
JFP 22 (2): 217–221, 2012. c© Cambridge University Press 2012 217

Book reviews

Modeling in Event-B – System and Software Engineering Jean-Raymond

Abrial Cambridge University Press, May 2010 ISBN-10: 0521895561

doi:10.1017/S0956796812000081

The Event-B formal notation is a trimmed down descendant of B which has gained significant

acclaim, particularly with the impressive tool support and industrial experience gener-

ated through EU projects Rodin (www.event-b.org, 2004–2007) and Deploy (www.deploy-

project.eu, 2008–2012). Expectations were understandably high for this, the “Event-B Bible”,

written by Jean-Raymond Abrial, inventor of Z and B.

As it turns out, this is a rich and accessible book, demonstrating both the strengths and

weaknesses of the use of Event-B, and containing varied and valuable case studies as its core.

It is written in a pleasant colloquial style, with changes in the vocal tempo and tone leaping

off the pages.

An engaging introduction to the ideas of Event-B, and to formal development in general, is

given in Chapter 2 which describes the case study “Controlling cars on a bridge”. Refinement

as the gradual introduction of detail and determinacy is presented in a gentle way. Invariants

and preconditions are strengthened incrementally in a convincing way as a consequence of

intuitively sensible proof obligations. A strong case for doing proof alongside specification

is made implicitly. The weaker side of the method in general shows through here already,

though – more details on that below.

An overly sensitive cover-to-cover reader might not have made it as far as Chapter 2,

however. The Prologue and to a lesser extent Chapter 1 are likely to turn readers off, through

their many broad-brush statements: software engineering is in the first place mathematical;

post-hoc verification is imposssible by definition; testing “always postpones any serious

thinking”. Respected techniques such as model checking and abstract interpretation are also

dismissed on the basis of shallow arguments. Formal methods, on the other hand, are often

characterised by what they are ∗not∗ rather than by what they are.

I would also have liked to see a more substantive argument on the sufficiency of set-

theoretic notation (naive set theory in the book; typed in the Rodin tools), rather than the

terse “This is an error” and “This is nonsense” judgements for the alternatives.

My main methodological worry about this book (and to some extent Event-B in general)

arises already from the prologue, in particular the following comment (page xiv): “From

the point of view of modelling, it is important to understand that there are no fundamental

differences between a human pressing a button, a motor starting or stopping, or a piece of

software executing certain tasks.” If modelling stands by itself, that may be true; but where

it is followed by refinement, like here, I have to disagree: some events model uncontrolled

aspects of the system’s environment; some are part of the interface of the system to be

developed, available to human users; and some are internal events that contribute to effecting

the desired outcomes of the system without having been explicitly requested by an outside

user. In my view, events with a different status like that should play a different role in

refinement: external events, for example, should not be refined; internal events, on the other

hand, can be refined very liberally as long as this does not impact on changes of observable

behaviour. By not allowing for fundamental differences between events, Event-B ends up

being too generous in allowing refinement of external events, and too strict on truly internal

ones. For a further exploration and explanation of these and related issues, see two papers at

the 2011 Refinement Workshop [1,3].

https://doi.org/10.1017/S0956796812000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000081


218 Book reviews

The informal motivations for imposing certain proof obligations – or not – are not always

strong. From a formalist point of view, this could have been addressed by providing an exact

definition of refinement, in particular what it establishes semantically, rather than a collection

of proof obligations, with some of these considered optional. Rightly, however, refinement

theorists are not taken as the book’s primary audience. For everyone else, though, the informal

explanations leave a lot to be desired.

Consider for example the motivation for non-divergence of new events (page 64): that

this would stop the concrete instances of existing events from being postponed indefinitely.

However, the refinement that follows this explanation ensures exactly that undesirable effect,

not through divergence, but by making the guard of the new operation too strong. In detail:

a traffic light is introduced, with new operations for the lights changing. These are potentially

divergent, so light changes are constrained to only happening after a car has passed - the car

passing being one of the “existing” events. This allows the scenario where one car enters, the

light turns red, and then no car is allowed to enter any more until the light has turned green,

which in turn will not happen until a car has exited again. This probably could have been

prevented, either by using “anticipated events”, or explicit requirements like property 16.4.5

on page 492 – but the main problem is that possible starvation of a particular event is not

even noticed.

Chapters 3–4, 6–13 and 16–17 present more case studies. These form an interesting

collection, ranging across a variety of application areas, and covering many relevant points

of modelling and refinement. However, they are notably weaker in their motivation than

Chapter 2, in particular at the methodological level. Most refinement steps are given a

number but not a name, and as the book continues there is progressively less top-level

information about the concerns addressed in individual refinements, nor about the rationales

for the separation and sequencing of the concerns over these steps. Too often it is “now we

do this” and “then we do that” without any further explanation. Several later chapters leave

the final refinement steps as an exercise to the reader, without much guidance as to what

these steps should achieve. However, presentations and Rodin scripts on the book’s website

http://www.event-b.org/abook.html help a bit in this respect.

Chapters 5, 14 and 15 are of a different nature. Chapter 5 gives a convincing overview of the

Event-B notations and proof obligations. Chapter 14 presents the mathematical justification

of the proof obligation rules used. This includes a fairly standard explanation of the one-to-

one replacement of abstract operations by concrete ones, from refinement of traces. However,

the justification for introducing new operations lacks in detail; a recent paper by Schneider,

Treharne and Wehrheim [3] goes some way towards explaining this, including the Event-

B concepts of “anticipated” and “convergent” labels on events, which get no mention at

all in this chapter. Generally in this book bibliographic data is given chapter by chapter,

and is of highly variable quality. For example, often publication information is lacking.

Chapter 14 in particular contains no literature citations nor a bibliography, which makes it

unnecessarily difficult to appreciate the Event-B refinement theory in the context of standard

results.

Chapter 15 presents the application of Event-B to the development of sequential programs.

Basic Event-B has a simpler structure than B, losing all program control structure; in this

chapter, this structure is reintroduced in events obtained by “merging” simpler events using

systematic rules. This alternative approach to “program refinement” does not appear to be

fully crystalised yet; for a further exploration and critique of this method, see a recent paper

by Hallerstede [2].

The final Chapter 18 lists some problems for readers to try out in Event-B and Rodin,

including a substantive mathematical theorem.

The book is probably the closest to a reference manual for Event-B that currently exists,

but its index could have been substantially extended. For example, “merging rules” is not

included, nor is “feasibility” or its associated proof obligation “FIS”.

https://doi.org/10.1017/S0956796812000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000081


Book reviews 219

Overall, this book contains a lot of valuable material, and due to the simplicity of the

Event-B notation it should be a seriously considered for introductory courses on formal

modelling with associated proof. As a basis for advanced study and research, it would be

significantly better if it contained more conceptual clarity and methodological guidance on

refinement, as well as a much more extensive index and bibliographic information. The case

studies, however, still provide a rich source of example material for researchers.

References

Eerke Boiten (2011) Perspicuity and granularity in refinement, Refinement Workshop, EPTCS

55, pp 155–165. DOI: 10.4204/EPTCS.55.10

Stefan Hallerstede (2009) Proving quicksort correct in Event-B, Refinement Workshop, ENTCS

259, pp 47–65, DOI: 10.1016/j.entcs.2009.12.017

Steve Schneider, Helen Treharne & Heike Wehrheim (2011) A CSP account of Event-B

refinement, Refinement Workshop, EPTCS 55, pp 139–154. DOI: 10.4204/EPTCS.55.9

EERKE BOITEN

School of Computing, University of Kent, Canterbury, UK

Drawing Programs:

The Theory and Practice of Schematic Functional Programming, by Tom

Addis and Jan Addis Springer, 2010, ISBN 978-1-84882-617-5, 379pp

doi:10.1017/S095679681200010X

The book presents the notion of schematic functional programming and demonstrates not

only the concept but also how schematic functional programs can be processed, and how this

approach can be used to develop small and even complicated programs.

A reader need not be familiar with the concept of functional programming, but on the other

hand, it is probably expected that a reader is familiar with programming and programming

languages. The development environment connected with schematic programming can be

found on Internet and downloaded (but only for Windows 32bit systems) but it seems not to

have been under active development for several years. Nevertheless, a reader can easily try

the examples and follow the flow of the book.

Sometimes it is necessary to have broader knowledge to understand the examples presented,

as they are built over problems from various areas of computer processing. Even when the

book presents introduction to such areas (e.g. to Bayesian theory), it is not sufficient to fully

understand the solution. Thus, a question comes to one’s mind, whether such an introduction

is necessary, as it is of little use for those who are familiar with the subject, but not adequate

for those who do not know the subject. A reader familiar with these areas can go through the

book quite easily and try to use the constructs and typical patterns of schematic programming,

and, in such a way, learn how to use schematic programming and become familiar with it.

It is quite misleading to say that this is a functional language. It would be very helpful if

the authors could give a clear explanation of how it is (and isn’t) functional, so that a reader

could recognize that it is an imperative language with stateful development and runtime

environment, but that the schematic language itself exploits functions.

This also raises another issue – the theory behind the schematic programming is not

presented at all. This includes no binding to any calculus, no presentation of any formal

system that could be used as a formal basis of the schematic language or the underlying

language. Thus, the ‘theory’ in the book title may be misleading.

https://doi.org/10.1017/S0956796812000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000081



