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Abstract

We investigate the joint distribution of L-functions on the line 0 =1/2 4+ 1/G(T) and
t € [T, 2T], where log log T < G(T) < log T/(log log T)>. We obtain an upper bound on the
discrepancy between the joint distribution of L-functions and that of their random mod-
els. As an application we prove an asymptotic expansion of a multi-dimensional version of
Selberg’s central limit theorem for L-functions on o = 1/2 4+ 1/G(T) and t € [T, 2T], where
(log T)? < G(T) <log T/(loglog T)**¢ for & > 0.

2010 Mathematics Subject Classification: 11M41 (Primary); 11MO06, 11M26 (Secondary)

1. Introduction

We investigate the distribution of the Riemann zeta function ¢(s) for Re(s) > 1/2 using
its probabilistic model defined by the random Euler product

X -1
c(a,X>:1"[<1— (”)> ,

o
» P

where the X(p) for primes p are the uniform, independent and identically distributed ran-
dom variables on the unit circle in C. The product converges almost surely for o > 1/2
by Kolmogorov’s three series theorem. Our main question is how well the distribution of
¢ (0, X) approximate that of the Riemann zeta function for 1/2 <o < 1.

Consider two measures

&, 1(0,B) = %meas{t €[T,2T]:log ¢ (o + it) € B}
and
CD?md(a, B):= P(log¢(o,X) € B)
for a Borel set B in C. Define the discrepancy between the above two measures by

D (0) := sup |®; 7(0, R) — ™0, R)|,
R
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where R runs over all rectangular boxes in C with sides parallel to the coordinate axes
and possibly unbounded. This quantity measures the amount to which the distribution of
log ¢ (0, X) approximates that of log ¢ (o + if).

Harman and Matsumoto [2] showed that

D, (0) < (log T) 25 +¢

for fixed 1/2 <o <1 and any & > 0. See also Matsumoto’s earlier results in [10-12].
Lamzouri, Lester and Radziwilt [S] improved it to

D;(0) < (logT)™°
for fixed 1/2 < o < 1. Define

1 1

or = E"f‘% (1-1)

with4 < G(T) < (log 7)Y and fixed0 <6 < 1 /2, then Ha and Lee [1] extended above results
such that

D;(or) < (log T)™"
holds for some 0 < n < (1 — 0)/4. Here, we extend it to hold for o7 closer to 1/2.

THEOREM 1-1. Assume that loglog T < G(T) <log T/(loglog T)?, then we have

JG(T)loglog T
Jlog T ’

Next we consider a multivariate extension. Let L1, ..., L; be L-functions satisfying the
following assumptions:

D¢ (or) €

Al: (Euler product) Forj=1,...,J and Re(s) > 1 we have

d P
w-TIl(-22)

p i=1

—1
El

where |a;;(p)| < p" for some fixed 0 <n < 1/2 and foreveryi=1,...,d.

A2: (Analytic continuation) Each (s — 1)"L;(s) is an entire function of finite order for
some integer m > 0.

A3: (Functional equation) The functions Ly, Ly, . . ., Ly satisfy the same functional equa-
tion

Aj(s) = wAj(1 = 39),

where

k
Aj(s) = Li()Q" [ [T hes + pe),
=1

lw|=1,0 >0, Ay >0 and g € C with Re(ug) > 0.
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A4: (Ramanujan hypothesis on average)

d
D )P =0

p=x i=1
holds for every ¢ > 0 and for every j=1,...,J as x — oo.
AS: (Zero density hypothesis) Let Ny(o, T) be the number of zeros of f (s) in Re(s) > o
and 0 < Im(s) < T. Then there exists a constant k > 0 such that foreveryj=1,...,J

and all 0 > 1/2 we have
Ny(o.T) < T' @ DlogT.

A6: (Selberg orthogonality conjecture) By assumption Al we can write

logL(s)—ZZﬂL(p)

P r=l1

Then for all 1 <j, k < J, there exist constants &; > 0 and c;x such that

Z IBLj (p)IBLk (P)

1
_S,ké,loglogx—I—c,k—l-O( )
P log x

p=x
where aj,k =0 lf] ;é k and 6j,k =1 1f]= k.

The assumptions A1-A6 are standard and expected to hold for all L-functions arising
from inequivalent automorphic representations of GL(n). In particular, they are verified by
GL(1) and GL(2) L-functions, which are the Riemann zeta function, Dirichlet L-functions,
L-functions attached to Hecke holomorphic or Maass cusp forms.

Define

L(s) := (log ILi(s), .. ., og |Ly(s)], arg Li(s), . . ., arg L,(s))
and
L(o,X) = <10g L6, X)), .. ., log |LJ(0,X)|,argL1(o,X),...,argLJ(U,X))
for o > 1/2, where

Li(o,X) = ]_[]_[( “"@)X(”)) 12)

p i=1

converges almost surely for o > 1/2 again by Kolmogorov’s three series theorem. Then
L(o, X) is the random model of L(s). Define two measures

®dr(B) = %meas{t € [T,2T]:L(or + it) € B} (1-3)
and

®19(B) ;= P(L(o7, X) € B) (1-4)
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for a Borel set B in R* and o7 defined in (1-1). The discrepancy between the above two

measures is defined by

D(o7) := sup |®7(R) — PR,

where R runs over all rectangular boxes of R/ with sides parallel to the coordinate axes
and possibly unbounded. Then Theorem 1-1 is a special case of the following theorem.

THEOREM 1-2. Assume that loglog T < G(T) < log T/(log log T)?, then we have

VG(T)loglog T
JlogT
The above theorem is an extension of [4, theorem 2-3], which shows the same estimate,

but only for loglog T < G(T) < 4/log T/log log T. In the proof of [4, theorem 2-3] we have
used an approximation of each log L;j(or + it) by a Dirichlet polynomial

. Br,(p")
Rjy(or +it) := Z r(¢]77+it) (1-5)
p=y?

D(o7) K

for t € [T, 2T] with some exception. The exception essentially comes from possible nontriv-
ial zeros of each L;j(s) off the critical line and the set of exceptional 7 in [T,27T] has a small
measure by assumption AS. See [4, lemma 4-2] for details. However, this approximation is
not useful if o7 is closer to 1/2. We overcome such difficulty by means of the 2nd moment
estimation of log L;(o7 + it) in Theorem 2-1.

As an application of Theorem 1-2 we consider Selberg’s central limit theorem. Let v 7 :=

&ilog G(T) for j < J and
J J
R = [l b biy/w b < [ Tles/mvsr. dyy/m )
j=1 =l

for fixed real numbers aj, b;, ¢, d;. Then an asymptotic formula for

log Li(o7 + it)
NEA TN

is called Selberg’s central limit theorem. See [15, theorem 2] for Selberg’s original idea. Let
0 < 0 < 1. To find an asymptotic of ®7(R ) for

1
Or(Ry) = ?meas{t e[T,2T]: € laj, bj] x [¢j,dj) forj=1,...,J}

logT

logT)! <G(T) < ——=——,
(log )" < ()_(loglogT)2

(1-6)
it is now enough to estimate d>rTa“d(RT) due to Theorem 1-2. One can easily check that the
asymptotic formula of @rTa“d(RT) in [9, theorem 2-1] holds also for G(T') satisfying (1-6).
Hence, we obtain the following corollary.

COROLLARY 1:3. Assume (1-6) for some 0<0 <1 and assumptions Al-A6 for
Ly,...,L;. Then there exist constants €1,&2 >0 and a sequence {bx)} of real numbers
such that
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®7(Rr) = > bkll"[ ,M

IC(k+l)<sl loglog T Jj=1 J

X 1_[ </ —mu? Hr: («/_u)du/ - H@I(\/_v)dv)

G

1 JG(T)loglog T
+0< 1 YD) loglog ) (17)
(log T)*2 log T
where K= (k1,...,ky) and 1=, ..., L)) are vectors in (ZEO)J, KEK):=k +---+kj

and

n

H,(x) = (— 1)"ex2 d—e_x
dx"

is the nth Hermite polynomial. Moreover, boo =1, bx1=0 if K(k+1)=1 and bx)=
065 ) for some 8 > 0 and all k,1 € (Z=o)'.

Note that Corollary 1-3 extends the asymptotic expansion for {(s) in [8, theorem 1-2]
and the asymptotic expansion for L(s) in [9, theorem 1-2]. If G(T) is very close to
log T/(loglog T)?, the error term in (1-7) is large so that we have an approximation by a
shorter sum as follows.

COROLLARY 1-4. Under the same assumptions as in Corollary 1-3 except for

logT

GT=—"""5—
o (loglog T)%+8

with a constant g > 0, we have

or(Rr)= Y bkll_[ k,+€,

lC(k+l)<g j=1
x ]_[ ( / T H (T u)du / TN (T v)dv) +0(

Note that an asymptotic expansion similar to (1-7) was expected to hold in [3] without a
proof.

(log log T)§>'

2. High moments of log L

Let L be an L-function satisfying assumptions A1-A6 in this section. Here, we use «;(p)
instead of o ;(p) in assumptions Al and A4, and assumption A6 is simply

2 1
Z AL :ELloglogx—I-cL—l-O( )
p log x

p=x

for some constants & > 0 and ¢;, € R. Let o7 be defined in (1-1) and assume that

(log )} <Gy < — 8T 2-1)
~ (loglog T)?

in this section. Then we need the following theorem to prove Theorem 1-2.
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THEOREM 2-1. Let k be as in assumption A5 and 0 < & <min{1/48, k/3}. Assume (2-1)
G
and e(T) <Y <T¥ then there exists ko > 0 such that

1 2T o loeT sl G(T
— / log L(oy + if) — Ry(oy + in)2dt < =08 4 =265 S0
T Jr logY’

where

Ry(s) i= Z ,BL(PV)'

=Y p"

To prove above theorem, we modify high moments estimations of log ¢ in Tsang’s thesis
[16] and compute high moments of log L. All these computations are based on Selberg [13,
14]. Since the Dirichlet coefficients of L(s) are allowed to be larger than 1, Theorem 2-1 is
not an immediate consequence of Tsang [16]. We need to bound various sums involving the
Dirichlet coefficients of log L carefully using assumptions A4 and A6. As a result we obtain
the following theorem.

THEOREM 2-2. Let k be as in assumption A5 and 0 < ¢ < min{1/48, «/3}. Let k be a posi-
tive integer such that k < (¢/4)(log log T)? Assume (2-1), then there exist ko, ¢ > 0 such that

1 2T . logT
- / | log L(op + in| % dr « ke 06D 1 ik log G(T) (2:2)
T

and
E[| log L(or, X)|*] < Kk (log G(M)E. 23)

By Theorem 2-2 with k =log log T one can easily derive the following corollary, which
is necessary in Section 3.

COROLLARY 2-3 Assume (2-1). Given constant A| > 0, there exists a constant A> > 0 such
that

%meas{t € [T,2T]:| log L(oT + it)| > Az loglog T} < (log 7)™
and
P(| log L(o7, X)| > Az loglog T) < (log T)™1.
We provide lemmas in Section 2-1 and then prove Theorems 2-1 and 2-2 in Section 2-2

2-1. Lemmas.

We adapt estimations in [16, chapter 5] for log L. We begin with [16, lemma 5-1].

LEMMA 2-4. Let k be as in assumption A5, 0 <k’ <« and v > 0. Then there is a constant
¢ > 0 such that

Y (B o) XP7 =0(T' " D(log ) V(cv)")
B>o
T<y=<2T

for1/2<oc<land3<X< T"_"/, where B + iy denotes a zero of L(s).

https://doi.org/10.1017/S0305004124000240 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004124000240

Discrepancy bounds 319

Proof. We only prove the case v > 0, since the case v = 0 is similar. First we see that

p—o l1—o
Yo B-oyxf= )" /0 du’X") = /0 > dw'x"
+
&S 1 or P

1—0o
< / Ni(o +u,2T)d(u"X").
0
By assumption A3, the above is
1 1-o
LT' =2 jog T / T*“(vu” =1 X" + u’ X" log X)du
0

o0 ’
§T1_"("_%) log Tf v’ 4+ u” log X)T™ “du
0

T %= (log T T(v + 1)
for some ¢ > 0. Hence, the lemma follows.

Define

L, sl 2
= = max 18— =, —
Tt =5 2" logx

fort € [T, 2T], where the maximum is taken over all zeros 8 + iy of L(s) satisfying [t — y| <
x3B=1/2) /log x and B > 1/2. Then the following lemma corresponds to [16, lemma 5-2].

LEMMA 2-5. Let v>0, 0 <«’ <k and x=Telk for g,k > 0. Suppose that 3 §)c3X2 <

/
T“7% . Then there is a constant ¢ > 0 depending on «, & such that

vV
(Uxt - O')UXUx’tiodt <<g _(CV)—k Tli%(oié)x%(ai%)
Oy >0 g (log T)v
T<t<2T
for1/2+4+4/logx <o <1 and
v k+v v
(Ux,t — U)VXUx,t_Ud[ <<€M 1_%(‘7_%) + Ti
T‘TQ;ZZUT (log T)Y (log T)Y
for1/2 <o <1/2+4/logx.
Proof. Define two sets
1 4
Si=3te|T,2T]:oy;>max o, =+ — | ¢,
’ 2  logx
1 4
So=13t€e[T,2T):0, ;== + >07.
T2 logx
Since oy, > 1/2+ @, we see that
/ oryog (Ora = 0)' XO T dr = : (0t — 0) X% dt 4 : (0 — 0) X7t
g 1 2

T<t<2T
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For t € §1, by the definition of oy, and o,; > 1/2 + 4/log x, there exists a zero 8 + iy
such thatoy, =28 —-1/2,8 —1/2>2/logxand |t — y| < x3B=1/2) /log x. Thus, we have

3(6-1)
}/+X7

1o ,\: 1 v
/ (O — )X Cdr <Y / S(ﬂ_g%) (2,3—5—0’) X26-1-0 g
. S Cas ML
T<yssr

21+vx%(ﬂ—%)

1 1 v 392 1 1
-7 _ _ X ,3—7(04‘7)'
- log x Z (ﬂ 2<a+2>> X%

B>5(0+3)
T<y=3r
By Lemma 2-4 the above is
< Ifﬂﬂ-%(a—%)x%(ﬂ—%) (2-4)
e (log Ty

for some ¢ > 0.
We see that S =@ foro > 1/2 +4/logx. If 1/2 <o <1/2 + 4/log x, then

Vo4 cktvgy
Xlogx < —
~ (logT)”

(0x; —0)' X% ™%t < T(

S5 log x

for some ¢ > 0.

Next we consider [16, lemma 5-3] and observe that the condition (ii) therein does not hold
in our setting. To adapt its proof to our setting, it requires several inequalities regarding ff.
By assumptions Al and A6 we have

d
1
r = - i r. 25
L) =~ ; ai(p) 2:5)
From (2-5) and assumption Al it is easy to derive that
d
IBLPNI < —p™ forr=1, (2+6)
r
1 ¢ pr=2m & )
BLP")I < — Zl ji(p” < — Z] lai(p)|> forr=2 @7
= 1=
and
d 2 d
1BLP)I” < (Z |al~<p)|) <d ) lip)*. (2-8)
i=1 i=1

For convenience we extend By, by letting f1.(n) =0 if n is not a power of a prime. Then we
see that

n

log Ls) = 3 24

https://doi.org/10.1017/S0305004124000240 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004124000240

Discrepancy bounds 321
Define

A= Ao, x, 1) = max{dx,t, o}

foro €[1/2,1] and

1 forl <n<ux,
2,3 _ 2.2
log” (x°/n) 22108 &/m - for x <n<x?
ORI
log” (x /n) forx? <n <3,
2log” x
0 forx> <n

then we have the following lemma.

LEMMA 2-6. Let k and m be positive integers such that k <m < 16k, k as in assumption
A5 and x =T*. Assume that € [k < k /3 and 0 < ¢ < 1/48. Then there exists a constant ¢ > 0

such that
2T
D>

n

A,-Hl

1 m
dt < Tckkm(mm { log log x, log })
O' =
2

and

Br(n)g«(n) logn |*
nA,-Ht

m 1 2m
dt < TFk™ < min { log x, })

1
o—3

forl/2 <o <1.

Proof. Let ¢ be a nonnegative integer, then we see that

—n" %)

14 14 14
3 BLmgx(m(logn)” _ 3 BL(m)gx(n)(log n) +3 Pr(n)gx(n)(log n) (™

it o+t nit

We split the first sum on the right-hand side as

3 Aulnigsln)log ' _ Z PLplex(p)logp)’ Z BL(P®)8x(p)(2 log p)*

o +it pa-i-it p2<7+2it

BLp")gxp")(r log p)e
+ Z Z rJ—Hrt
p r>3

By (2-7) and assumption A4 we have

BL(P (P )(r log p)t P ai(p)A(rlog p)t
ZZ ro+zrt Z Z rpro
p =3 P 3<yp<3losx

—1g/z
2 (4
i1 o lo
« 3 Ty P Clogp)” |

p27
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By [16, lemma 3-3] we have

/” 3~ ALz 02 [*" 1 7o (Z |ﬂL<p>gx(p>|2<logp>”)m
T po+it : ~ pZJ
2T 2 . 2 1 £ |2m 2 . 2 21 20N\ m
/T BLp )f,z(f+§ft ogn) [, Tm!<z 1BL(P®)g <§42| (logp) )
P p

provided that x*" « T, which holds for 0 < & < 1/48. By assumption A6 we have

ZwL(p)gx(p» 2(log p)** _ -y 1BL(p)2(log p)* <<{loglogx if£=0,

2 20
~ P2 = p (logx)% ife>1

for1/2 <0 <1/2+4/logx,

1 2¢ 1 2¢ 00
) |,3L(p)gx(P§| (logp) < BLP)I® g ogp) / 12 (log )~ du
r P P P

log -1+ if¢=0,

<y [

(0—3)%

if¢>1

for 1/2 4+ 4/logx <o < 1. By (2-7) and assumption A4 we have

1BL(Pgx(p?)|*(log p)* S ) (logp)”
> <<Z

p40 2 —2n <1

p

for o > 1/2. Since

3 BrL(m)gx(n)(log n)t |*"

no it

53”’(

for some ¢ > 0, by collecting above equations we find that

/” BrL(m)gx(n)(log n)t |*™
T

no it

n

BLpH g (pP)(2 log p)t "

20 +2i
pa+tt

3 BL(p)gx(p)(log p)t ™

pa+it

+ cm>

"

dt

n

m
Tckim < min : log log x, log o% }) if£=0,
~3

2¢m
Tc’%’"(min{ L }) if¢>1
2

for some constant ¢ > 0 and for 1/2 <o < 1.

/ZT
T
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—0
nit —n")
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By equations in [16, p. 67] the above integral is bounded by

1

2T i 00 2m—1
<<( f ()\t—a)“mem(x’_a)dt) ( / X° Vdv>
T o

00 2T 241 4m 1
« ( / X7 f Z Br(n)gx(n)(logn)"" log (Xin) i dv>2
o T

nvtit
with X| = T%l for some ¢; > 0. Let v =4m and X:Xf'm =T in Lemma 2-5. One can
easily check that the assumptions in Lemma 2-5 follow from the assumptions in Lemma
2-6. Thus, by Lemma 2-5 there exists ¢ > 0 such that

n

2T
[ ()‘t _ 0_)4mX‘1¥m()»;*a)dt << Ckk4mT17%(l(737s)(0'7%)(10g T)74m
T

for 1/2 <o <1. By (2-9) we have

00 2T
[
o T
los T 2m(26+3)—1
L Tkk*m (%) (min { log x,

Therefore, by combining above results we obtain

/ZT
T

3 BrL(m)gx(n)(log n)**! log (Xin) [*"

nvtit dtdy

SR

2m

—n~ %) dt

3 Br(mgx(n)(log ) (s

it

1
<<ckk2m—2m£7~1——(:< E)o— 2)(10g7)2m5 m(mm{logx
o

for 1/2 <o < 1. The lemma follows from (2-9) and (2-10).

The following lemma is an analogy of [16, lemma 5-4]. The proof of [7, lemma 8] is for
Hecke L-functions of number fields, but it works also for our L-functions. So we state the
lemma without a proof.

LEMMA 2.7 Let t€[T,2T], 1/2 <o <1 and t # Im(p) for any zeros p of L(s). Then we
have:

log L(s) = Z Br(n)g«(n) + I:(S)

A +it

xi—1h BL(g:(m) log n
rof (gr +o0o)(| Z E

+ log T)),

where

~ Mt M—)\,t
L(S)ZZ/(, @i =i 1D

o
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The following lemma is proved for the Riemann zeta function in the proof of [16, lemma
5-5]. We rewrite its proof for convenience.

LEMMA 2-8 Let L(s) be as in (2-11) and x = T%. Assume that e/k<k/3and0<e<1/48.

Then we have
+ log T),

Re(L(s)| < (4 — 0)(1 + (s — o) log x + log*

+10gT>,

where log™ w := max{log w, 0} and n; = min |t — y| with the minimum taken over all zeros
B + iy of L(s) with g > 1/2. Moreover, we have

o1 1\
/ (logJr ) dt < T(ck)*
T ne log x

Proof. If 0 > 0y;, then A; =0, L(s) =0 and the lemma holds trivially. Thus, we assume
that o < oy, then A; = o;. By (2-11) we find that

(o —u)(t —y)u— B+ oxs—B)
Im(L(S))_Z/ lu+ it — p|*|ox; + it — p|? du @12

nk,+tt

- (n)1
(L) < (4 — a>(‘ o Ll log

)

1 logx

BL(n)gx(n)logn
(e

nk,—i—lt

for some c > Q.

and

B 7 (U= on) (U= P)low =) =t = 7)) |
Re(L) = Z/ it — pPlogg tit—pP " i

First we find an upper bound of Im(L(s)). By (2:12) and |ox; — u| <|ox; — 0|, we have

IIm(L(s))| < Z/ lows — ullt = yI(loxs —ul +2lu— D)
P

lu+ it — p|?|ow; + it — p|?

_ Ox.t t—
fz |Ux,t'U| 2/ |2 V| zd”‘
o tit—pP Jo  w@—pP 1)
lox: — o] /6"” It —yllu— Bl
: 2 2 yau
P |O'x,t+lt_p| o u—-Br+@—vy)

+2

The integrals on the right-hand side are

o Ll /°° lt—yl _/00 du
fo w—pr =2 cw—prra—pp =) et

ot —y|lu—pl
/g (u—ﬂ)Q—i—(t_y)zd”f(Ux,t—U),
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so that
~ |owr — U|2

ImEGs)| <(r+2)y —2 —° 2-14
Im(Z(s)] < ( );mﬁ”_p'z (2:14)

Selberg in (4-8) of [13] proved that

1 Br(n)gx(n) logn

logT 2-15
Z |ze+ll‘—/0|2 ( Z UxH—lt + 0g ( )

for the Riemann zeta function, and it also holds for our L-functions. We may prove (2-15) by
(4-4) and (4-6) of [7] in the proof of [7, lemma §]. By (2-14) and (2-15) the first inequality
in Lemma 2-8 holds.

Next we find an upper bound of Re(L(s)). By (2-13), we have

IRe(L(s))|<Z/ st Jos — ul (lu— Bl(lows — ul + lu— BI) + 1t — ¥ ) .
|lu+it — p|2|ox, + it — p|?

|0 /""" lu— Bl o — o
< u+
Z|ax,+1t—p|2 (14—/3’)2-1-0—)/)2 Zldxt+ll—p|2
The integral on the right-hand side is

Ox,t _ Ox.t 1 _
f =Pl 2du§2/ —du§4log<1+0x’t “).
o W=py+0t—y) o lu—pBl+lt—yl |t — vl

Define logt w = max{log w, 0} for w > 0, then for any v, w > 0, it is easy to verify log (1 +
w) < 1+1log™ w,log™ (w/v) <log™ w+log* (1/v) and log™ w < w. Then we have

log (1 N Oxt— a> <log (1 4 (0% — a)logx)
[t —y] nelog x

<1 +1log" ((ox; — o) logx) +log™®

n; log x
1

n:log x”

<14 (ox;—o0o)logx+ log™

Thus, we find that

lox,s — ol

- 1
Re(l(s)| <1+ 40y —0) 1+ (0y;—0)logx+logm —— _—
IRe(Z(5))] ( (02 )( (034 — 0) logx + log n,logx))Xp:lax,t+lt—,0|2

Now, the second inequality of Lemma 2-8 follows from the above inequality and (2-15).
By the definition of log™ and 7, we find that

2T 1 2k @ 1 2k
/ log™ dt < Z f log™ aw.
T n; log x 0 wlog x

=

1
T—@<V§2T+@

The number of zeros in the above sum is O(T log T). By substituting w log x = e™", the last
integral equals to I'(2k 4 1) /log x = (2k)!/log x. Hence, the last inequality of Lemma 2-8
follows.
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2-2. Proof of Theorems 2-1 and 2-2

To prove Theorems 2-1 and 2-2, we need to find an upper bound of the 2kth moment

/” Br(mg(m) [*
T

log Loy +in =) = =0
n

where x = T¢/P_ k < ¢/4(loglog T)*> and 0 < & < min{1/48,k/3}. Let 0 = 1/2 and k=m

in Lemma 2-6, then we get

/ZT
T n

By Lemmas 2-7 and 2-8 and (2-16), we have

2T

|
<« /
T

2T 1 2k
+c* f O — o) 14 (0 — o7) log x + log ™t
T n: log x

dt,

1 2k
%('Btog"‘ dt < KT (log x)*. (2:16)
n Xt 1

log Loy 4 if) - Z BLimg:(n)|*

0r+lt

dt

BLgn) < fuign)
2 >

nk,+it naT—i-lt

3 BL(n)gx(n) log n |*

n}\,t+it dt
n
2T 2k
1
+cflogD* | —op)* (1 + (A — o) log x + log* —p x) dt
T t

log T

+ MR EGn 2-17)

for some ¢ > 0. It remains to bound the integrals on the right-hand side.
Since k < ¢/4(loglog T)2, we see that
1 I _ (loglog T)2 4

or — = .
2 G(T) logT log X

By (2-10) we have

N

for some ¢ > 0. By Lemmas 2-5 and 2-8 we have

log T GTk
dt<< K2k Jle— 7)G(gT)L (2-18)
(log Tk

Z BL(n)gx(n) Z BLmgx(n)|?

A,+lt nor-i-tl

k m2m

( )2m

1 3eylogT
—1&—) G

2T
/ (A — op)?™dt <
T

and
2T

1 2m
(Ot — o1)™" ( log* ) dt
T s log x
1

27 3/ 2T 1\ \2
< ( / (A,—GT)“mdt) ( / <1og+ ) dt)
T T nelogx
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Ck m4m |

< Clog 1

3gylogT
2= )G

for k < m < 4k. Thus, we obtain

2T

1 2m
(A — o7)™" (1 + (A — o7) log x + log™ ) dt
T n,logx

ckm4m —1¢ ,3;3)10%7
1

<<(]0g—T)2m e k/ G(T) (2.19)

for k <m < 2k. By Lemma 2-6, the Cauchy—Schwarz inequality and the above inequality we
have

2T
Br(n)gx(n) logn
r—or) (1400 — o)l 1
. (At —o7) ( + (A — o7) log x + log™* n,logx) Z it
ky 5k 2% .
G~ Te*%(’(*%)lo%, (2-20)
(log T)%
Therefore, by (2-17) — (2-20) there exist kg > 0 such that
2T log T
/ log L(or + it) — Z ﬂL(ZE:f ) dt < ckk‘”‘Te_KO%. (2:21)
T
Let k=1 1in (2-:21), then we see that
2T 2 log T
/ log L(or +if) — Y | % dt & Te ™ 0GD) (2:22)
T

n

where x = T? and 0 < ¢ < min{1/48, k/3}. Lete o <Y <x, then we have

I

by [4, lemma 4-1]. Thus, Theorem 2-1 follows from (2-22) and (2-23).
Next we prove Theorem 2-2. We see that (2-2) holds by (2-9) and (2-21). The proof of
(2-3) is similar, but simpler than the proof of Lemma 2-6. Since
BLP)X(P) ﬁL<p2) (,,2
log Llop, ¥)= 3 =T 4 3 ST
p p

Z ﬂL(n)gx(n)

2 1—20'
ﬂl n Y T
p dtT E AL (2-23)

n2er (207 —1logY

n>Y n>Y

+0(1),

by [16, lemma 3-3] we have

2\ k 2412\ k
| log Lior, )] 5c"<k!(z 'ﬂ;(fj' ) +kz(z_'ﬁ;§i3' ) +1)

p p

for some ¢ > 0. By (2-7) and assumption A4 we have

242
s POl |BL(P) <Z Z, L |Otz(19)| <1

dor
7 p
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By assumption A6 we have

2 00
AL LE TN o)
p2(rr 2

14+ =%~
p u tom logu

Thus, we have
E[| log L(o7, X)1*] < c*k!(log G(T)*
for some ¢ > 0.

3. Discrepancy

In this section we will prove Theorem 1-2 for G(T) satisfying (2-1). First we need to
extend [4, proposition 5-1]. Define the Fourier transforms of ®7 and CIJrTand by

&mw:/eMm”W%mw

sz
and
Q?Hd(x, y) — / eZm(x~u+y~v)dd)rTand(u7 V),
R2/
where X = (x1, . ..,xy) and similarly y, u, v are vectors in R’ and x-u:= stj xju; is the

dot product. Then we obtain the following proposition.

PROPOSITION 3-1. Assume (2-1). Given constant A4 > 0, there exists a constant As > 0
such that

~ ~ 1
q) , — (Drand , 0
(X, y) = P77, y) + <—( og ) A4>

Jor max;<j{|x;l, [yj|} < /log T/As</G(T) loglog T.

Proof. By definition we get

. 1 2T
Or(x,y) = - f exp |:2ni E (xjlog |Lj(or + it)| + yj arg Li(or + it))}dt,
T ‘
j=<J

Prand(x y) = E[ exp |:2m' > (xlog |Li(or, X)| + y; arg Li(or, X))} }
i<J

Since the inequality
le™ — ¥ |> = 4 sin® (%) <lx—y]?
holds for any x, y € R, by the Cauchy—Schwarz inequality and Theorem 2-1 with

log Y =Ae¢G(T)loglog T
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we have

. 1 2T
o7 (x,y) — T /T exp |:2m' Z (ije(Rj,Y(UT + i) + yIm(R; y (o1 + it)))i|dt

Jj=J
2T
_0< / Z(Ile+ijl)llogL](aT—Ht)—RJy(aT-l-lt)ldt)
isJ

1 2T %

=0(Z(|xj|+|)’j|)<—/ |IOng(0T+it)—Rj,Y(UT+it)|2df) )
j<J T

~ " \(log Ty

for all |x;], [yj| <M. Let

_ log T
| 1046G(T) loglog T |’

then by the Taylor theorem and [4, lemma 4-5] we have

R 2N-1 Qi 2T n
Or(x,y)— Z T /T ( Z (xjRe(Ry(or + it)) + yIm(R; y (o7 + it)))) dt
n=0 ’ j<J

MZN 1 2T M
=0< N T / Z |RJy(UT+1t){ dt+( T)A6>

cM?loglog T M
N (log T)As

for some ¢ > 0. Let

. logT
"~ As/G(T)loglog T

. 2
with a constant A5 > 10cA6e5A6, then we have

Or(x,y)= Y T /T ( > (Re(R;y(or + it) + yIm(R; y (o7 + it)))) dt
n=0 j=J

+0(—1 )
(log Ty'e~z

By following the second half of the proof of [4, proposition 5-1] one can conclude that the
proposition holds.

We next need to introduce Beurling—Selberg functions. Define

1
Flap,a(@) = E(H(A(Z —a)) — K(A(z—a)) + H(A(D — 2)) — K(A(b — 2)))
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for z € C and A > 0, where

. o0 -2
H(z)=—smﬂ(nz)< Z sen() +%> and K(Z)=—Sln (nz).

(z—n)? (mz)?

n=—0oo

Then we summarise some results in [6, section 7] as a lemma.
LEMMA 3-2. For all x € R we have |Fap.A(x)| <1 and
0 < 14,p1(x) — Flap).a(x) < K(A(x — @) + K(A(D — x)).

Moreover, the Fourier transform Fi,p) A satisfies

iflyl = A.

We are ready to prove Theorem 1-2 for G(T) satisfying (2-1). By Corollary 2-3 there exists
a constant Az > 0 such that

- {T[a,b](w +O(A™Y iflyl <A,
[a,b],A = 0

1

1 .
?meas{t €[T,2T:L(or +it) ¢ I} < (log 1)’

P{L(o7,X) ¢ IT} < (log—T)lo’

where
It := [—A3loglog T, As log log T

Then we see that
1
(0] = NI
r(R)=®r(R T)+0<(1 T)IO)

1
rand rand
PE(R) = D (RmIT)+0<(1 T)10>

for any R € R%. Thus, we have

_ _ rand 1 > .
Dior)= sup [07(R) - &f (R)|+0<—(logT)10 : 3-1)

where R C I runs over all rectangular boxes of R* with sides parallel to the coordinate
axes. By (3-1) it is enough to show that

d7(R) — P (Ry=0M"") (3-2)

for

J J
R:HIIJ X HIZJCIT,
j=1 j=1
where 1 j = [aj, bj]l and I j = [cj,dj] forj=1,...,J.
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By definition we see that

1 2T J
O (R)= T [ l_[ 111J( log [Lj(or + it)|)112J.( arg Li(or + it))dt,
T
j=1

J
ond(R) = E[ [ [ 14, Clog |Lj(o7, X)), (arg Li(or, X))]
j:l

By Lemma 3-2 with A = M we have

1 (2T J
P7r(R) = T / 1—[ Fr,; m(log |Lj(or + in)Fp,; m(arg Li(or + it))dt + oM™,
T
j=1

J
PR = E[ l_[ Fp,  m(log |Lj(or, X)) Fp,; m(arg Li(or, X))] +om™). (3-3)
j=1

To confirm the above O-terms, it requires inequalities similar to
1 2T
T / KM(log |Li(or + it)| — a))dt
T

=1/M 1—M e TG, 0, . . ., 0)du K i,
M) y M M

which holds by Fourier inversion, Proposition 3-1, [4, lemma 7-1] and
K(x)=max (0,1 — |x]).

By Fourier inversion, Lemma 3-2 and Proposition 3-1 we obtain

1 or J
- f [ ] Fn,mCog |Li(or + it))Fu,, m(arg Li(or + in)dt
T .
Jj=1

J
= /R y (l_[ /Fll’,,M(Xj)flz J,M(YJ)>6T(—X, —Yy)dxdy

j=1
(M log log T)ZJ)

J
— o VEr ; 6rand—,—dd o ————
f’?ﬁ'ﬁ"'fy (E MG '”’M(y’)) T )y + ( (log T/

2J
(MloglogT) ) 34)

J
= E[E Fr,; m(log |Lj(or, X))F 1, m(arg Li(or, X))] + O(W
Here, we also have used that

Flapi | < MmO + OM™") < log log T
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for |[y| <M and |b — a| < loglog T. We choose A4 sufficiently large so that

(M log log )% 1
(logTY44 — M’
then (3-2) holds by (3-3) and (3-4). This completes the proof of Theorem 1-2.
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