the present results to a description of the subvarieties of U, with square-free
7 (to be given in [10]).

Given 2.3 and the explicit description of the sublattice Z of 4, itis an elemen-
tary exercise to derive the desired information. We simply give the result after a
hint to the derivation we used.

If an element (B, vg, * * °, ¥,_1) of Z is join-irreducible, then (B, vo, * * =, v4—y)
¢ X for ' < B because

(ﬁ’ Vo, R va-l) = (ﬁ’ 15 T I)V(B” Vo, Tt va—l)'
Similarly (B, Vo, * ", Vom 15 By Vew1> " > Vaq)E Zforp < v,andt€ {0, - - -, a—2}.
Hence if v,_, = v # 1, the conditions defining 2 determine S, vq, ..., V3!

_fa for v < p,
B {oH-l for v = p;
v = {w for v = o,
i vy+(p—1)a—1—1) for v # @ except v =2,7€{a—3,a~2};
V2 =2,v, 5 = 2p* for v = 2:

here, and in the sequel, v — v} denotes the mapping of P(p)\{w} to P which is
the identity on P and for which {pr#)> = pr whenever prx e P(p)\P. Finally,
if v,o; =1, then f = a+1 or the corresponding variety lies in .-, Uy; if
B =a+1, then vo =+ =v,_, = L. Tt is straightforward to check that the
resulting elements of ¥ are join-irreducible.

We can now describe the partially ordered set J(p*) of the join-irreducible
subvarieties of A,.A,. Clearly J(p°) consists of € and 2, with € < ¥,. For « in
P the set J(p®) consists of J(p*~*) and for each v in P(p) a variety J(p*, v) defined
as follows:

3% 1) = W
S(Pa, 2) = Q[pu 9/[1, A %pm A 922 +(p—1)@@—1) A %{Pu—s mZp* A ngz—Z mz
here the second term must be omitted when p = 2, and the fourth and fifth when

they are not meaningful (also, the third term is redundant when « is 2 or 3); for
ve P(p\{1, 2, },

'\O‘S(pa’ V) = %[pug[p/\ %pa/\ %(v)+(p—l)(a-1) /\91‘,«—1 mv

here the second term must be omitted when v = p and the last term is redundant
when v € P; and
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I w) = WU,

Note that the only non-nilpotent join-irreducible varieties in %,. %, are the
A, A, with te{l,---, a}. In contrast to this Brooks [2] has shown that there is
an infinite number of non-nilpotent join-irreducible subvarieties in A, A 2.

It is a routine matter to check that the partial order on J(p*)is generated by
that on J(p*~') and the inclusions:

A, = 305 1) < I p)s
Ay = 3P 2),
S(p% 1) = S(p% v) whenever u,ve P(p) and 2 £ u < v;
if « > 1 then also
I 1) = 30 1),
3L 1) = 3% 2),
371 2) < 3% 2),
S(p* L (WD +p-1) = (% v) for all v in P(p\{1,2, v},
I w) = J(p", 0);
and if « > 2 then
"% 2p%) = 305 2)-
It is easy to indicate diagrammatically the lattice in the case « = 1 and, say,
p # 2

X X J(p, p*)
X ox 8(p’ P 1)
S(p, 1) % x'3(p. 2)

N

9111
|
X
¢
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3. External result on %, %,

By an external result on a variety T we mean a result of the form: A variety
which does not contain & - - <. For example, a variety which does not contain o
has finite exponent. For %, A, we can prove the following.

THEOREM 5. A soluble variety which does not contain U, U, cannot contain any
non-nilpotent p-group and therefore has a bound on the nilpotency class of its p-
groups.

The proof is given in section 5.

One might hope for a stronger result which we state as a problem.

In a variety which does not contain A, %, is every locally finite p-group nilpotent?

The local finiteness is needed in view of the result of Novikov-Adyan [13]
which implies that for all large enough primes p there are infinite finitely generated
groups of exponent p. Note also that this result implies the existence of just-non-
Cross varieties of exponent p.

A special case of the above problem is the well-known question: is there a
bound on the nilpotency class of finite groups of exponent p?

It is perhaps worth recording some consequences of Theorem 5.

COROLLARY 1. 4 soluble variety which does not contain U, U, has a bound on
the nilpotency class of nilpotent torsion free groups in it.

COROLLARY 2. A soluble variety in which the nilpotent groups do not form a
subvariety contains A, A, for some prime p.

This discharges another debt incurred in [9].

COROLLARY 3. The variety generated by the two-generator free metabelian-of-
exponent-q groups for an infinite set of primes q contains A, U, for some prime p.

The last statement is in fact valid for all p but this requires additional argument
which is not given in this note.

4. Proofs for section 2

Most of the discussion is set in a free group H of U,. %A, of countably infinite
rank freely generated by {a; : i € P}. Much of the argument will involve the verbal
subgroups ,(H), B(B)(H) and N(r, v)(H); we denote them 4,, B(f), N(z, )
respectively.

We first write down relationships between the subgroups N(z, v). The first two
are obvious:

4.01 For all 7 in {0} U P and all u < v in P(p),
N(t, n) 2 N(z,v) and A (N(1,v)) = N(t+1, ).

Further relations are easy consequences of some well-known results about
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commutators. We record here all such results which are used frequently in what
follows. Notation: [w,v] = u Yo" 'ur, [, v, wl = [{u,v],w], [4,00] =« and
[, nv] = [u, (n—1)v, v] for all n in P. The identity is denoted e.

4.02 For hyhy,hy,---inHanddin A4,,
[h19h2h3] = [h19h2][h15h3][h19h29h3];
[h1h2,h3] = [hy, h3llhy, h3)lAy, hs,hz]Q
[hl’hzahs] = [hy, h3, hy1lhs, by, hl];
[d’ hl’ T hm] = [d, hlm R hmn]

for all m in P and all permutations = of {1, -+ -, m};

n

Lhy, B3] = [1[hy, ik, J™H720 for allm in P;

i=1
in particular, since [d, h’] = e and [hY, h3] = e,

p
I‘[ [d h]p'/t'(p D e

and

Ip‘[ [hy, ih,, (J— 1)h2](p!)2/i!ﬂ(p-i)!(p-J')! = e.

u:u

The last two equations have the following immediate consequences.
403 ForalltandallninP,
N(t+1,n+1) £ N(t,n+p) and N(t+2,1) £ N(z, 2p—1).
In fact a little more is true.

404 Forall t and all r in P,
N(t+1, pr) £ N(z, p(r+1)%).
Before proving this, we introduce some further notation. For s, n in P with
2Zs<n,let
b(S, S) = [as’ ap,a, ", as—l]

and
b(s, n) = [b(s,n—1), a,].

We denote by 1 the identity endomorphism of H, and by =; ; with i, jin P the endo-
morphism which fixes all the generators except a;, a; which it interchanges.

PROOF OF 4.04. Let § be the endomorphism of H which maps a; to a,,., if
pr+1 £j < p(r+1) and to a; otherwise. From

p(r+1)

T1 (56, plr+DW)" € NGz, plr-+ 1))
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it is easy to derive, using 4.02 and the inclusions
N(z+1,pr+1) < N(r, p(r+1)) £ N(z, p(r+1)*)

(which hold on account of 4.03 and 4.01), that
pr
h =[] b(s, pr+1)""" e N(x, p(r+1)%).
s=2

Then, applying 1 —n, ,.; to £ and using 4.02, one gets
[aZ’ apr+1’ al, a3a a4.’ Y apr]pﬂ.1 € N(T,P(r+ 1)*)

and the result follows.
The story is completed by obtaining suitable generating sets for the N(z, v).
Let # be the subset of H defined by: be # if and only if b = [a;, m;a;,
Mji1@54q, ", mea] where i>j<s; mi—1, my.y, -, mee{0,- -, p—1},
m, # 0; and if m; = p then firstly i < s implies m; < p~1 and secondly m, = 0
whenever j < k <i and k £ .

4.05 The set B U {af 1i€ P} is a free generating set for A, as free A ,.-group.

Proor. It follows easily from 4.02 that A, is generated by #* = Z U {af :
i € P}. If there were a non-trivial relation between the elements of Z* this would in-
volve only finitely many of {a; : i € P}. It therefore suffices to consider for each k
in P the subgroup H, of H generated by {a, , - - -, a,} and to show that A (H,) n #*
is independent in A,(H,). By the Schreier formula for the rank of subgroups of
absolutely free groups, 2,(H,) has rank (k—1)p*+ 1. On the other hand the num-
ber of elements in A, (H,) N FB* is

k +k§{(k —j)p—1)p*™ +.=i+ (- Dp*

where the first term in {- - -} comes from counting the commutators with m; # p
and the second term from the rest. The sum comes to (k—1)p*+1 and the result
follows.

Note that this proof implies that every element of # can be uniquely written
in the way it is defined.

It follows that the commutator subgroup N(0, 1) of H is a free Up.-group
freely generated by #. The other terms N(0, n) of the lower central series of H are
a little more complicated to describe. This we do next after first defining weights
for elements of #.

The weight wt(b) of an element b = [a;, m;a;, - - -, ma,] of Bis 1+ )%= ; my.
The weight wt(b, a,) of b in the generator g, is ‘the number of occurrences of a,
in b, that is,
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0 if k¢ {j, -, stu{i},
my, if ke{j, -, sN\{i},
m+1 ifk=ie{j - s}
1 if k=i¢{j, - s}
4.06 For nin P the subgroup N(0, n) is generated by the set 7, of elements of the

form b where be B, ke{0, -, a—1}, wt(b)+k(p—1) > n and kwi(b) # 2
unless n = 1.

wt (b, a;) =

PROOF. A routine argument from 4.02 shows that N(t, n) is generated by the
la;,, - ',a,.m]"k with m >n, ke{t,--,a=1} and i, > i, Si3 £ £ ip.
From this and 4.03 one gets immediately that N(0, n) is generated by the set & of
the elements {a;,, - -, aim]"k withm = 2, ke {0, -, a—1}, km # 2unless n = 1,
m+(p~Vk >nandi; > i, £ -+ £1i,. Clearly 4, is a subset of . An induc-
tion on m using 4.02 shows that each element of & lies in the subgroup generated
by #,. The result follows.

Note that if b” € &, and k < a—1, then b*"' € &,. Thus for all n every
element of N(0,n) can be uniquely written (up to order) in the form [[i= b{®
where the b; are distinct elements of &, and the B(i)e {1, -, p—1}.

Similar generating sets can be given for the N(O, pr=).

4.07 For pr+ in P(p) the subgroup N(O, pr=) is generated by the union %, of

(l) t@pn
(ii) the set of elements of the form b***' where be B, ke {0, -, a—2},
wt(b)+(k+1)(p—1) = pr, and k wt(b) # 2, and
(iii) the set of elements of the form [|PL , b(s, pr) where y is an endomorphism of

H such that ajy = a;, where iy < i, £+ S i, andnop of i, ", i, are
equal.

PROOF. The argument is essentially the same as that in the proof of 4.06. It is
routine to derive from 4.02 that N(, pr«) is generated by the [a; , - - - @, J** with
mz2pr+l, ke{t,--,a—1} and i; > i, £ --* £ i,, and the

pr

T . . . -~ .« .. .
H [ai,a Ay s Qiyy " 5 Ay sy 5" % a,-pr]” with i, £i, £ £ i,
s=2

Hence, by 4.03 and 4.04, N(O, pr+) is generated by the set of elements [a;,," " ", a; ] g
withm 2 2, ke {0, -+, a—1}, km # 2, (k—1)md,, # 2, m+(p—1)k 2 pr+dio
(where 6,, =1 if u=v and 0 if u # v), and i, > i, S i3 < - £ i,, and the
elements

A
IIA

pr
[1las,ai, - a,_,,ai,,, " a,] with iy < i, ipr
s=2

An induction on m (using some ideas from the proof of 4.04) then yields the result.
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Observe that an element of # occurs in at most one of the products in (iii)
above. It follows that every element of N(O, pr«) can be uniquely written (up to
order) as [[i=, b¥'D where the b; are distinct elements of 2, and each f(i)e
{1, -, p—1}.

It is a straight-forward consequence of 4.01 and the remarks after the proofs
of 4.06 and 4.07 that the N(z,v) for t in {0, - -,a—1} and v in P(p)\{w} are
non-trivial and distinct and that the following relations between them hold:

4.08 For all z,

N(t+1,n—p+1) for 2p < neP,
N, n)n N(z+1,1) = { N(z+1,n—p+1)N(z+2,1) for p<n < 2p,
N(t+1,2)N(t+2,1) for 2 < n < p;
N(t, pri) & N(e4 1, 1) = N(t+1, p(r—1)) for 1 #reP,
N(t+1,2)N(t+2,1) for r=1;
() N(z, ))N(t+1, 1) = N(t+1, 1).

neP

The next step is to prove that every fully invariant subgroup of H can be ex-
pressed in terms of the B(f) and the N(t, v).

4.09 If Vis a fully invariant subgroup of H, then there is a unique element, call it
B(V), in {0, - -, o+ 1} such that V = B(B(V))(V n N(0, 1)).

Observe that if B is a subvariety of U ,.2,, then B(B) (see section 2) is the
same as B(B(H)).

ProOF OF 4.09. Recall that N(O, 1) is the commutator subgroup of H. Clearly
there is precisely one g in {0, - - -, «+1} such that ¥N(0, 1) = B(B)N(0, 1). Then
a?’ = vd where ve V, de N(0, 1). Applying to this the endomorphism of H which
maps a; to a, and all the other generators to the identity yields a?’ € V. Thus
B(p) = V and the result follows.

410 For v in {0, -, a—1}, if V is a fully invariant subgroup of H contained
in N(t,1), then there is just one element v(t, V) of P(p) such that
V=Nt V)V N+, 1))
Observe that if B is a subvariety of U .U, then
v(1, B) = v(z, Bv (N(7, 1A A.,))
so that
v(1, B) = v(t, B(H) n N(z, 1)).
4.10 is proved in two stages. The first will be stated as a separate result. The
endomorphism of H which maps a; to e and fixes the other generators will be de-
noted 4;.

4.11 Letn—1beinPandtin{0,- -, a—1}.If p does not dividenor ifp = n = 2,
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there is no fully invariant subgroup of H strictly between N(t,n)N(t+1,1) and
N(t,n—1)N(z+1, 1). Otherwise n = pr and N(z, pr«)N(t+1, 1) is the only fully
invariant subgroup of H strictly between them.

PROOF. Let V be a fully invariant subgroup of H such that N(t, n)N(t+1, 1)
< V £ N(t,n—1)N(t+1, 1). There are two cases.

(a) If Vcontains w = []i=, b¥® where the b; are distinct elements of Z (of 4.05)
of weight n, each p(i)e {p*, 2p%,- - -, (p—1)p*} and wt(b;, a;) = p for some i/ and
some j, then ¥V = N(t,n—1)N(z+1, 1).

Clearly it suffices to consider the case wt(b,,a;) = p. Put f(0) = 0 and
flk) = f(k—1)+wt(b, a;) and let 8 be the endomorphism of H which maps q,
t0 dyk—1y+1 * * " Ay [to the identity if f(k—1) = f(k)]. Using 4.02 gives

n p
wl [T (1=6,) = [T b(f(j—1)+s, n)w

m=1 s=1
where

r= +(p—1)! ] wt(b,, a)!8(1),

k#j

w' e N(t,n)N(t+1,1) and b(1, n) is interpreted to be the identity. Hence V
contains [[?_; 6(f(j—1)+s,n)’" because p**' does not divide r. Applying
1—Ty sj—1)+2 to this and using 4.02 yields that b(f(j—1)+2,n)* is in ¥ and
the result follows.

(b) The only products of the form []i-; #¥” where the b, are distinct elements
of # of weight n and the (i) € {p~, - - -, (p—1)p°} are such that wt(b;, a;) < p for
all i, j.

ForkinPu {0} and min {1, - - -, p—1} let II, ,, be the set of products of the
above form in ¥ in which wt(b;, ;) < m for all i [take wt(b;, ay) = 0], and for
all j exceeding k the wt(b;, a;) are independent of i and equal to O or 1. Let V ,
be the fully invariant closure in H of II,, and N(t,n)N(1+1,1). Clearly
Vip-1 S Vierq and Vy , S Vi yy for all k and m in {1,---,p=2}. If
well,,y , then both w(1—d,, ) and wd,, are in I, ,_,; hence wisin V; ,_4
and Vy,y,1 = Vi ,-1. The argument which follows establishes Vi » = Vi m+1-
Let 8, { be the endomorphisms of H defined by:

a; for j < k,
0,0 = { @y, forj=k,
Qi m for j > k;
a; for j < k,
ay =1 a for je{k, -, k+mj},
a;_p, for j > k+m.
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It is easy to verify, using 4.02, that if well, ,,;, then w, = w8(1—4,)- -
(1~ 8xsm) isin Vi and w™* D' (w ) tis in ¥, ,,, and hence that w is in V.
From these equalities it follows that ¥ = V,, ,_,; that is, V' is the fully invariant
closure of N(z, n)N(t+1,1) and the products of the form [[i_, b(s, nf© (with
B(s)€{0,p% -+, (p—1)p*}) which lie in it. If w = []i., b(s,n)*® € V, then
w(i—mn,,)eV for all s, t in {2, -, n}. But wii—n,,) = [a,, a, ay, PO
by 4.02,s0 ¥ = N(t,n—1)N(t+1, 1) or f(s) = B(z) for all 5, ¢ and all relevant w.
In the latter case V is the fully invariant closure of N(z,n)N(r+1,1) and x =
[Ti=2 8(s,n)"". I n = 2, then ¥V = N(tr,n—1)N(z+1, 1). If n # 2 and p divides n,
then ¥V = N(t, nx)N(z+1, 1). If p does not divide n, then x(1—=, ,) = b(2, n)"*"
e Vandso V= N(t,n—1)N(t+1,1).

PrOOF OF 4.10. It follows from 4.06 and 4.07 that if u # v in P(p), then
N(z,v)N(t+1,1) # N(z, ) N(z+1, 1). Thus there is at most one v in P(p) such
that V = N(t,v)(Va N(z+1,1)). If VEN(E+1,1), put v(r, V) =w. If
V &£ N(t-+1, 1), then by 4.08 there is an nin P such that ¥ < N(r, n—1)N(t+1, 1)
but ¥ £ N(z,n)N(t+1, 1), and it follows from 4.11 that VN(t, n)N(t+1, 1)
is either (a) N(t,n—1)N(z+1,1) or (b) N(z, nx)N(z+1,1).

Case (a): This implies N(t,n—1) < VN(t,n)N(z+1,1). It follows that
N(t,m—1) < VN(z, m)N(t+1, 1) for all m in P with m = n. Hence N(t,n—1) £
VN(t, pn)N(t+1,1). Therefore b(2, n)?" = v [[!~; b where ve ¥, the b, are
distinct elements of %, p* divides each B(i), and for each i either wt(b;) > pn or
p** ! divides B(i). By a standard argument (applying in turn the mappings 1 —9,,
1—3,, - - -) it can be assumed that, for all i, wt(b;, a;) = 1 forj < nand wt(b;, a;)
= 0 for j > n. Hence wt(b;) 2 n and p**' divides B(i) for all i, because no
element b of # satisfies wt(b) > pn and wt(b,a;) = 0 for all j > n. Thus
b(2,n)" e YN(t+1,n—1) and so N(t,n—1) £ VN(r+1,n—1). It follows that
N(p,n—1) £ VN(p+1,n—1) for all p = t. Therefore N(t,n—1) < V. But
V < N(t,n—1)N(t+1, 1) and so the result follows with v(z, V) = n—1.

Case (b): Now n = pr = 3 and N(t, pr«) < VN(z, pr)N(z+1, 1). By 4.02,
[Hfr=2 b(S, pr)’ apr+1](l—n2,pr+ 1) = [az, apr+1’ ag, ", apr]- Hence N(T’ pr) é
VN(t,pr+1)N(z+1,1) and so N(z,pr=) < VN(t, p’r)N(1+1,1). Therefore
arguing as in (a) we obtain that

ﬁ b(s, pr)¥" = v ﬁ b(s, pr)*® ﬁ A
s=2 §=2 i=1

where v € V, the b, are elements of & of weight at least pr+1 and p**' divides
each p(s) and B(i). Let = denote the automorphism of H which maps a; to a;,, if
2 £ i < pr, a, to a,, and fixes all other generators. Apply the mapping Y &_¢ n"
to the last displayed relation above: since pr—1 is prime to p, it follows that

P, b(s, pr)” € VN(t + 1, prs). Hence N(t, pr+) £ VN (t+1, pr+). Then arguing as
in (a) shows that the result holds with v(z, V) = prs.
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PROOF OF 2.1. Let B be a subvariety of A, A,. By 4.09 and repeated applica-
tions of 4.10,

B(H) = B(ﬁ(%(H)))alj) N(r, v(z, B(H) n N(z, 1))).
It follows from the observations after 4.09 and 4.10 that
B(H) = BB [] N (. B).

Going over to varieties gives the result.

Proor oF 2.2, It follows from the argument in the proof of 2.1 that
a—1
(WA B)(H) = WH)B(H) = B(B())B(B(T)) EION(T’ v(r, W)N(z, v(z, B)).

Since the B( )'s and the N(z, )’s are linearly ordered,

(WA B)(H) = B(min {(11), ﬁ(%)})il_jl N(z, min {v(z, 1), v(z, B)}).

It follows from 4.09 that
BLAB) = min {B(11), B(B)}

and

WA BYH) A N0, 1) =[]: N(z, min {v(z, ), v(z, B)}).

An induction on p, using 4.10, yields

v(p, WA B)(H) n N(p, 1)) = min {v(p, ), v(p, B)}
and

a—1
UABYH) N Np+1) = ] N(z, min {v(r, U), v(z, B)}).
t=p+1
Hence, by the remark after 4.10,
v(t, UA B) = min {v(z, 1), v(r, B)}

as required.
Before proving 2.3 we need one more result,

412 Forf=1

B N, = (YO D for p=2
N(B—1, p=)N(B, 1) for p odd.
PRrOOF. The result is an easy consequence of the case § = 1 so we only prove

that. For p = 2 this is an immediate consequence of the well-known fact that all
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groups of exponent 2 are abelian. Let p be an odd prime. Since N(0,1) = B(1) n
N(0,1) = N(1, 1), it follows from 4.09 that there is a v in P(p) such that B(1) n
N(0,1) = N(0, v)N(1, 1). There are metabelian groups of exponent p and class
precisely p (see [11] Satz 3 or [4] Example 3.2), so v > p—1. By 18.4.13 of [6],
[az, (p—a;] € (B(1) ~ N(O, 1))N(0, p). By 4.06, [, (p~1)a;] ¢ N(0, p)N(1, 1),
so v < p. Thus v = p= and the result follows.

ProOF OF 2.3. Clearly the set X' is a sublattice of the direct product lattice A.
It is a straight-forward matter to calculate using 4.08 and 4.12 that

B(B(B)AALA,) = min {B,a+1},
o for 1< p—1,
px for 1= f—1 and p odd,
v(z, BB) AU A,) =
1 fort=p8-1and p=2,
1 fortz=p;

and B(M(7, V) AUA,) = a+1,

® for p <,
v for p =1,
v(p, M, ) AU A) =1 v(p, W(+1, V) AW,.A,) for p>7and v > 2p—1,
v for p=14+1 and v < 2p—1,
1 for p > t+1 and v £ 2p—1,
v for ve {1, w}
where o v—p+1 for veP and v > p,
pr for v = p(r+1)+,
2 for 2 £v < p.

Hence (B(B) A WA, )y and (N(z, v) A U, A, )x belong to £ and so the image of
lies in Z. Moreover it follows that if (8, vy, "+, V,—y) € %, then

(B)A ARG AU ¥t = (B Yor 7 ar)

5. Proof of Theorems 2 and 5

PRrOOF OF THEOREM 5. Since a group G is nilpotent if it has a nilpotent normal
subgroup N such that G/U(N) is nilpotent (P. Hall [7] Theorem 7), it suffices to
prove the theorem for metabelian varieties. Let 8 be a metabelian variety which
does not contain A, A, ; then there is a positive integer ¢ such that LA AU, C

N._,. We show that every p-group in B lies in RN._,. Suppose not; then there
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would be a finitely generated, and therefore finite, p-group in B\ N._; . Since all
finite p-groups are nilpotent, it would follow that there is a p-group in (8 A R\
MN._,. The result is therefore a consequence of the following more precise lemma.

LemMA. If B is a metabelian variety such that 8 AU, A, < N, for some v in
P(p), then for each p in P(p)\{w} with . > v there is a positive integer k not divisible
by p such that BA R, = A, N,.

Proor. There is nothing to prove if v = w. If v # o, then it clearly suffices to
prove the result when p is the first positive integer exceeding v — call it c. Let G be
a free group of AAA N, freely generated by {g(, -, g.}, let ¥V = B(G) and
K = 9,(G). We will show there is an element y of K such that y?w e V' where
w=1[g9,"9]lifv=c—1and w= n§=2 95, 91, " 15 Fsrrs 5 gl If
v = ¢*. Since K is finitely generated abelian and the fully invariant closure of w,
it will follow that K¥'/V'is a finitely generated abelian group in which every element
has a p-th root; hence that KV/V is a finite abelian group of order k not divisible
by p; and therefore LA N, = A, N, as required. Since LA A, A, = N, it follows
that K < ¥D where D = %, ,(G) and hence w = vod, with vy € V, dy € D. For
eachiin {1, -, ¢} let ¢ be the endomorphism of G which maps g; to g; forj # i
and g;toe. Wenow definev,, -+, v.€ Vandd,, - -,d.e Dbyv;, = v;_(v;_ &))"
and d; = (d;—,&;)"'d;_. It is easy to check for all i that (v;,_,&;)(d;-,¢&;) = e,
w = v;d;and d;¢; = efor all j < i. It follows ([12] 36.32) that d, can be uniquely
written in the form [[i22 [gs, 915" Gs—1> Gs+1> " 5 9P, Let H be the free
group of U, U, defined in section 4. Let 6 be the homomorphism of G into H/N(0, ¢)
defined by ¢;0 = a;N(0, ¢) for all i in {1, -, ¢}. Then, as DB = {N(O0, ¢)},

IT b(s, ))®N(0, ¢) = d.0 = N(0, ¢),
s=2

and so p divides B(s) for all s. Therefore d, has a p-th root b in N._(G) and w =
v.b?. If ¢ = 2 or p does not divide ¢, then R, _;(G) = K and the proof is complete.
Let = denote the automorphism of G which maps g, to g,, ¢; to ¢;,, when
1 <i<candg,tog,;puty =Y o_3 a™ If p divides c and ¢ = 3, then applying
Y (cf. the last paragraph of the proof of 4.10) yields w*™! = v y(by/)” and by € K.
The result follows because p does not divide ¢—1.

PrOOF OF THEOREM 2. Let 11 be a nilpotent-by-abelian just-non-Cross variety.
If A < U, then U = A If A & U, then U has finite exponent, 7 say. Hence U is
generated by its finite groups. We will show that there is a bound, ¢, on the order
of chief factors of finite groups in 1. By the Corollary in [8] applied to the class
of finite groups in U, there is no bound on the class of finite nilpotent groups in U
and the result follows from Corollary 2 of Theorem 5. Let H/K be a chief factor
of a finite group G in U. Clearly H/K is an elementary abelian p-group for some p
dividing ¢. Let C be the centralizer of H/K in G; then G/C is an abelian group which
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has a faithful irreducible representation over the field of p elements. Hence G/C
is cyclic and so has order dividing . Therefore the order of H/K is at most t* as
required.

REMARK (added in proof, 9 December, 1970). The problem stated in sec-
tion 2 has a negative solution on account of the results of Bachmuth, Mochizuki,
and Walkup [‘A nonsolvable group of exponent 5°, Bull. Amer. Math. Soc. 76
(1970), 638-640] and O. Yu. Razmuslov [to appear]: for all primes p = 5, there
exist nonnilpotent locally finite varieties of exponent p. Our Theorem 2 has been
superseded by results of J. M. Brady [‘On the classification of just-non-Cross
varieties of groups’, Bull. Austr. Math. Soc. 3 (1970), 293-311; ‘On soluble just-
non-Cross varieties of groups’, ibid. 313-323] and O. Yu. Ol'shanskij [to appear].
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