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Abstract

In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-
absolute-value sequence D, we obtain a sharp criterion such that for almost every « the inequality

[nlplna — pl < y(n)

has infinitely many coprime solutions (#, p) € N X Z for a certain one-parameter family of . Also, under
a minor condition on pseudo-absolute-value sequences Dj, Dy, ..., Dy, we obtain a sharp criterion on a
general sequence y(n) such that for almost every « the inequality

[nlp, |nlp, - - - Inlp, Ina — pl < ()

has infinitely many coprime solutions (n, p) € N X Z.
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1. Introduction

The Littlewood conjecture states that for every pair (e, 8) of real numbers,
lim inf n|lna|| ||| = 0, (1.1)
n—oo

where ||x|| = dist(x, Z). We refer the reader to [4, 6] for recent progress. By a
fundamental result of Einsiedler ez al. [9], the set of pairs (@, 8) for which (1.1) does
not hold is a zero Hausdorff dimension set.

From the metrical point of view, (1.1) can be strengthened. Gallagher [13]
established that if  : N — R is a nonnegative decreasing function, then for almost
every (a, 8) the inequality

lInall 1Bl < w(n)
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has infinitely many solutions for n € N if and only if ), (1) log n = co. In particular,
lim inf n (log n)?|[na/| ||nB| = 0

for almost every pair (a, ) of real numbers. By a method of [18], Bugeaud and
Moshchevitin [6] showed that there exist pairs (a,8) such that

liminf n (log n)?||nc|| |[nBl] > 0.
n—oo

This result has been improved by Badziahin [1] and states that the set of pairs (@, 5)
satisfying
lim inf nlog n log log n||na|| ||nB|| > 0

n—oo

has full Hausdorff dimension in R%. It is conjectured that the Littlewood conjecture
can be strengthened to
lim inf n log n||na|| |InB]| = 0
n—oo

for all (@, B) € R2.

In [7], de Mathan and Teulié formulated another conjecture — known as the mixed
Littlewood conjecture. Let D = {ni}i>0 be an increasing sequence of positive integers
with ng = 1 and n|ng,; for all k. We refer to such a sequence as a pseudo-absolute-
value sequence and we define the D-adic pseudo-norm |- [p : N — {”1;1 1k >0} by

|nlp = min{n,;l 1 n € ;).

In the case D = {p* }ro for some integer p > 2, we also write | - |p = | - |,. de Mathan
and Teuli€ [7] conjectured that for any real number @ and any pseudo-absolute-value
sequence D,

liminf n|n|p||lne|| = 0.
n—oo

In particular, the statement that liminf, . n|n|,|[ne|| = O for every real number « and
prime number p is referred to as the p-adic Littlewood conjecture.

Einsiedler and Kleinbock have shown that any exceptional set to the de Mathan—
Teulié conjecture has to be of zero Hausdorft dimension [10]. By a theorem of
Furstenberg [11], one has that for any two prime numbers p, g and every real number «,

lim inf n|n|,|nl,lInall = 0. (1.2)
This result can be made quantitative [3], that is,
lim inf n(log log log n)*|n|,|nl,lInall = 0
n—0o0

for some k > 0. The statement (1.2) can be strengthened from a metrical point of
view [5], that is, suppose that py, ..., p are distinct prime numbers and  : N - Risa
nonnegative decreasing function; then, for almost every real number «, the inequality

|n|P1 T |n|17k|na - pl<y(n)
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has infinitely many coprime solutions (7, p) € N X Z if and only if

Z(log nfy(n) = co. (1.3)
neN
As a corollary, it is true that
liminf 7 (log n)kJrl |nlp, - - |nl,y, llnall = 0 (1.4)

for almost every a € R.

In [14], Harrap and Haynes considered the D-adic pseudo-absolute value. Given a
pseudo-absolute-value sequence 9 with some minor restriction, let M : N — N U {0}
be

M(N) = max{k : n, < N}.

Suppose that ¥ : N — R is nonnegative and decreasing and that D = {n;} is a
pseudo-absolute-value sequence satisfying

Z £ >cm  for all m € N and for some ¢ > 0, (1.5)
N
k=1

where ¢ is the Euler phi function. Then, for almost every a € R, the inequality

Inlplna — pl < ¥(n)

has infinitely many coprime solutions (n, p) € N X Z if and only if
D My (n) = o, (1.6)
n=1

Note that when D = {p*} for some positive integer p, we have that M(N) < log N.
Thus, Harrap—Haynes’ result implies (1.3) for k = 1. The first goal of this paper is to
extend (1.3) to the class of finitely many pseudo-absolute-value sequences.

As pointed out in [14], such generalization depends on the overlap among pseudo-
absolute-value sequences. For example', if D = {2¥} and D, = {3*}, (1.4) yields that
inequality

Il Il lInad| < w(n)

has infinitely many solutions for almost every « if and only if

> (ogn)y(n) = o.

neN

However, if D = D, = {2¥}, by [5, Theorem 2], the inequality has infinitely many
solutions for almost every « if and only if

Z my(n) = oco.

neN

I'The present example and the following one are from [14].
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Basically, the proof of (1.3) and (1.6) follows from the Duffin—Schaeffer theorem [8]
(see Theorem 2.3), which is a weaker version of the Duffin—Schaeffer conjecture.

Duffin—Schaeffer conjecture. Let ¢ : N — R be a nonnegative function and define

"1 (p=y(m) p+yn)
Ei=gw = | (H0 L)
n n
p=1
(p.m)=1
where (p, n) is the largest common divisor between p and n. Then A(limsup &,) =1 if
and only if ), A(&E,) = oo, where A denotes the Lebesgue measure on R/Z.

One side of the Duffin—Schaeffer conjecture is trivial. If ), A(&,) < oo, by the
Borel-Cantelli lemma, A(limsup &,) = 0. Since it has been posted, the Duffin—
Schaeffer conjecture was heavily investigated in [2, 15-17, 19, 20]. We should mention
that the Duffin—Schaeffer conjecture is equivalent to the following statement: suppose
that  : N — R is a nonnegative function and satisfies

Z pmy(n) _
n

il

where ¢ is the Euler phi function. Then, for almost every a € R, the inequality

Ina — pl < ¢(n)
has infinitely many coprime solutions (n, p) € N X Z.
We will also employ the Duffin—Schaeffer theorem to study the mixed Littlewood
conjecture in the present paper and find a nice divergence condition for finite pseudo-
absolute values.

TheorEM 1.1. Let ¢ : N — R be nonnegative and decreasing and let Dy =

{n,i}, D, = {n,%}, coos Dy = {n}"} be m pseudo-absolute-value sequences. Suppose that
Dy, Ds, ..., D, satisfies the following condition: there exists some constant c¢; > 0
such that .
el my == -ny )
+ >y, (1.7)
M M, ™ T

where ¢ is the Euler phi function. Then, for almost every a € R, the inequality

Inlp, 1nlp, - - Inlp, Ina = p| < ¥(n)

has infinitely many coprime solutions (n, p) € N X Z if and only if

> | v = oo, (1.8)
L Jnly,

[nlp, - - - Inlp,

Remark 1.2. Let py, ..., p, be distinct prime numbers and D; = {pf.‘}, i=1,2,....m
For such pseudo-absolute-value sequences D;, i = 1,2,...,m, one has that (1.7) holds.
By the fact that (see [5])

Stognpm=co = 3 0o

neN neN |n|171 ’ |n|Pm
Theorem 1.1 implies (1.3).
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We say that a pseudo-absolute-value sequence D = {n;} is generated by finite
integers if there exist prime numbers pi, ps, ..., py such that every n; can be written
as plf‘ pgz . -p’]‘\;V for some proper positive integers ky, ks, ..., ky. We call py, pa,..., py
the generators of D.

CoroLLARY 1.3. Let iy : N — R be nonnegative and decreasing and let D = {n,i}, D, =

{ni},...,Dm ={n'} be m pseudo-absolute-value sequences. Suppose that each
D1, Dy, ..., D, is generated by finite integers. Then, for almost every a € R, the
inequality

[nlp, |nlp, - - - nlp, Ina — pl| < Y(n)

has infinitely many coprime solutions (n, p) € N X Z if and only if

i Y (n)
“ |nlp,

[nlp, -« - Inlp,

Proor. If D; is generated by finite integers for each j = 1,2,...,m, one has that (1.7)
holds. Thus, Corollary 1.3 directly follows from Theorem 1.1. O

Suppose that there is no intersection between the pseudo-absolute-value sequences.

Then we can get better results. We say that two pseudo-absolute-value sequences
D, = {n;} and D, = {n}} are coprime if n and n? are coprime for any i, j € N.

TuEOREM 1.4. Let  : N — R be nonnegative and decreasing. Suppose that the pseudo-

absolute-value sequences D = {n,i}, D, = {ni}, coos Dy = {n}'} are mutually coprime

and

1.2 m
(,D(I’lk nceng )
1 K2 Lol 2 m
E Tmm ZCz#{(kl,kz,...,km) . nklnkz'--nkm SN} (19)
n DY n
n,l n? -n <N ki ks km
1 ky ki

for some constant ¢, > 0. Suppose that there exists some c3 with 0 < c3 < 1 such that
1.2 )
D mnlnl <Nk, k) sl el SNY O (1110)
nilnf2~-~nZ;n§N
for all large N.
Then, for almost every a € R, the inequality
Inlp, Inlp, - - - Inlp, Ina — p| < Y(n)

has infinitely many coprime solutions (n, p) € N X Z if and only if

D ko, k) g < <) = oo,

n=1

The Duffin—Schaeffer theorem is crucial to the proof of Theorems 1.1 and 1.4.
However, the Duffin—Schaeffer theorem requires a good match between the sequence
Y(n) and the Euler function ¢(n), so that hypotheses (1.5), (1.7) and (1.9) are
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very important. For some nice functions ¢(n), the Duffin—Schaeffer theorem can be
improved [2, 15—-17]. We will use [17, Theorem 1.17] to study the mixed Littlewood
conjecture and find that the restriction (1.5) is not necessary in some sense.

Given n € N and x € R, define

lInxll” = min{lnx — pl : p € Z,(n, p) = 1}.
THeOREM 1.5. Let D = {ni} be a pseudo-absolute-value sequence and define

<P("k)

(1.11)

ng<n
Suppose that € > 0. Then, for almost every a € R,

lim inf n9(n)(log n)'*“|nlplinell’ = 0
ifand only ife =0

2. Proof of Theorem 1.1

In this paper, we always assume that C (c) is a large (small) constant, which is
different even in the same equation. We should mention that the constant C (c¢) also
depends on ¢y, ¢; and c3 in the theorems.

Before we give the proof of Theorem 1.1, some preparations are necessary.

Lemma 2.1 [5, Lemma 2]. Let py, ..., px be distinct prime numbers and N € N. Then

> £ _ 6N1—[ bi -+ O(log N).

Obviously, Lemma 2.1 implies the following lemma.

Lemma 2.2. Suppose that dy,ds, . ..,d, > 2. Then there exists some d > 0 depending
only on m such that

S (n)
Z >dN forany N eN.

difn, dz’fn ,,,,, dutn

Tueorem 2.3 (Duffin—Schaeffer [8]). Suppose that Y, ¥(n) = 0o and

lim sup(z Pl )Lﬁ( ))(Z zﬁ(n)) > 0.

N—>oco
Then, for almost every a, the inequality

[na — p| < y¥(n)

has infinitely many coprime solutions (n, p) € N X Z.
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Suppose that D = {ni},i)z = {n,%}, oy Dy = {n)'} are m pseudo-absolute-value

sequences. Denote & = n,’C o1 /ni for j=1,2,...,m. Define a subset S(n) of N”

k+1
as follows:
S(n) = {(ki.ka, ... k) 2 (kisko, .. k) €N and lem(ny ng .. on) ) < ),

where lem(ky, ky, . . ., k,) means the least common multiple of ki, k5, ..., k,,. For any
(k1 k2, ... k) € S (n), we define f(n; ki, ks, ..., ky,) € N as the largest positive integer
such that

lcm(n,lq,nil, ... ,ann)f(n;kl,kz, .o ky) < n.

Proor oF TuEorEM 1.1. Without of loss of generality, assume that @ € [0, 1). Define

&, = &) = O (P—lﬁo(n)’ P+!//0(n))’

n n
p=1
(p.m)=1

where

Y(n)

Inl.Z)l |n|DZ e |n|Dm ‘

Yo(n) =

The Lebesgue measure of &, is obviously bounded above by (2uyo(n)/n)e(n).
Obviously, the coprime pair (1, p) € N X Z is a solution of |na — p| < ¥y(n) if and
only if @ € &,.

If

(e8]

n
Z Y(n) < oo,
“ |nlp,Inlp, - - - Inlp,

2, AE) <.

By the Borel-Cantelli lemma, the inequality

[nlp, nlp, - - - Inlp, Ina — p| < y(n)

has infinitely many solutions (n, p) € N X Z only for a zero Lebesgue measure set of «.
Now we start to prove the other side. First,

N

Z e(n)y(n)
 ninlp, [nlp, - - nlp,
N n .
=S -+ 1) Y —2
— = oo, - 1jlo,
N ¢())
D o T @D
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Now we are in the position to estimate the inner sums. Direct computation implies that

n

Z ®())
— jljlo, jlo, - - - jlD,

=) 2. £
ot TDes () P Jloiljlo, - lilo,
1 i et |
I’l,},lHTj,nzszj,...,nan*j
1.2 ...,m
M ey 1,

| 2 m
lcm(nkl My ee s nkm)

(k1,k2,....kin )ES (1)
12 ;
p(em(ny ,np 5., mp) )

X ;
1< f i) J
1 s 72 . m .
T isdigy Voo X
12 .
<p(lcm(n n, ,...,nZ’ ) ()
> l 2 oo m m —
= e, T, g, lcm(n n2 n") j
(k1,k2s... ki )ES (1) k 20 o 1<j< f(mski kasekim)
dy o Xid Aoy K
) 12
>c Y fkuk. ke g ), 2.2)

(kl 7k2>--~skm)€s (”)

where the first inequality holds by the fact that ¢(mn) > @(m)p(n) and the second
inequality holds by Lemma 2.2 and the fact that

m
(,o(lcm(nk ) nk2 )) Qo(nkl I’lk2 e nkm)
2 m 1,2 ...,m
lcm(nkl PRERS ,nkm) R

By (1.7) and (2.2),

S D s S el fonkika k). 23)

= Jljlo\jlo, - 1jlo, i T res
One the other hand,
1.2 m
Z = M My =+~ T,
|]|D| |]|Dz |]|Z)nz (ky k. ko )ES (1)
n
X Z 1 2.4)
=1

1 VI Vot 1

1 . :
"k1+1){/vnk2+1)” M1t

< D mnd el fski ks k). (25)
(ky,k2s.... ki )ES (n)
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Finally, putting (2.3) and (2.5) together,

an ¢()) 2N 1
P ; ; 2C ; ; —.
= Moo, - +-1jlo, — 4 oo, -+ jlo,

Combining with (2.1),

C eyn) N
2 ) (W) —ym+1)) .
2 bl T, 2 2 Z oo T,
+y(N+1) ;
v Z oo T,
N
S ¢ Z Y(n) ‘
 |nlp,Inlp, - - - Inlp,
Now Theorem 1.1 follows from (1.8) and Theorem 2.3. O

3. Proof of Theorem 1.4

The proof of Theorem 1.4 is similar to the proof of Theorem 1.1 or (1.6). We need
one lemma first. Denote

M(n) = #{(ky ko, ... k) sy <o mp <= 1
LemMa 3.1. Under the conditions of Theorem 1.4, the following estimate holds:

N
NM(N) = Z Mn). (3.1)
n=1
Proor. It suffices to show that
N
NM®N) < 0(1) )" M(n).
n=1
We rearrange n i ---n}' as a monotone sequence fo = 1,71,0,...,4.... Then
N M(N)-1
DM = Y Kt = 1) + MINN = 1y + 1)
n=1 k=0
M)
= (N + DM(N) - Z i (3.2)
k=0
By the assumption (1.10),
M(N)
Dt < s NMN) (3.3)
k=0
for some 0 < c3 < 1.
Now the lemma follows from (3.2) and (3.3). O
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Proor oF THEOREM 1.4. We employ the same notation as in the proof of Theorem 1.1.
By the fact that the pseudo-absolute-value sequences are mutually coprime,

M) + 1 =#S(n).

Moreover,
n
1.2 m .
2 <myng, - -nkmf(n,kl,kz, k) <n.

By (2.2) and assumption (1.9),

n

¢()) m
D T T T ¢ D Seskuk ke )
.] ] D] .] 2)2 .] Dm (kl,kz,...,km)ES(n)

=1
()0(,,1 n? ceen™)
Z cn lkl 2k2 ”]lcm
(ki derode)es ) ey " P,
> cnM(n). (3.4)
By (3.4) and (2.4),
- 1
M) < ) —— —— < nM(n). (3.5)
= iloiljlp, -~ jlo,
Suppose that
e M) < oo,

In this case, by (3.1),

N
Z ()
i |nlp,Inlp, - -+ Inlp,

N n 1

= - 1
2=t ) )

s 1
YN+
=1

i iy ljlos o,

N
< Z(l//(n) —y(n+ D)nM@m) + y(N + HNM(N)

n=1

N n
<C Y W —yn+1) Y M) +y(N + DNMN)
n=1 j=0

N
<C Z W(mM(n) < oo, (3.6)

n=1
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where the first inequality holds by (3.5). By the Borel-Cantelli lemma, the inequality

Inlp, Inlp, - - - Inlp, Ina — p| < y(n)

has infinitely many coprime solutions (#, p) € N X Z only for a zero Lebesgue measure
set of a.

Now we are in the position to prove the other side.

Suppose that

D M) = 0o

By (2.1) and (3.4),

i @(n)y(n)

— nlnlp,Inlp, - - - |nlp,

N
Z@p(@ — Y+ 1)nM(n) + (N + DNMN)

N
Z Y(m)M(n). (3.7)
n=1
Thus,
> ¥ir) = o, (3.8)
i |nlp,Inlp, - -+ Inlp,
By (3.6) and (3.7),
N N
SN S v 49
i nlnlp, |nlp, - - - Inlp, — |nlp, nlp, - - - |nlp,
Applying (3.8) and (3.9) to Theorem 2.3, we finish the proof. O

4. Proof of Theorem 1.5
Before we give the proof, one lemma is necessary.

Lemma 4.1. Let D = {n;} be a pseudo-absolute-value sequence and MNi(n) be given
by (1.11). We have the following estimate:

N
NIV(N) < Z M(n). 4.1
n=1

Proor. It is easy to see that (4.1) holds if the sequence Mi(n) is bounded. Thus, we
assume that Mi(n) — oo as n — oo.
It suffices to show that

N
NI(N) < O(1) Z M(n).

n=1

As usual, let M(N) be the largest k such that n; < N.
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By the definition of Mi(n),

N W) koo MO o0
D = 3 (Y E L o —no + (D) EEE)N = i + 1)
n=1 k=0 " j=0 nj j=0 nj
M(N) M)
n.
N+ 1)( o( 1))_ Z nkQD(nk)
= =0 M
M)
=N+ DIN) - Z @(ng). “4.2)
=0
By the fact that .| > 2ny,
M) M)
Z <N Y — <2N
ok
=0 =0
This implies that
M)
> @lm) <2N. 4.3)
=0

By (4.2) and (4.3),

N
NIM(N) < O(1) Z M(n).

n=1
We have finished the proof. O

We will split the proof of Theorem 1.5 into two parts.

TueorREM 4.2. Let D = {n;} be a pseudo-absolute-value sequence and M(n) be given
by (1.11). Suppose that ¢ - N — R* is nonincreasing and

Z () M(n) < co. (4.4)

Then, for almost every «a, the inequality
Inlplna — pl < ¥(n)
has finitely many coprime solutions (n, p) € N X Z. In particular, for any € > 0,
lirrlr_lglf nMi(n)(log ) *nlplnell’ =0
holds for a zero Lebesgue measure set @ € R.

Proor. The proof of Theorem 4.2 is based on the Borel-Cantelli lemma. Without loss
of generality, assume that « € [0, 1). Define
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&, = &) = O (P—ll/o(")’l?ﬂ//o(n))’

n n
p=1
(p.m)=1
where )
n
Yo(n) = ——.
Inlp
By the proof of Theorem 1.1, in order to prove Theorem 4.2, we only need to show
that
D AE,) < oo,
Like (2.1),
o emy(n) _ X olm) <p(m)
S = 2 =+ 1)) e Y+ 1)2 . @5
n=1 n=1

We estimate the inner sums here (denote dj.; = ng.1/nx) by

e(m) @(m)
Z m|m|p Z Z m|m|p
Vlklm ”k+1)fm

_ Z Z 90(nkm)

n<n 1<m<n/ny
diy1fm

< Z o(ny) Z

n<n 1<m<n/ng
dys1tm

<P(nk)

ng<n

= nI(n),
where the first inequality holds by the fact that
(nm) < mp(n).
Therefore, by (4.5) and (4.1),

21(6)<Z 2¢o(n) o)

- (my(n)

nlnlp

n=1

N
<C Z(L//(n) — Y+ 1)nM(n) + CY(N + 1)NIN(N)
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N n
<C Z(!//(n) —y(n+1) Z M(j) + CY(N + HNM(N)
n=1 j=1
N+1

< Z Cy(n)M(n).
n=1

Combining with assumption (4.4), >, A(&E,) < oo follows. O

The remaining part of Theorem 1.5 needs more energy to prove. In the previous
two sections, we used the Duffin—Schaeffer theorem to complete the proof. Now, we
will apply the following lemma to finish the proof.

Lemma 4.3 [17, Theorem 1.17]. Let ¥ : N — R be a nonnegative function. Suppose

that
log G,

n-loglog G, -

b}

neN:G,>3

where
22n+1
_ yk)g(k)
G,- Y, LoeH
k=22"+1

Then, for almost every «, the inequality

lna — pl < (n)
has infinitely many coprime solutions (n, p) € N X Z.

The next lemma is easy to prove by a Mobius function or follows from Lemma 2.1
(k =1) directly.

Lemma 4.4. For any d € N,
N,
4
Z e maX{O, — (N, = Ny) = O(log Ng)} forall 0<N; < Na.
-~ bis
”JJ(]ZI
RemARK 4.5. The sharp bound 4/7° can be achieved when d = 2.

THEOREM 4.6. Let ¢ : N — R be a nonnegative function and lim,,_,., Yy(n) = 0. Define

&,(0) = O (p—w(n), p+w(n))'

n n
p=1
(p,n)=1

Then the following claims are true.

Zero—one law A(lim sup &,(y)) € {0, 1} [12].
Subhomogeneity For any t > 1, A(lim sup E,(7¢)) < tA(lim sup &, () [17].
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We need another lemma.

Lemma 4.7. Let D = {ni} be a pseudo-absolute-value sequence. Then

> milog - < Cn 4.6)
Ny
n<n
and .
1 = 0(1). 4.7
22N <y <02V OB T

Proor. Since {n;} is a pseudo-absolute-value sequence, there exists at most one n; such
that 2/ < ny < 2/*1. Thus,

log, n

anlognisz Z nklognl

n<n k Jj=0 2/<n <2/t k

log, n n
J+1 il
< Z 27" log %
Jj=0
< Cn.

This proves (4.6).
Similarly,

92N+l N+

Z log ny Z

n=22V 4 =2V 2i<ny <2/

log ny

2N+l

<0(1)Z—

Jj= o/
= 0(1).

We have finished the proof. O

After the preparations, we can prove the case € = 0 of Theorem 1.5.

THeEOREM 4.8. Let D = {n;} be a pseudo-absolute-value sequence and MM(n) be given
by (1.11). Then, for almost every @ € R,

lim inf n9M(n)(log n)|nlpllnall’ =0

Proor. Without loss of generality, assume that « € [0, 1). Let

1

vl = R log n)
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and
() !
n=—————.
v nM(n)(log n)
It suffices to show that there exists some ¢ > 0 such that
22N+1
Yo(n)p(n)
Gy = —_ .
v= D) > (4.8)
n=22" 11

for N € N. Indeed, if (4.8) holds, then, for any & > 0, there exists some C > 0 such that

oN+1

2
> CeNWEN 5 3 for all A,
n=22" 11 "
Applying Lemma 4.3 (letting ¢ = Ceyy),
A(lim sup E,(Ceyp)) = 1. 4.9)

Applying Theorem 4.6 (subhomogeneity) to (4.9),

Allimsup &, (&) = é
By the zero—one law of Theorem 4.6,
A(lim sup &, (eyp)) = 1.
Thus, for any £ > 0, we have that, for almost every «, the inequality
lna — pl < eo(n)

has infinitely many coprime solutions (n, p) € N x Z. This implies that for almost every
a €R,

lim inf AM(n)(log n)|n|p|lnal|’ = 0.

Now we focus on the proof of (4.8).

As usual,
2N+l
p(n)y(n)
- nnlp

n=22"+1

e " () 5 el)

N+1
= Z Wn) —y(n+1)) T + ¢r(22 +1) T (4.10)
n=22" 41 =22V 41 o =241 JJlo

Direct computation yields
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o e() o o))
DI D VD VR v

j=22N+l k:1<nx<n j=22N+1
nelj, miv1dj
_ Z Z (i)
n.<n N . ‘]
K27 41 m)< j<(n/ng)
detj
®(j)
> ) plm) —
20 2T
M= Q¥ +1/m)< j<(n/mi)
ditj
4 -2
2 = Z o(ng) max{O, 1 - 0(10g(£))}
Ut Ny Ny
4 w(ng) N n
> ;;—nk (-2~ O(nklogn—k))
4 N n
> S -2") - ) 0(mlog =) @.11)
T n<n "k
where the second inequality holds by Lemma 4.4.
By the definition of ¥(n), for n # ny,
o)
- )= ——— 4.12
V) = P+ 1) = (4.12)
and
o)
_ +1)= ————~2 4.13
Y(ng) — (e + 1) I n) log 1t (4.13)
By (4.6), (4.12) and (4.13),
ZZNH n oN+1 2
D, W —y+1) Y mlog—+u2 +1) Y mlog—
ny ng
n=22" 11 m<n <22V
2N+
o(1) o(1) o(1)
2 2 logn 2 V() logne M2
n=22" +1 £ 22V < <22V k) 108 Tl ( )
22N+1
o(1 o(1 o(1 1
OIS
M222%) - MR MR el nlogn
n=22"+
o(1
= ;i, 4.14)
M(22")
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where the second inequality holds by (4.7) and the third inequality holds because of
(@=2""and b=22")

N1 b dx
Z VI =loglogb —logloga foranyb >a> 1. (4.15)
. Xlogx

- nlogn

Putting (4.11) and (4.14) into (4.10),

oN+1

2

Z p(my(n)

n=22"+1 Alnlo
22N-¢-1

1 1 o
> 2, C(nlog AM(n) ~ (n+ Dlog(n + DI + 1))93“”)(” -2

n=22" 41
o
Mm22")

22N+1

¢ 1 1 o(1)
= Z E(nlog nMn)  (n+ 1)log(n + DM(n + 1))"9R(") )

n=20N+4)
22N+]
1 o(1
>¢ )\ Thoan” 51)2((22)”)'
n=20N+4) g
Using (4.15) again,
22N+1
> o ™!
L n logn
This yields that, for some ¢ > 0,
Gy >c.
We have finished the proof. O
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