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Abstract

We show that for all n > 3k + 1, n # 6, there exists an incomplete self-orthogonal latin square of
order n with an empty order k subarray, called an ISOLS(n; k), except perhaps when (n; k) s {(6m
+ i\2m):i = 2,6}.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15.

1. Notation and basic constructions

We study a particular family of incomplete orthogonal latin squares.
Let ILS(n; bx, b2,..., bk) be an order n array A with entries from an w-set B

defined as follows, where the Bt, 1 < / < k, are subsets of B so that |fi,| = bt, and
where 5, n 5y = 0 , 1 < /, j < k.

(a) Each cell of A is empty or contains an element of B;
(b) the subarrays indexed by Bt X 2?, are empty; and
(c) the elements in row or column b are exactly those of B \ Bt if b e Bt, and

of B otherwise.
Two ILS(n; bvb2,...,bk) are orthogonal if, on superposition, all ordered pairs

(B X 5 ) \ U f _ i ( S / X Bt) result. Denote two such squares by
IPOSL(n; bv b2,..., bk). Similarly, r - IPOLS(n; bx, b2,..., bk) denotes a set of
r ILS(n; bx, b2,..., bk) which are pairwise orthogonal. A pair of orthogonal
ILS(n; bv b2,...,bk) in which one is the transpose of the other (a self-orthogonal
array) will be denoted ISOLS(n; bv b2,..., bk). In the case when bt = 0 for each
/ the arrays are all latin squares, and we denote them respectively by LS(n),
POLS(n), r-POLS(n) and SOLS(«).
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We are interested in the existence of ISOLS(/i; k) and will show that, except for
two infinite families, an ISOLS(n; k) exists if and only if n *s 3k + 1, n ¥= 6. The
infinite families are ISOLS(6m + 2; 2m) and ISOLS(6w + 6; 2m). While many
of the second family can be constructed, none of the first is known and, in
particular, computer search verifies that there is no ISOLS(8; 2).

This problem has been studied for quite some time. Simple counting shows that
n > 3k + 1 is a necessary condition, and many ISOLS(3fc + 1; k) were con-
structed by Parker [17] (notably an ISOLS(10; 3)) and Hedayat [10]. Crampin and
Hilton [5] showed that for every k there exists an n(k) such that, for all
n > n(k), an ISOLS(«; k) can be constructed. This was greatly improved by
Drake and Lenz [9] who gave constructions for ISOLS(w; k) whenever k > 304
and n > 4k + 3.

We will use two types of construction: generalized product constructions and a
starter-adder type construction. The product constructions are adaptions of the
Wilson-type constructions given by Brouwer and van Rees [4], although they give
them in terms of orthogonal arrays. It is assumed that the reader is familiar with
the usual product constructions: direct and semi-direct product.

First we state results on the existence of special sets of orthogonal latin squares.

LEMMA 1.1 (Lindner, Mullin, Stinson [16], Wang [19], Zhu [23]). For all p ,
p £ E = {2,3,6,10,14,46,54,58,62,66,70} there exists an SOLS(/>) with a sym-
metric orthogonal mate.

LEMMA 1.2 (Wang [19]). For all even p, p <£ F = E U {78,82,98,102,
118,142,174,194,202,214,230,258,278,282,394,398,402,422,1322}, there exists
an SOLS(/?) with a symmetric orthogonal mate which has only the entry 1 on the
main diagonal.

Call the above SOLS(^) P and the symmetric orthogonal mate Pv Now, let Po

denote the LS(/>) defined by eP(j(s, t) = t — s (mod/?) and based on the elements
{1 ,2 , . . . , p}, where ex(s, t)is the entry in cell (s, t)oi the array.

LEMMA 1.3. For allp, gcd(/>, 6) = 1, there exist orthogonal latin squares P and
P1 of order p so that each square is orthogonal to Po.

PROOF. Let P be the SOLS(/>) with ep(s, t) = 2t - s (modp), and let Pr be
defined by epi(s, t) = t + s (mod p).

LEMMA 1.4. For all odd prime powers p, p > 5, there exists a set of {p — 1)-
POLS(/?) which consists of Po, a symmetric square P1 and (p — 3)/2 self-orthgo-
nal squares P, P2,..., P^p-2)/2 and their transposes.
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PROOF. This result comes immediately from the construction of a complete set
of latin squares of order p . (See, for example, [6, pp. 160-169].)

Note that if n = p'^pl1 • • • p k
k , where the />, are distinct odd primes, and if

r = p{1 < p{* < • • • < pe
k
k, then there are (by direct product) squares P, Po, Pv

P2,..., P(r_ 3)/2 of order n.
The idea of the product construction is to take the square P and replace each

cell by a q X q array; this array will in general either be one of a POLS(^) or,
combined with additional rows and columns added to P, one of an IPOLS(<? +
x;x).

If we have a symmetric transversal in P (determined say by the entry 1 in Pv

or p in Po if p is odd), then we add an new rows and columns to P. Replace the
cells (i, j) and (j, i), i # j , of P determined by the transversal with one of an
IPOLS(a + an; an) and its transpose, respectively; any cell (i, i) of the transver-
sal with an ISOLS(<7 + an; au); and all other cells with either a POLS(g) and its
transpose or an SOLS(#) (if the cell is on the main diagonal). This yields an
IPOLS(/>9 + an; an).

If we have a pair of symmetrically placed transversals Tx and Tp__1 in P,
determined by say 1 and p — 1 in Po, then we add 2a10 rows and columns to P.
If (i, j) is a cell of 7\, then it is replaced by one of an IPOLS(<7 + a10; a10) using
columns pq + 1, . . . , pq + a10 and rows pq + a10 + 1, . . . , pq + 2a10, and cell
(j, i) is then replaced by the transpose of the other using columns pq + a10 +
l,...,pq + 2a10 and rows pq + 1,...,pq +10. Other cells are replaced by
POLS(g) and its transpose or by an SOLS(^). This yields an ISOLS(/>^ +
2a10; 2a10).

Finally, if we have a pair of symmetrically placed transversals T and S in P,
determined say by 1 in Pj and Pj, then we add 2atJ new rows and columns to P.
(Note that T and S intersect in cell (1,1).) Now, as before, if (i, j) is a cell of T,
replace it by one of a POLS(^ + ay, ay) using columns pq + 1, . . . , pq + aj and
rows pq + cij + I,..., pq + 2ay. At the same time (_/',/) is replaced by the
transpose of the other of the IPOLS(^ + ay, ay) using columns pq + ay +
1, . . . , pq + 2aj and rows pq + 1, . . . , pq + ay Other cells (except (1,1)) are
replaced by one of a POLS(^) and its transpose or an SOLS(^r). Now using cell
(1,1) we get an ISOLS(^ + 2ay q + 2a,).

In many cases these constructions can be combined, and this is the substance of
the next lemmas. To begin with, let a, e Z+U {0} be associated with the entry 1
of Pj and Pj, 2 < j < r; that is, we will add a, to each of these transversals in P.
Let ak0 = ap_k0 e Z+U {0}, 1 < k < (p - l ) /2 (p is odd), be associated with
the entries k and p - k of Po; let ap0 be associated with p on the main diagonal.
Let akl G Z+U{0}, 1 < k </>, be associated with k in PV Then let a0 =
££-ia;t0' ai = ££-ia*i a™* a = a0 + ax + 2T,rk_2ak. Finally, let AO =

o > a
P o ) ^ Ai = {aiv an>••••>a

P\)-
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Most constructions will be given without proof. Also note that, although the
premises of the lemma suppose the existence of certain squares, the constructions
are still valid if we do not have Px (all ajX = 0), Po (all aj0 = 0) or P, (a, = 0). So
when the lemmas are later referred to, we may not have all the squares. Moreover,
even without the square Po we can still use the transversal on the main diagonal
of P .

LEMMA 1.5. Suppose we have squares P, Px and PQ of order p. Then, if there are
ISOLS(4 + ap0 + an; ap0, afl) and IPOLS(tf + ai0 + afl; aIQ, afl), there is an
ISOLS(/>? + a; aQ, ax). Hence if an SOLS(a0) (SOLS(ax)) exists, then we have an
ISOLS(/>? + a; ax) (lSOLS(pq + a; a0)).

PROOF. Add ao + ax rows and columns to P as in the earlier discussion. If
(s, t), s # /, is a cell of P, and if ePi:(s, t) =j, ePo(s, t) = i, then by using the
appropriate rows and columns (that is, we use the same ajX rows as columns, but
we use the first aiQ of 2aiQ rows and the second ai0 of 2a,0 columns), replace this
cell by one of an IPOLS(^ + ai0 + ajX; a(0, ajX) and replace (t, s) by the trans-
pose of its mate. On the main diagonal cells use the ISOLS(g + ap0 + ayl; ap0, aA)
(with the same ap0 rows and columns, and the same ayl rows and columns).

LEMMA 1.6. / / we have squares P, Px and Po of order p, and if we have
ISOLS(<7 + ap0 + afl; x, ap0, aA), WOLS(q + ai0 + ajX; x, ai0, aJX), ISOLS(a0)
and ISOLS(a!), then we have an ISOLS(/>^ + a; px). Moreover, if we also have
an ISOLS(<jr + ai0 + ayl; x, ai0, ay l ) , then we have ISOLS(/># +
a; pq~x, px, a0, ax), wherepq~x indicates q — x orderp arrays.

Note that in the constructions of Lemmas 1.5 and 1.6 there are also other
subsquares. For example, if in Lemma 1.5, ap0 = ajX = 0 for some j , where
eP(s,s) =j, and we have both an SOLS(a0) and an SOLS^j), then we get an

+ a; q).

LEMMA 1.7. Suppose we have squares P, P2, ...,Pr of order p. Then if we have

IPOLS(# + ay, q}), 2 <> < r, and IPOLS(^r), we can construct an ISOLS(/># +
a; q + a).

PROOF. Simply add rows and columns and extend using each of Pj and Pj in
turn. Ignore the cell (1,1) of P, which is contained in all transversals. Leaving this
cell and the corresponding rows and columns empty yields the ISOLS(/?^ + a;q
+ a).

We can now combine the constructions of Lemmas 1.5 and 1.7.
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LEMMA 1.8. Given squares P, Po, Pv P2,...,Pr of order p, given IPOLS(a + am

aA + ak; ai0, ajV ak), ISOLS(g + ap0 + aA, ap0, aA), ISOLS(a0; ap0) and
^ ; a u ) , we have an ISOLS(/>? + a; q + apQ + an + 2(a2 + • • • +ar)).

PROOF. This is apparent upon noting that the empty subarray comes from the
cell (1,1) in P through which most transversals pass (see Figure 1.1). Again, this
lemma allows for many more subsquares, as can be seen from Figure 1.1 below.
In particular, note that if we have no P2,..., Pr, then we get ISOLS(/><7 + a;q +

LEMMA 1.9. Given squares P, Po, Pv P2,...,Pr oforder p, given IPOLS(# + ai0

+ aA + ak; x, ai0, afl, ak), ISOLS(g + ap0, aA, x, ap0, afl), ISOLS(a0; ap0),
ISOLS(a1; a u ) and ISOLS(^ + ap0 + an + 2(a2 + • • • +ar); x), we have an

a;px).

Finally, we note a trivial result.

a
p-k,0

a0 ai

<D& ifPtoO*" <b* V*

a

2a2+-+2ar

^ * "

M

FIGURE 1.1
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LEMMA 1.10. Given an lSOLS(a;b) and an ISOLS(Z>; y), we have an
ISOLS(a; y).

Special cases of the next lemma have been given by Dinitz and Stinson [7].

LEMMA 1.11. Given an lSOLS(n;b1,b2,---,bk), where n = £?_!&,, and an
ISOLS(£, + x; x) for each i *j, we have an ISOLS(« + x; b} + x).

Our last technique is a starter-adder type construction. This idea has been
described by several authors including Horton [15], Hedayat and Seiden [11], and
Zhu [20]. The plan is to construct an ISOLS(n; k) A from its first row (given by
e = (eA(l, 1) , . . . , eA(l, n - k)) and f = (eA(l, n — k + 1),. . . , eA(l, «))) and from
the last k entries of the first column (given by g = (eA(n — k +
1,1),...,eA(n,l))). The entries of the array are { 1 , 2 , . . . , « - k} U X, where
X= {xvx2,...,xk). The arrary is constructed modulo n - k using a fixed
d G {1,2,.. . , n — k}, where the xt act as "infinity" elements according to the
following rules.

, . eAs + 1,/ + 1) = eAs, t) if eAs, t) = x, }

eA(s + \,t + 1) = eA(s, t) + d (mod/i - k) otherwise/'

^% il , I ^% ft A-,

(b) eA(s + 1,« - k + t) = eA(s,n - k + t) + d (modn - k),
1 < t < k,\ < s < n — k,

(c) eA(n - k + t,s + 1) = eA(n - k + t,s) + d (modn - k),

Note that in case (a) all cell labels are determined modulo n — k, but in cases (b)
and (c) this applies only to the row and column labels respectively.

It is not difficult to determine the conditions that e, f, g and d must satisfy, but
we shall not concern ourselves with that. When needed, the value of d and of the
vectors e,f and g will be given. Simple calculations verify that they work. For
example, an ISOLS(20; 3) can be constructed from

e = (1,14,10,6,2, ^,11,7,3,16,12,8,4,17,13, JC2,X3),

f = (5,9,15), g = (13,2,3) and rf = 14.

2. Main result

We shall now apply the constructions described earlier to construct
ISOLS(«; k), n > 3k + 1. Throughout, x, y , ai0, aa and a^ are given only when
they are non-zero. The entries of A o and A1 will be given, and, although it will
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not be indicated to which non-zero aj0 or an we refer, it is always easy to decide.
Also, as mentioned earlier, we abbreviate notation by writing V when i occurs j
times in a set.

The following results are crucial to the constructions.

THEOREM 2.1. For all n > 3k, (n; k) # (6; 1), there exists an IPOLS(n; k).

The proof is given in a series of papers ([14,18,21,22]), but can be found in its
entirety in [13].

COROLLARY 2.2. For all n > 3A: + 1 with (n; k) # (6; 1), there is an
IPOLS(/!; 1, k).

THEOREM 2.3 (Brayton, Coppersmith and Hoffman [3]). For all n # 2,3,6,
there exists an SOLS(«).

COROLLARY 2.4. For all n*l, 3,6, there exists a POLS(«).

COROLLARY 2.5. For all n # 2,3,6, there exists an ISOLS(«; V), 1 < r < n,
(and hence an IPOLS(n; 1')).

LEMMA 2.6 (Heinrich [12]). There exists an ISOLS(3A: + 1; k) for all k.

PROOF. Apply the starter-adder technique with

e = (l,Xl,x2,...,xk,2,4,6,...,2k), f = ( 3 , 5 , 7 , . . . ,2k + 1),

g = (2 ,3 ,4 , . . . ,* + 1) and d = 1.

LEMMA 2.7. There exists an ISOLS(n; 2) when 7 < n < 50 and n # 8.

PROOF. For 9 < n < 21, n ± 18, vectors for the starter adder technique are
given in Table 2.1. (The case n = 7 was given in Lemma 2.6.)

When n = 25, apply Lemmas 1.8 and 1.10 with p = 7, q = 3, apQ = au = a2

= 1 and y = 2. For n = 31, 32, apply Lemmas 1.9 and 1.10 with p = 7, q = 4,
JC = 1, 7 = 2 and, respectively, ap0 = a2 = 1 and a ,̂, = au = a2 = 1. The re-
maining orders n are given in Table 2.2.
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n
9
10
11
12
13
14
15
16
17
19
20
21

d
1
1
1
1
1
1
1
1
1
5
1
1

f
(3,4)
(7,8)
(4,8)
(2,9)
(5,7)
(2,7)
(4,9)
(6,8)
(9,13)
(14,17)
(7,10)
(10,17)

g
(6,5)
(5,7)
(8,7)
(4,6)
(9,8)
(10,8)
(3,7)
(5,11)
(12,8)
(2,14)
(14,9)
(17,7)
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TABLE 2.1

e
(1,*!, x2,5,7,2,6)
(l,3,xl)6,4,x2,2,5)
(1,3,5,7,9,2,6, Xl,x2)
(1,4,*!, 8, x2,5,3,6,10,7)
(1,4,8,3,6,10,2,11,^,^,9)
(1,3,8, IO.X^XJ, 6,11,5,12,9,4)
(1,JC1,JC2,5,8,11,3,2,13,7>6,10,12)
(1,14,10,5,13,3,12,7,11, xux2,4,2,9)
(1,3,8,6,11,14,2,5, x1;x2,10,15,7,12,4)
(1,5,9,13, x,, 4,8,12,16,3,7,11,15,2,6,10, x2)
(1, *!, x2,2,6,12,16,18,13,9,8,5,15,17,4,3,11,14)
(1, xltx2,2,4,7,16,15,19,13,6,14,9,18,8,5,3,12,11)

TABLE 2.2

n p q Ao A1 Lemma(s)

18 4 4 - {I2} L5
22 5 4 {I2} - 1.5
23 7 3 {1} {1} 1.6 and 1.10 x - 1 y = 2
24 7 3 {1} {I2} 1.5
26 7 3 {I5} - 1.6 and 1.10 x - ly = 2
27 7 3 {I5} {1} 1.6 and 1.10 x = 1 y - 2
28 7 4 - 1.6 and 1.10 x = 1 y = 2
29 7 4 {1} - 1.6 and 1.10 x = 1 y = 2
30 7 4 {I2} - 1.5
33 7 4 {I5} - 1.6 and 1.10 x - 1 y = 2
34 4 8 {2} 1.5
35 7 5 - 1.6 and 1.10 x = 1 y = 2
36 9 4 - 1.6 and 1.10 x = 1 y = 2
37 9 4 {1} - 1.6 and 1.10 x = 1 y = 2
38 9 4 {I2} - 1.5
39 5 7 {I4} - 1.8 and 1.10 y = 2
40 4 10 - - 1.8 and 1.10 y = 2
41 4 10 - {1} 1.8 and 1.10 y = 2
42 4 10 {2} 1.5
43 5 7 {24} - 1.8 and 1.10 y = 2
44 4 11 - 1.8 and 1.10 >> = 2
45 5 9 - 1.8 and 1.10 y = 2
46 5 9 {1} 1.8 and 1.10 >> = 2
47 5 9 {2} - 1.5
48 4 12 - - 1.8 and 1.10 y = 2
49 4 12 - {1} 1.8 and 1.10 y = 2
50 4 12 - {2} 1.5

THEOREM 2.8. There exists an ISOLS(n; 2) for alln^l and n ± 8.

PROOF. By Lemma 2.7 we need only consider the case n > 51, and the proof is
given in Table 2.3, where, in each case, p = 7 and q = k (k 3* 7).
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n —

Ik
Ik ->r
lk±
7 * 4
7A;4
7 * 4
Ik 4

2

1
2
3
4

• 5

6

{I2}
{I2}
{I4}
{I5}
{I2}
{I2}
{I4}

TABLE 2.3

-

{1}
-
{1}
{I4}
{I5}
{I4}

Lemma(s)

1.5
1.5
1.6 and 1.10 x = 1 y
1.6 and 1.10 x = 1 y
1.5
1.5
1.6 and 1.10 x = 1 y

= 2
= 2

- 2

We shall now construct ISOLS(«; k) for all n > 3)fc + 1 and A: > 7, except
when k = 1m and n = 3k + 2 or 3k + 6. This leaves only finitely many values
of n for each k, k e {3,4,5,6} to be considered.

THEOREM 2.9. If n = mk + e, 0 ^ e < k, k>l, m>l, then there is an
ISOLS(n; k).

PROOF. The case e = 0 is immediate by product.
First we consider the cases k £ E.
If e + 2,3, or 6, apply Lemma 1.6 with p = k, q = m, x = \ and Ax = {le}.
If e = 2,3 or 6, use Lemma 1.6 with p = k, q — m — 1, x = 1 and Ax =

{lfc~e, 2e}. If k is even, there are at least fc/2 symmetric transversals (determined
from Px) which contain no cells of the main diagonal of P, and we can thus avoid
the need for an ISOLS(m + 1;2). But for odd k this is not possible unless
m =£ 7. When m = 1 and e = 2,3, put /> = fc, q = 7, x = 1, ap0 = e and apply
Lemma 1.9; and when e = 6, repeat but with a^g = a u = 3.

Now, if k e E, then fc > 10 and k - 1 £ F. We consider separately the cases
m odd and m even. Let m = 2/i + 1. Applying Lemma 1.6 with p = k — 1,
q = m, x = 1 and 4̂j = {le,h2}, provided that e + 2<fc — 1, in conjunction
with Corollary 2.5 and Lemma 2.6, we obtain an ISOLS(A:m + e — 1;
{k - l)m, w + e - 1). Now Lemma 1.11, applied to this with x = 1, gives an
ISOLS(A:w + e; k). However, we still have ee{ifc — 2, k — 1} to consider. In
these cases we repeat the above argument, but with A1 = {1*~4,2, h2} and
v4x = (I*"5,22, A2}, respectively.

Now let m = 2h. Assuming that e < k - 6, apply Lemma 1.6 (also using
Corollary 2.5, Lemma 2.6 and Theorem 2.8) with p = k - 1, q = 2h - 1, x = l
and A1 = {2<*+E>/2,(/i - I)2} if e is even, and Ax = {l,2(*+e-1)/2,(/i - I)2} if
e is odd. This can be seen to yield an ISOLS(ATM + e - 1; (k - I)"1"1, m + k + e
- 2), and so by Lemma 1.11 with x = 1, an ISOLS(A;w + e; k).
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We still have to consider the cases n = km + (k - 8), m even, 1 < 8 < 5.
These are all covered by Lemma 1.6 with p = k/2 (which is odd), q = 2m + 1,
x = 2, ap0 = 1 and Ax = {i<*/2-«-D}, where k/2 - 8 - 1 > 0 and k/2 - 8 -
1 * 2,3,6. This leaves the cases k = 10 and 5 = 1,2,5; and k = 14, 8 = 3 , 4 . ^

For k = 10 and 8 = 1,5, apply Lemma 1.6 with p = 5, q = 2m + 1, x - 2
and > t o = { I 4 } , ^o empty, respectively. For 8 = 2, apply Lemma 1.8 with
p = m - 1, q = 10 and ^ = {29}, provided that m > 11. When m = 8,^>ut
p = g, 4 = 10 and Ax = {24} in Lemma 1.8; and when m = 10, put p = 7,

f̂ = 14 and ^ o = (25} m L e m m a 1 5 -
Finally, for A: = 14 and 8 = 3, apply Lemma 1.6 with p = 7, ? = 2m + 1,

x = 2 and ^ 0 = { I 4 } ; and for A: = 14 and 8 = 4, apply Lemma 1.6 with p = 7,
? = 2m, x = 2 and ^ 0 = Ai = U 5 } -

THEOREM 2.10. Ifn = 5A: + E, 0 < £ < 2A:, k > 7, tfien /*«« is an ISOLS(«; k).

PROOF. Again, the case £ = 0 is immediate by product.
Suppose £ is odd and E # 3,7. Apply Lemma 1.8 with p = 5, q = k and

A o = {[e/2]2}, A , = {1} if 0 < £ < A:; A o = {[fc/2]2,[(£ - A:)/2]2}, A , = {1}
if k < e < 2k. If £ is even and e # 2, repeat the procedure but with ^ empty
and, if k < £ < 2)k, ^ 0 = {[fc/2]2,[(* - * + D / 2 ] 2 } - Should £ e {2,3,7}, use
Lemma 1.8 with p = 5, q = k - 1 and ^ 0 = {13,22}, ^ 0 = t 1 >22} and A , =
{1}, and A o = {1,22,32} and ^ = {1}, respectively.

THEOREM 2.11. Ifn = 4A: + e, 0 < £ < k, k > 7, tfien tfim? is an I S O L S ( K ; A;).

PROOF. When £ = 0, product yields the result. If £ * 2,3,6, apply Lemma 1.8
with p = 4, q = Jfc, A = {[£/2]2} if £ is even, and A 1 = { [ E / 2 ] 2 , 1} if £ is odd.
For £ = 3,6, apply Lemma 1.8 with p = 4, q = k - 1 and A -
{1, [(£ + 2 ) /2 ] 3 } . Finally, we consider the case E = 2. Provided that k # 7,8, the
same lemma, but with p = 4, <? = fe - 2 and ^ = {22 ,32} , will work. An
ISOLS(30; 7) comes from Lemma 1.6 with p = 7, ? = 3, x = 1, ^ 0 = ( l 5 ) a™1

^ ! = { I 4 } . The ISOLS(34;8) found by Wang [19] is given by d = 1 and the
vectors e = (1, 26, 24, 23, 22, 19, 18, 16, 21, 6, 17, 13, 15, 2, 20, 25, xx, 12,
x2, 10, x3, x4, x5, x6, xv xs), f = (14, 8, 5, 3, 4, 7, 11, 9) and g =
(4,16,19,24,8,26,5,11).

The final case n = 3A: + E, 1 < £ < k, is more difficult and will be done in a
series of lemmas.

LEMMA 2.12. There exists an ISOLS(3A: + 3; A:) for k > 3.
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PROOF. Consider the residue class of k modulo 4. Write k as At + 8, At + 9,
At + 6 and At + 3, t > 0. The "starter-adder" technique will be used. In all four
cases d = 1 and e = (1 ,x l t x 2 , . . . , x k , k + 3,k + 2,...,2), f = (k + A,k +
5, . . . , 2k + 3), and the first At positions of g are given by g' = (8,6,4,10,..., 8/
+ 8, ij + 6,8y + 4,8y + 10,..., 8/, 8/ - 2,8/ - 4,8/ + 2). Respectively, the last
8,9,6,3 positions of g are given by g", where

g" = (8? + 6,8/ + 10,8/ + 4,8/ + 8,8/ + 12,8/ + 18,8/ + 16,8/ + 14),
g" = (8/ + 8,8/ + 6,8/ + 4,8/ + 12,8/ + 10,8/ + 16,8/ + 20,8/ + 14,8/ + 18),
g" = (8/ + 8,8/ + 6,8/ + 4,8/ + 14,8/ + 10,8/ + 12), and
g" = (8/4- 8,8/+ 6,8/+ 4).

The cases k = A, 5 remain. When k = 5, g = (6,10,4,8), and when k = 5,
g = (10,12,8,6,4).

LEMMA 2.13 (Heinrich [12]). There exists an ISOLS(3A: + 2; k) for k > 3 and k
odd.

PROOF. Again, we simply give d and vectors e,f and g. Let k = 2m + 1 and
put d=l. Then

e = (I,x1,2,x2,...,m + l,xm+1,Am + A,m + 2,xm+2,
m + 3 , x m + 3 , . . . , 2 m + 2),

f = (3m + 3,2m + 3,4m + 3,2m + 4,4m + 2 , . . . ,3m + 2,3m + 4), and

g = (3m + 4,2m + 1,2,2m,3,..., m + 2,m + 1).

LEMMA 2.14. There exists an ISOLS(3fc + 4; k) for k odd, k > 3.

PROOF. First we do the cases k = 3,5,15. When k = 3, put d = 1, e =
(1,5,10,9,3,2,8, xx, x2, JC3), f = (4,6,7) and g = (10,3,5); and when k = 5, put
< /= l , e = (1,4,6,8,12,5,3,2,14, xltx2,x3,x4,xi), f = (7,9,10,11,13), and g
= (2,13,12,10,7). For k = 15, use Lemma 1.6 with p = 5, q = 9, x = 3, ap0 = 1
and au = 3. (Note that product yields an IPOLS(12; 3,3), and that we have
slightly varied the lemma by using an ISOLS(13; 3).)

Now, write k = 3a5^A', where gcd(A",30) = 1, can assume that k * 3,5,15.
There are four cases to consider, and, in each, Lemma 1.9 is applied with

= a2 = !• I f b o t h a * 1 and j8 * 1, put /> = fc, ? = 3 and x = 1; if
0 1

a
Po = a n = a2Po n 2 j p

a * 1 but j8 = 1, put p = k/5, q = 15 and x = 5; if a = 1 but 0 * 1, put
p = k/3, q = 9 and x = 3; and if a = fi = 1, put p = k/15, q = 45 and
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LEMMA 2.15. There exists an ISOLS(3A; + 7; A:) when k is odd and k > 3.

PROOF. The proof is essentially the same as that of Lemma 2.14. We first
construct ISOLS(3A; + 7; A:) for k = 3,5 and 15 and then proceed as before,
applying Lemma 1.9 with ap0 = a2 = 1 and Ax = {I4}. (Note that we also need
Lemmas 2.13 and 2.14.)

An ISOLS(16; 3) and an ISOLS(22; 5) are given by d = 1, e = (1,4,
xv 10,12,9,8,7,6,2, x2,3, JC3), f = (5,11,13), g = (9,12,10) and by d = 14, e =
( 1 , X 1 , X 2 , X 3 , ^ 4 , 1 5 , J C 5 , 7 , 3 , 1 6 , 1 2 , 8 , 4 ) 1 7 , 1 3 , 9 , 5 ) , f = (2,6,10,11,14) and g =
(14.16,12,15,17), respectively. To construct an ISOLS(52; 15), apply Lemma 1.6
(as in Lemma 2.14) with p = 5, q = 9, x = 3 and Ao = {1,32}.

LEMMA 2.16. / / n = 3k + e, 1 < e < k, k £ F\{3} and if, when k is even,
e =* 2,6, then there is an ISOLS(3A; + e; k).

PROOF. Suppose k > 5 and k is odd. Then, for e =£ 3,4,7, we apply Lemma 1.6
with p = k, q — 3, x = 1, ap0 = 1 and Ax = (I6"1}. If k is even, k £ F and
e # 2,3,6, apply Lemma 1.6 with p = k, q = 3, x = 1 and ^ = {le} (with
au = 1).

All other cases in the statement of the lemma were dealt with in earlier lemmas.

LEMMA 2.17. //Jt e F \ {2,3,6}, then there exists an ISOLS(3A; + e; A;), 1 < e
< k and e # 2,6.

PROOF. We may assume that e > 4, as the other cases have been dealt with.
There are twenty-seven values of k to consider.

For k = 10, there are five cases: n e {34,35,37,38,29}. When n = 35, use
Lemma 1.6 with/? = 5, q = 7 and x = 2; and for the others use Lemma 1.8 with
p = 4 and # = 8, a u = 2; ? = 9, a u = 1; q = 7, v4x = {33,1}; and # = 8,
A1 = {23,1}; respectively.

For k e G = {14, 46, 54, 58, 62, 74, 82, 98, 118, 142, 194, 202, 214, 278,
394,398,422,1322}, k/2 is an odd prime power. Apply Lemma 1.9 with p = A:/2,
q = 6 and x = 2. If e < k - 5 is odd, then, if e < A:/2, put Ao = {V}; and if
e > A;/2, put Ao = {lk/2} and a2 = • • • afc = 1, where fc = K« - V 2 ) + 1- If £
is even and e < k — 4, then, if e < fc/2, put J40 = {lc~3}, an = a2

 = \; and if
e > k/2, put ^ 0 = {1*/2}, a u = a2 = • • • = ab = 1 (if e = k/2 + 1 we just
have an = 1), where b = ^(e - A;/2 - 1) + 1.
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For k e H = {66,102,258,282,402}, Jfc/3 £ F. In Lemma 1.6 put p = Jfc/3,
4 = 9, x = 3 and ^ = (1", 3"}, where 1 < u + v < Jfc/3, a u - 1 and M + 3u =
e. Clearly M and « can always be found, provided that e # k - 1, /c - 3.

When fce G U # \ {14,46,258,402}, (Jfc + 6)/4 <£ F and (Jfc + 6)/4 > 7.
From the preceding lemmas there is an ISOLS(«; (/c + 6)/4) for n >
3((Jfc + 6)/4) + 7. Using Lemma 1.8, put /> = 4, $ = 3(Jfc - 2)/4, and
Ai = {an=(k + 6)/4, a21, a31, a41}, so that 0 < ayl < [3(A: - 2)/8], j = 2,3,4,
and a21 + an + aA1 = e - ((k + 6)/4) > 2((A; + 6)/4) + 7; all of these are pos-
sible for it > 58, 54, 50 when e = k - 3, Jfc-2, J t - 1 , respectively. This leaves
k = 54, e = 51. In this case apply Lemma 1.5 with p = 5, # = 31, Ao =
{132,142}andyl1 = {I4}.

The cases Jfc = 14, 46 and e = k - 3, k - 2, k - 1; and Jfc = 258, 402 and
e = k — 3, Jfc — 1 are shown in Table 2.4. This leaves only the cases A: = 70, 174
and 230.

k

14
14
14
46
46
46
258
258
402
402

e

11
12
13
43
44
45

255
257
399
401

P

7
8
7
5
5
7

77
45

149
149

1

6
5
6

27
27
19
10
17

8
8

TABLE 2.4

{I5}

a7}
{II2,122}
{II2,122}
{72,84}
{ l 2 ^ 3 ^ 5 0 }
{2,832}
{2,4100}
{2,4100}

A,

{I4}
{27}
{I4}

{1}
{I4}
{1}
{I8}

{I11}
{I13}

a 2 Lemma

1
—
1
_
-
-
-
_

_

1.9 x
1.5
1.9*
1.5
1.5
1.5
1.5
1.5
1.5
1.5

= 2

= 2

We first look at k = 174, 230. Since k £ E, there are at least Jfc/2 disjoint
symmetric transversals in P, determined by Pv all of which avoid the main
diagonal. Use these in Lemma 1.6 with p = k, q = 3, x = l and Ax = {le} for
4 < e < k/2 + 1. (Note that we also use the main diagonal of P, which is a
transversal.)

For k = 174 and 89 < e < 169, write 3Jk + e = 29 • 21 + (e - 87), where 2 <
e - 87 < 82, and then in Lemma 1.9 put p = 29, q = 21, x = 6, Ao = {1'},
Ax = {Is} and a2 = • • • =au=l, so that 0 < s, t < 29, s, t # 2,3,6, u < 13
and 2 < f + s + 2(M - 1) < 82. (Any ISOLS(n; 6) required which have not al-
ready been constructed are given in Lemma 2.22). For the remaining four cases,
170 < e < 173, use Lemma 1.8 with p = 4, q = 111 and Ax = {au =
57, a12, a13, a14} where 171 > a12 + a13 + a14 = e + 54 - 57 = e - 3 > 115.

The case k = 230 is handled similarly. When 117 < e < 156, write 3/c + e =
23 • 35 + (e - 115), and in Lemma 1.9 put p = 23, q = 35, x = 10, Ao = {1'},
Ax = {Is}, a2 = ••• = au = 1, so that / ^ 2,6 is even, 0 < t < 22, s = 0 or 1,
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p

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

1

30
30
30
30
30
30
30
30
30
31
32
32
32
32
32
32
32
32
32
32
32
33
33
33

33
33
34
34
34
34
34
34
35
35
35
35
36
36
36
36
36

e

4
5
7
8
9

10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
41
42
43
44
45
46
47

TABLE 2.5

4o

{i5}
{i7}
{i5}
{i7}

{10,12}
{I4}
{I4}
{1}
{1}
{1}
{1}
{1}
{1}

{1}
{I5}
{I5}
{I5}
{I5}
{1}
{I7}
{I4}

{I5}
{I5}

-
-

{I5}
{I5}

-

{I4}
{I4}
{I4}
{1}
{1}
{1}
{1}
fl5)

{1}

-

{1}

{1}
{I7}

{I7}
{1}
-

{1}
-

{I4}
{I5}
{I4}
{I5}
{I4}
{I5}
{I4}
a5}
a5}

a4}
{i4}
a5}
a4}
a5}
a4}

a)
-a)
-a)
-a)
-
a)

a2

1
-
-
1
1
1
-
-
-
1
-
-
1
-
-
1
1
-
-
1
1
-
-
-

_
-
-
-
1
1
1
1
1
-
1
1
-
-
1
1
_

and, if 5 = 1, then at least one ay is non-zero, and u < 10. It follows that
2 < s + t + 2(u - 1) < 41. (All the restrictions on s and t are to ensure that an
ISOLS(36; 10) is not required.) For 157 < e < 229, we use Lemma 1.8 with
p = 4, q = 155 and Al = {an = 75, au, a13, a14}, where 231 > a12 + a13 + au

= e + 7 0 - 7 5 = e - 5 > 152.
This leaves only the case k = 70. The values given in Table 2.5 used in Lemma

1.6 or 1.9 with x = 10 cover all cases e < 47 except e = 18, when we set p = 5,
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q = 42, x = 14 and Ao = {14,14} in Lemma 1.6, and e = 40, when we put
p = 20, q = 9 and A1 = {417,12} in Lemma 1.5. When 48 < e < 70, use Lemma
1.8 with p = 4, q = 47 and J4X = { a u = 23, a12, a13, a 1 4 } , where 69 > a12 + a13

+ a14 = e + 22 - 23 = e - 1 > 47.

THEOREM 2.18. / / n = 3Jt + e, 1 < E < k and e # 2,6 i/ Jk is «KTJ,

an ISOLS(/i; A:).

PROOF. Combine the last six lemmas.
Although many infinite families of ISOLS(6m + 6; 2m) can be constructed, we

know of no ISOLS(6m + 2; 2m) and computer search verifies that the smallest of
these, an ISOLS(8; 2), does not exist.

In order to complete our work it remains only to construct ISOLS(«; k),
n > 3k + 1 and 3 < k < 6. It follows from the existence of ISOLS(n; m) for
n > 3m + 1 when m is odd, and for n > 3m + 7 when m is even, and of an
ISOLSO* + 1; k), k e {3,4,5,6}, that an ISOLS( / J ; k\ k e {3,5}, exists for all
n > 9k + 10, and that ISOLS(«; k), k e {4,6}, exist for all n > 9k + 4. Many
of the small orders have been constructed by other authors (for example Bennett
[1], Bennett and Mendelsohn [2], Drake and Larson [8] and Wang [19]).

THEOREM 2.19. There exists an ISOLS(/i; 3) for all n > 10.

PROOF. We have only to consider integers n e {m: 14 < m < 37}\{16}.
First, the cases n e {14,17,20,21,22,26,32} are given by d and by the vectors
e,f and g in Table 2.6. An ISOLS(33; 3) exists as there exists an ISOLS(33; 10).
Applying Lemma 1.5 with q = 3, and with the other variables as in Table 2.7, we
obtain the remainder.

THEOREM 2.20. There exists an ISOLS(«; 4) for all n > 13, except perhaps for
n = 14.

PROOF. Only n in the range 16 < n < 39 need be considered. If n = At, t * 6,
product gives the result, and if n — At + 1, t ¥= 6, we use Lemma 1.8 with p = t,
q = A and Ax = {1} (an = 0). The cases n = 18, 26, 30 were found by Wang [19]
and are constructed using the starter-added technique, as also are n - 19, 23, 27
(see Table 2.8). The remaining constructions are given in Table 2.9.

THEOREM 2.21. There exists an ISOLS(/i; 5) for all n > 16.
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TABLE 2.6

e f g
( l .^ . j t j .S. l l .JCj, 5,2,10,7,4) (6,8,9) (10,11,7)
(l,3,5,8,x1,13,12,7,^2,x3,6,9,2,10) (4,11,14) (7,13,9)
(1, xr, x2,6,2,15,11,7,3,16,12,8, JC3, 17,13,9,5) (4,10,14) (16,17,6)
(l,*!,*;,,^,2,4,8,13,16,9,15,7,6,5,3,18,11,10) (12,14,17) (9,4,15)
(l,*i,x2,13,17,2,6,10,x3,18,3,7,11,15,19,4,8,12,16) (5,9,14) (18,12,19)

1 (I, xu x2, x3,2,4,6,9,12,18,22,16,15,21,20,8,10,7,5,3,11,17,14) (13,19,23) (11,18,20)
( l , * ! , ^ , ^ , 24,6,9,11,13,15,26,8,21,28,27,25,23,29,16,14, (18,20,24) (19,16,21)

12,10,7,5,3,19,22,7)

TABLE 2.7

n
14
17
20
21
22
26
32

d
9
1

14
1
5
1
1

15 4 {I 3 }(a n = l)
18 5 {I3}
19 5 {I3} {1}
23 5 {I3} {I5}
24 7 {I3}
25 7 {I3} {1}
27 8 - {I 3 }(a u = l)
28 7 {I3} {I4}
29 7 {I3} {I5}
30 9 {I3}
31 9 {I3} {1}
34 9 {I3} {I4}
35 9 {I3} {I5}
36 11 {I3}
37 11 {I3} {1}

TABLE 2.8

n d
18 1 e-(l,S,xltx2,x3,x4,2,9,11,6,8,10,12,7)

f = (3,4,13,14) g = (7,6,5,9)

19 1 e = (l,jc1,x2,X3,ll,3,x4,4,8,14,6,2,7,15,13)
f = (5,9,10,12) g = (4,3,8,9)

23 7 e-(l,jc1,13,jc2,6,x3,18,5,ll,17,*4,10,16,3,9,15,2,8,14)
f = (4,7,12,19) g - (10,19,17,15)

26 1 e(l, 19, *!, x2, JC3, x4,12,15,17,2,22,13,7,5,3,6,10,14,16,18,20,9)
f = (4,8,11,21) g = (3,5,4,7)

27 18 e = (1,A:1,12,6,JC2,17,11,5,22,16,10,X3,21,15,9,3,JC4,14,8,2,19,13,7)

f = (4,8,20,23) g = (20,13,23,8)

30 1 e = (1,11,*!, x2,Xi,xA, 17,13,26,23,4,6,21,15,3,2,12,10,8,5,25,18,20,22,24,7)
f = (14,9,16,19) g = (3,4,7,17)
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n

22
24
25
31
34
35
38
39

P

7
5
5

10
11
4

11
5

1

3
4
4
3
3
7
3
7

TABLE 2.9

Ao

{1}
{I4}
{22}
{1}
{1}
-

{1}
{I4}

-
-

{1}
-
-

{U2}
{I4}
-

Lemma

1.8
1.5
1.5
1.8
1.8
1.6 x = 1
1.5
1.5

TABLE 2.10

n d
28 17 e = (I.XLIO,;^,19,12,5,21,14,7,23,16,9,2,x3,ll,4,20,13,x4,22,x5,8)

f = (3,6,15,17,18) g = (10,5,23,3,21)

30 8 e = (1, ^,15,22,4,x2,18,25,7,14,21, x3, x4,17,24,6,13,20,2,9,16,23, x5> 12,19)
f = (3,5,8,10,11) g = (25,21,14,15,4)

34 6 e = (1,*! , 11,16,21,26,2,7,12,17,22,27,x2,x3,x4,18,23,28,4,9, x5,19,24,29,5,10,
15,20,25)

f = (3,6,8,13,14) g - (10,29,18,17,16)

n

23
24
26
27
29
31
32
33
37
38
39
42
43
44
47
48
49
52
53
54

P

4
4
7
5
7
7
9
8
5
5
5
5
5
5
5
5
5
5
5
5

<?

4
5
3
5
4
4
3
4
7
7
7
8
8
8
9
9
9
10
10
10

TABLE 2.11

-
-

{I5}
-

{1}
{1}
{I5}

-

{1}
{22}

-

{22}

-
-

{1}
-

{22}

{1.23}
{22}
-

{2}

{2}

{1}
{2}
{2}
-

{2}
{3}
-

{2}
{3}

W
{1}
{3}

Lemma

1.8
1.8
1.5
1.8
1.8
1.8
1.5
1,8
1.6 x = 1
1.6 x = 1
1.6 x = 1
1.6 x - 1
1.6 x = 1
1.6 x - 1
1.6 x - 1
1.6 x - 1
1.6 x = 1
1.6 x - 1
1.6 x = 1
1.6 x = 1
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n

22
24
25
26
27
28
29
30
31
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

P

4
7
7
4
5
7
7
8
5
7
4
7

11
11
4
7
9
7

13
13
11

5
4
9

11
9

11
11
5

13
4
7
5
5

q

4
3
3
5
4
3
3
3
5
3
7
4
3
3
8
4
3
5
3
3
3
7

10
4
3
4
4
4
9
3

12
7

10
10

TABLE 2

-

{1}
{1}

{1}
{1}
{1}

{23}
{I5}

{1}
{1}
{1}

{I5}
{I7}
{23}
{1}

{I5}
{I4}
-

{I5}
{I9}
{I7}
{I6}
{1}
{1}
{I11}

{23}
{23}
{1}

.12

{23}

{1}
{23}
{23}

{I6}
{I5}
{I6}

{I6}
{23}
{23}
-

{.1}
{23}
{23}
{I6}
-
-

{1}
{I6}
{23}
{23}

<23}
{I6}
{23}
-
{23}
{23}

{1}
{23}

-
{23}

a2

-
1
1
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
_
-
-

Lemma

1.5
1.8
1.8
1.5
1.5
1.5
1.8
1.5
1.5
1.5
1.5
1.5
1.8
1.8
1.5
1.5
1.5
1.5
1.8
1.8
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.8
1.5
1.5
1.5
1.5

PROOF. AS before we need only consider n in the range 20 < n < 54, but with
n ¥= 5t or 5/ + 1 unless n = 26, 30, 31, as in the first case, product suffices, and,
in the second, Lemma 1.6 applies with p = 5, q = t, x — I and Ao = {1}. The
cases n = 28, 30, 34 are constructed from vectors as in Table 2.10, and the
remainder are given in Table 2.11. Recall that an ISOLS(22; 5) was given in
Lemma 2.15.

THEOREM 2.22. There exists an ISOLS(n; 6) for all n > 19, except perhaps for
n = 20.
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PROOF. For n = 19 and 21, ISOLS(n; 6) have been given. Only two, n = 23
and n = 33 are constructed via the "starter-adder" method. For n = 23, put
d = 15, e = (1, xlt x2, x3, x4, x5, 17, 14, x6, 8, 5, 2, 16, 13, 10, 7, 4), f =
(3,6,9,11,12,15) and g = (16,15,10,14,17,13); and for n = 33, put d = 1,
e = (1, *!, JC2, x3, JC4, x5, x6,2,4,6,8,10,12,20,22,21,19, 9,7,5,3,25,27,11,18,
15,13), f = (14,16,17,23,24,26) and g = (12,11,18,9,20,2). The remainder
are given in Table 2.12.
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