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1. Introduction. This paper is a continuation of the earlier papers 
(1, 5) in which the author studied matrices with entries from the algebra 
C(£) of all continuous, complex-valued functions on an extremely discon­
nected, compact Hausdorff space H. (Such spaces are sometimes called Stonian, 
after M. H. Stone, who first considered them in (8). They arise naturally as 
maximal ideal spaces of abelian W*-algebras.) In this note, three theorems 
are proved. The first is that abelian *-subalgebras of the algebra Mn(H) of all 
n X n matrices over C(H) can be unitarily diagonalized. This result is then 
used to obtain in Theorem 2 a necessary and sufficient condition that a 
*-isomorphism between two W*-subalgebras (A VT*-subalgebras) of a finite 
PF*-algebra (AW*-algebra.) of type I be implemented by a unitary element 
in the larger algebra. This can be regarded as a generalization for finite algebras 
of (4, Theorem 3), and focuses attention on the question of whether the same 
theorem can be proved in W*-algebras of type II\. Finally, using Theorem 2, 
we prove that if A and B are matrices over C(H) and A (t) is unitarily equivalent 
to B(t) for each t £ ï , then A and B axe unitarily equivalent in the algebra 
Mn(T). This generalizes (5, Theorem 3) and enables us to give a "local" 
complete set of unitary invariants for certain operators on Hilbert space. 

2. We denote by Mn the full ring of n X n complex matrices under the 
operator norm. Let ï be any Stonian space, and denote by Mn(X) the *-algebra 
of continuous functions from ï to Mn, where the algebraic operations in Mn(%) 
are defined pointwise. If one sets 

IMH = sup | |4 (0H 

for A 6 Mn(T), then Mn(H) becomes a C*-algebra (identifiable with the 
C*-algebra of all n X n matrices with entries from C(I)), and in fact, an 
w-homogeneous 4I^*-algebra (4). We begin our programme with some 
structure theory in Mn(X). The reader is referred to (4) for the definition of 
an A W*-subalgebra of Mn(X). A subalgebra A of Mn(T) is said to be diagonal 
if for each A Ç A and each / £ 36, the matrix A (t) is diagonal. 

THEOREM 1. If A is any abelian *-subalgebra of Mn(3S), then there is a unitary 
element U 6 Mn(H) such that the algebra UAU* is a diagonal subalgebra. 
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Proof. It suffices to prove the above in the case that A is an A PF*-subalgebra, 
since, in any event, the A W^-subalgebra generated by A (the intersection of 
all A l/F*-subalgebras containing A) will be abelian. (This can be gleaned 
from (4, Lemma 4).) Since linear combinations of the projections of an AW*-
subalgebra A are dense in A, it is clear that it suffices to find a unitary element 
U G M» (36) such that for every projection E £ A, UEU* is diagonal. To 
accomplish this, we consider collections {U*} of disjoint, non-empty, compact 
open sets U* C 36 such that if Ui G {U*}, then there is a unitary-valued func­
tion Ut € Mn(\Xi) such that Ui{t)E{t)Ui*(t) is diagonal for each t £ Ui and 
each projection E Ç A. Choose a maximal collection of this type {II*}**/, and 
let 

u = u u,. 
UI 

In view of (1, Lemma 2.1), it suffices to prove U = 36 to complete the argu­
ment. Thus, suppose Ï - U ^ 0, and consider collections {Ej\ of projections 
in A with the property that at some point / € ï — U, the projections {Ej(t)\ 
are all distinct. Clearly there is at least one non-void collection of this type, 
and- clearly any collection of this type can contain at most 2n projections. 
Choose a collection {Ej}j€j having a maximum number of elements. Then if 
/o G 36 — U is such that the projections {Ej(to)}jeJ are all distinct, it is clear 
that there is a compact open neighbourhood 31 C 36 — U of to such that for 
/ € 9Î, the projections {Ej(t)}j€j remain distinct. It follows from the maximality 
of the collection {Ej}j€j that if E is any projection in A and t G 31, then E(t) 
is some one of the projections Ej(t). (Of course j can vary with t.) Thus to 
obtain a contradiction, it suffices to find some non-empty compact open sub­
set 3R C 9Î and a unitary-valued function V € Mn(W) which will simultaneously 
diagonialize the {Ej}jtJ on 2)?. We do this as follows. For convenience, take 
J" to be the collection of integers {1,2, . . . , & } . By applying (1, Corollary 
3.3) to Ei and changing notation, we can assume that Ei is diagonal on 31. 
Next choose a point t\ Ç 31 where the rank of E\(t) is a maximum, and then 
choose a compact open neighbourhood $ C 31 of t\ such that E\ is constant 
on ty. We can clearly assume that 

Eiif) = for t e ç. 

Since £ 2 commutes with Eu it must be the case that, for / € ty, the matrix 
£ 2 (0 has the form 
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Gi(t) 0 

0 Gt(t) 

where d and G2 are projection-valued at each t (z ty> Application of (1, 
Corollary 3.3) to Gi and G2 yields a unitary element W G Mn(ty) of the form 

WW 0 

0 w,(0 
such that on $ , WE2W* is diagonal. Since W commutes with Ei on $ , we 
have simultaneously diagonalized Ex and E2 on $, and the proof is completed 
by making an induction argument along the lines indicated above. We omit 
further details of the induction argument. 

Notation. We denote by <r(A) the trace in the usual sense of an n X n com­
plex matrix A. 

LEMMA 2.1. Suppose that Ai and A2 are abelian AW*-subalgebras of Mn(T)> 
and that <j> is an algebraic *'-isomorphism of Ai onto A2 with the property that 
for each A G Ai and each t G 36, <r[A(t)] = <r[<l>(A)(f)]. Then there is a unitary 
element U G M"n(36) such that <j>(A) = VAU* for each A G Ai; i.e., <t> is imple­
mented by U. 

Proof. Since <j> is trace-preserving, it follows easily that if A G Ai and 
/ G 36, then 

IMWH2 = \\A*(t)A(t)\\ = ||*(4*)(o*(4)(OII = II^XOH1, 

so that <t> is actually norm-preserving also. For t G 36, let Ai(£) be the *-algebra 
of all matrices A (t) where A G Ai, and let A2(/) be defined similarly. It follows 
from the fact that <j> is norm-preserving that for each / G 36, 4> gives rise to a 
*-isomorphism 4>t of Ai(7) onto A2(£) defined by <£ « : ̂ 4 (2) —> <£ (̂ 4 ) (J). These 
properties of <t> are used several times in the course of the proof. Now consider 
collections {11*} of disjoint, non-empty, compact open subsets Ui C ï such 
that if Ui G {Ui}, then there is a unitary-valued element Ui G M"w(Ui) such 
that for each * G Ui and each 4 G Ai, <f>{A){t) = Ut(t)A(t)Ut*{t). Choose a 
maximal collection {U*}^/, and let 

U = U IU 
ui 

As before, it suffices to prove that U = 36, so we suppose that 36 — U TA 0. 
Since <j> is norm-preserving, and since the linear combinations of the pro­
jections in an A I7*-subalgebra are dense in the subalgebra, it is easy to see 
that to obtain a contradiction, it suffices to find a non-empty, compact open 
subset Ï R C ï - 11 and a unitary-valued element V G Mn(W) such that for 
each projection E G Ai and for each t G 2W, «(£)(t) = 7 ( 0 £ ( 0 ^ * ( 0 - We 
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obtain such an 9ft and V as follows. By virtue of Theorem 1 we can assume 
that Ai and A2 are both diagonal subalgebras. We now choose a non-empty 
collection {£,} jeJ of projections in Ai, a point t0 G H — U, and a compact open 
neighbourhood ïïî C 3Ê — U of t0 just as in the proof of Theorem 1; i.e., so 
that for / Ç Sft, the projections {Ej(t)} are all distinct, and furthermore if E 
is any projection in Ai and / G 5ft, then E(2) is some one of the projections 
{Ej(t)}jtJ. Just as before, we can drop down to a non-empty, compact open 
subset $ i C 5 î such that on ^ i the projection Eh is constant, and by an 
obvious induction argument, we can eventually obtain a non-empty, compact 
open set $ C $ i C 5ft such that on $ the projections {Ej}jeJ are all constant. 
Going one step further and making a similar induction argument on the 
{<t>(Ej)} jtj, we can drop down to a non-empty, compact open subset 3K C ? 
such that the projections {4>(Ej)}j(J are also all constant on 9ft. Note that to 
obtain a contradiction, it now suffices to find a unitary element V G Mn(3Jl) 
satisfying 0 (£,)(*) = V(t)Ej(t)V*(t) for each j G / and / G 9ft, because then 
if E is any projection in Ai and t G 9ft, we have from the above that E(t) is 
some £,(*), and thus 0(E) (0 = *(£,)(*) = 7 ( 0 £ , ( 0 ^ ( 0 = F(/)£(/) F*(*). 
To obtain such a V, choose any point t\ G 9ft, and recall that $tl is a trace-
preserving *-isomorphism between the matrix algebras Ai(/i) and A2(ti). It is 
an easy matter to obtain a unitary matrix W implementing <i>tl, and upon 
defining V(t) = W for / G 9ft, the desired unitary element V G Afn(9ft) is 
obtained. 

The above lemma can be extended to: 

LEMMA 2.2. Suppose A and B are any AW*-subalgebras of Mn(%) and <p is 
an algebraic ^-isomorphism of A onto B with the property that for each A G A 
and eac& / G ï , o-[i4 (£)] = a-[0(^4) (£)]. iHAen /&ere is a unitary element U G Afn(ï) 
//*a£ implements <j>. 

Proof. The mapping <p implements a trace-preserving *-isomorphism between 
the centres of the subalgebras A and B. Thus by making an application of 
Lemma 2.1 and changing notation, we can assume that the algebras A and B 
have the common centre Z and that <j> is constant on Z. Now A and B must 
be finite AW*-algebras of type I, and it follows from (4, Lemma 18) and 
(3, Lemma 4.10) that A and B are each finite C*-sums of homogeneous 
algebras. Thus we write A as the C*-sum A = {Am}meMl where each Am is 
an ra-homogeneous A W*-subalgebra and M is some subset of the first n 
positive integers. Since m-homogeneity is an algebraic invariant, we must 
also have B = {Bm}m€M. It is clear that for each m G Af, <t> gives rise to a 
trace-preserving *-isomorphism between the homogeneous algebras Am and 
BTO, so for the moment we fix m and consider the isomorphic algebras Am 

and Bm with common centre ZTO. If m = 1, we have done all we need to do; 
otherwise, let {Etj} be a set of matrix units for Am. (Thus each E a is an 
abelian projection in Am.) Then, of course, the corresponding collection 
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{Fij = (^(Eij)} is a set of matrix units for Bm, and we consider the isomorphic 
abelian A W*-subalgebras En Zm and Fu Zm of Am and Bm respectively. Ano­
ther application of Lemma 2.1 yields a unitary element Y G Mn{W) such 
that YEnCY* = FnC for each C € Zw. Define 7i = KEn, and for 
i = 2, . . . , m, define V{ = F*i Fi £ H . Then define 

m 

Calculation yields VtVt* = J?,,, 7,* 7, = Ett, and 7<m>*F<m> = 7<">7«">* = / „ , 
where Im is the common unit of the algebras A„ and Bm. Also for i,j = 1, 
2 m, one has P ' £ „ F , > * = F « £ „ 7 / = F,„ and for each C € Z», 

F(m)CF(«)* = J- FnVjPi^EjiVfFi, = £ FuVtfnCVfFu 
i.1 k 

= £ FtlFnCFtl = C S F« = C. 
it it 

Hence F(m) commutes with Zro, and since any element A £ Am can be written 
as 

-4 = 2J CijEijt 

where the Ctj € Zm, we have 

ij iJ 

Thus F(m) implements <t> on Am for each w 6 M, and we define 

W = £ F(m). 
m«Af 

Clearly P7*W = WW* = / , where / is the unit of A, and it is also clear 
that W implements <£ on A. Finally define U = (1 — / ) + W, where 1 is 
the unit of Mn(T). Then U is a unitary element in Mn(T£) and if A £ A, 
£L4£/* = WAW* = <t>(A), so that the proof is complete. 

Given the preceding lemma, the proof of Theorem 2 is easy. The reader 
is referred to (2, p. 260) for information concerning the unique Dixmier 
central trace on finite W*-algebras and to (9) for information on the trace 
in A W*-algebras. 

THEOREM 2. Suppose R is any finite W*-algebra (A W*-algebra) of type / , 
Ai and A2 are any W*-subalgebras (AW*-subalgebras) of R, and D(-) is the 
unique central trace on R. / / <t> is an algebraic *-isomorphism of Ai onto A2, 
then there is a unitary element U 6 R such that <j>(A) = UA U* for each A £ Ai 
if and only if D(A) = D(<f>(A)) for each A £ Ai. 

Proof. Since D{-) is a unitary invariant, the "only i f half of the theorem 
is immediate. Turning to the proof of the other half of the theorem, one 
knows that R is a direct sum R = {R<}<«/ of i-homogeneous algebras, and 
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that D(-) is the sum of the unique central traces Dt(*) on the algebras R*. 
If Et is the unit of R*, then E{ Ax and E{ A2 are W*-subalgebras (AW*-sub-
algebras) of R*, and the mapping EiA—^Ei(j>(A) is easily seen to be a 
*-isomorphism of EtAi onto EtA2 which preserves the central trace -£>*(')• 
Thus the problem is reduced to the case in which R is a homogeneous algebra, 
and the fact that this makes Lemma 2.2 applicable can be obtained from 
(5, § 3). 

The following lemma enables us to apply Theorem 2 to the question of 
unitary equivalence of elements of Mn(X). 

LEMMA 2.3. Let A be any *-subalgebra of Mn(HL), and for each t G H denote 
by A(t) the ^-algebra of matrices {A if) \A G A}. Let © be any compact open 
subset of ï with the property that for each t G ©, the algebra A(t) contains the 
same number k > 0 of linearly independent matrices, and define the subset 
R C Af»(®) by: B G R if and only if B G Mn(<5) and B(t) G A(/) for each 
t G ©• Then the collection R is an AW*-subalgebra of Afn(©). 

Proof. It is clear ^hat R is an algebraic *-subalgebra of Afn(©), and it 
follows from the fact that for.B G R, 

p | | = sup ||5(0||, 
/ G © 

that R is a C*-subalgebra of Mn(JS>). We separate out the next fact to be 
verified as a sublemma. 

SUBLEMMA. If {E\ I X G A} is any collection of mutually orthogonal pro­
jections in R, and E = supx E\ (as calculated in Mn(©)), then £ Ç R . 

Proof. Suppose this sublemma is false. Then there is a point r G © such 
that E(r) i A(r). Let {A^r), . . . , Ak(r) \ At G A} be a basis for A(r). Then 
the matrices £ ( r ) , ̂ 4i(r), . . . , Ak(r) are linearly independent, and by con­
tinuity there is a compact open neighbourhood 5ft C © of r such that for 
t G 5ft, MiW» • • • * Ak(t) | ^4^ G A} remains a basis for A(t) and also the 
matrices E(t), Ai(t), . . . , Ak(t) remain linearly independent. Thus for t G 5ft, 
E(t) iA(t). Now for / G 5ft, let Ct be the collection of all X G A such that 
E\(t) 7* 0. Note that for any ty Ct contains at most n elements, and choose 
h G 5ft with the property that Ct0 contains a maximum number of elements. 
Then, by continuity, there is a compact open neighbourhood 5)3 C 5ft of t0 

such that Ct = Ct0 for each t G 5)3. Consider the projection F G Afw(@) defined 

by 

^W = Z £x(0 
XeCto 

for / G 5)3 and F(/) = E(t) for £ G © — 5)3. Then F is an upper bound for the 
collection {Ex | X G A}, and F < E. Thus F = £ , and it follows that for t G % 

E(t) = £ Ex(0, 
X É C * 0 
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which implies that for t G $, E(t) G A(t). This is a contradiction. (It is per­
haps worth noting that implicit in the above argument is a new proof of 
(3, Lemma 4.11).) 

To show that R is an A W*-subalgebra of ¥„(©) there remains only one 
further fact to verify, and we also treat it as a sublemma. 

SUBLEMMA. If B G R, then the right projection (rp) of B (as calculated in 
-M»(©)) is also an element of R. 

Proof. Note that rp[5] = rp[B*B], so that B can be taken to be positive, 
and also that if E = rp[B] then E can be characterized as the smallest pro­
jection in Mn(<&) satisfying BE = B. Again we assume the sublemma false, 
i.e., that there is a point r G © such that E(r) #A(r). Then, just as before, 
it follows that there is a compact open neighbourhood 31 C © of r such 
that for t G 9Î, £(/) $A(/). We proceed to a contradiction as follows. For 
each / G ©, consider the characteristic equation of B(t). It follows from 
(1, Theorem 1) that there exist n functions C\, . . . , cn G C(©) with the 
property that for each t G ©, the numbers Ci(t), . . . , c„(/) are exactly the 
eigenvalues (with correct multiplicities) of B(t). For t G 9Î, let /* be the set 
of integers i such that c*(£) ^ 0. Choose /0 € 31 such that 7<0 has a maximum 
number of elements. Then, by continuity, there is a compact open neighbour­
hood 3JI C 31 oî t0 such that for each t £ 3JI, It = It0. Let rj > 0 be such 
that for each t Ç 5DÎ and each i G /*„> C*W > *?• Let / be any continuous 
function mapping the real line into itself such that /(0) = 0 and f(s) — 1 
for 5 > 77/2. Then F = f[B] G R (recall that R is C*), and it is easy to see 
that for each t G ©, F(t) = f[B](t). Thus for / G 2», F(t) is the projection 
on the range of B(t), and as such, F(t) is the smallest projection satisfying 
Bit)F(t) = B(t). It follows that for / G 9W we must have E{t) = F(t), which 
is a contradiction since F G R. 

It now follows from the sublemmas and (4, Lemma 2) that R is an AW*-
subalgebra of Mn{^>). 

We are finally in a position to prove: 

THEOREM 3. If A, B G Mn(X), and if A (t) is unitarily equivalent to B(t) for 
each t G 36, then there is a unitary element U G Mn(X) such that A = UBU*. 

Proof. We consider collections {U*} of disjoint, non-empty, compact open 
subsets U i C Ï such that if U* G {U*}, then there is a unitary element 
Ui G MnQli) such that for t G U<, 4( / ) = Ut(t)B(t)Ut* (t). If { t ^ U , is a 
maximal collection of this kind and 

U = U U„ * 
i d 

then again in view of (1, Lemma 2.1), it suffices to prove U = Ï . Suppose 
ï - U ^ 0, and taking A(2) as defined in Lemma 2.3, choose r G 3Ê — U so 
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that the number of linearly independent matrices in the algebra A(/) is a 
maximum (over H — U) at r. Let pi(A(r), A*(r)), . . . , pk(A(r), A*(r)), be a 
basis for A(r), and choose a compact open neighbourhood © C X— U of r 
so that on © the matrices pi(A(t), A*(t)), . . . , pk(A (t), A*(/)) remain linearly 
independent. It follows from the hypothesis that for t Ç ©, the matrices 
pi{B(t), B*(t)), ...,pk(B(t), B*(t)) are a basis of the *-algebra B(0 generated 
by B{t). Now let R(A) be the ^4PF*-subalgebra of Mn(@) corresponding to 
A(J), which Lemma 2.3 gives rise to, and let R(5) be the corresponding 
,4W*-subalgebra of Af»(@) for B(*). 

It follows that each C G R(^4) can be written in the form 

C(t) = É ct(t)pM(t),A*{t)) 

for t 6 @, and it is not difficult to see that the £*(•) are uniquely determined 
continuous complex-valued functions on ©. Elements of R(5) can be written 
similarly, and thus one can define a mapping 

k k 

<t>: E e < ( - ) / > < G 4 ( - M * ( - ) ) - * Z <:<(•)£<(£(•),£*(•)) 
1=1 i=l 

of R(i4) onto R(JJ). 
By virtue of Theorem 2, to complete the proof of the theorem it suffices 

to verify that <t> is a trace-preserving *-isomorphism of R(^4) onto R(£ ) which 
maps 4̂ to B. This one does pointwise, using the hypothesis to show that 
any polynomial q(A (/), A*(t)) vanishes if and only if q(B(t)y B*(t)) does 
also. See (5) for further details of similar verifications. 

3. We now briefly summarize some results of the author (5) on unitary 
equivalence, preparatory to obtaining a local complete set of unitary invariants 
for a certain class of operators on Hilbert space. Let W be the free multi­
plicative semi-group on the symbols x and y, and denote words in W by 
w(x, y). Specht (7) showed that the collection of traces 

[<r[w(A,A*)\ \w(xfy) e W] 

is a complete set of unitary invariants for n X n complex matrices. The author 
was able to improve this by showing in (5) that for n fixed but arbitrary, 
there is always a subset Wn C W containing less than 4n2 words such that 
the collection 

{<T[w{A,A*)]\w(x,y) 6 Wn) 

is already a complete set of unitary invairants for n X n complex matrices. 
Better results are known for n = 2 and n = 3 (6). Now if A is an operator 
generating a finite W*-algebra R(-4) of type I, and Da(-) is the unique Dixmier 
central trace on R(-4), then (5, Theorem 5) A is unitarily equivalent to an 
operator B if and only if B generates a finite PP*-algebra R(J5) of type I and 
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there is a unitary isomorphism <j> such that <t>Da[w(A, A*)]<f>~1 — Dh[w(By B*)] 
for each w(x, y) (E W, where Db{-) is the Dixmier trace on R(-S). Thus a 
global set of unitary invariants for such operators A was provided. 

However, in the case that A and B dire operators in the same finite W*-
algebra R of type I, one might expect that the unitary equivalence of A and 
B relative to R would follow from the equations D[w(A, A*)] = D[w(Bf B*)], 
w(x, y) G W. The author was unable to prove this in (5) except in the special 
case in which A generates R, but we can now obtain this result easily from 
Theorem 3. 

COROLLARY 3.1. / / R is a finite W*-algebra of type I, A, B £ R, and D(-) 
is the unique central Dixmier trace on R, then A is unitarily equivalent to B 
relative to R if and only if D[w(A, A*)] = D[w{B, B*)] for each w(x, y) Ç W. 

Proof. R is a direct sum of homogeneous algebras {R*} and the Dixmier 
trace on R is the sum of the Dixmier traces on the homogeneous algebras. 
Thus the problem reduces to the case in which R is homogeneous, and the 
traces assumed equal above ensure that the hypotheses of Theorem 3 are 
satisfied. (For more detail in this connection, see 5.) 

4. Remarks. 
1. Because of Specht's theorem mentioned above and the continuity of the 

functions a[w(A (t), A*(t))]y Theorem 3 remains true if it is assumed only that 
A (t) is unitarily equivalent to B (t) for t in any dense subset of ï . 

2. If in Corollary 3.1 R is assumed to be an ^-homogeneous algebra, then 
one can obtain the same result by assuming only that D[w(A, A*)] = 
D[w(B, B*)] for w(x, y) G Wni in view of (5, Theorem 1). 

3. The statements of Theorem 2 and Corollary 3.1 make sense in any 
W*-algebra of type Hi, and the author conjectures that they are true there. 
However, he is unable to prove this except in one special case. 
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