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Abstract

‘We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share
values in a finite set and share values weighted by multiplicities.
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1. Introduction

Let M(C) be the field of meromorphic functions over the field C of complex numbers.
In this paper, we will study the uniqueness problem for meromorphic functions in
the extended Selberg class S* of M(C). The extended Selberg class S is the set of
L-functions

)

OEDY aw) (1.1)

nS

n=1

in a complex variable s € C which satisfy the following axioms (see [9]).

(1)  Ramanujan hypothesis. a(n) < n® for any & > 0, where the implicit constant may
depend on &.

(i) Analytic continuation. There is a nonnegative integer k such that (s — 1)¥£L(s) is
an entire function of finite order.

(ili) Functional equation. L satisfies a functional equation of type

Ar(s) = wAL(1 =),

where

K
Ag(s) = LO' | [Tys +u)
j=1

with positive real numbers Q, A4; and complex numbers y;, w with Re ¢; > 0 and
lw] = 1.
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Further, an L-function £ in S* is in the Selberg class S if £ also satisfies the following
additional axiom (see [9]).

(iv) Euler product. L(s) satisfies
L) = | L),
P

where

o)

Ly(s) = GXP(Z b;l,;k))

k=1

with suitable coefficients b(p) satisfying b(p*) < p*? for some 6 < 1.
In the sequel, we mainly consider a subset S*(1) of S* defined by
Sﬁ(l) ={Le St | L is expressed by a series of the form (1.1) with a(1) = 1}.

The classical question in the uniqueness theory of meromorphic functions is as
follows.

Question 1.1. For a family ¥ in M(C), determine subsets S of C =CuU/{o0} of
minimal cardinal such that any two elements f and g of 7 are algebraically dependent
if f~'(a) = g7'(a) counting multiplicity for each a € S, that is, if f and g share each
element of S CM (counting multiplicity).

For the case ¥ = M(C), a famous theorem of Nevanlinna claims that any subset
S c C of four distinct elements is a solution of Question 1.1 and the number ‘four’ is
sharp (see, for example, [4] or [10]). Furthermore, two such elements in M(C) are
related by a fractional linear transformation.

If = S¥(1), a result due to Steuding (see [8] or [9]) shows that any subset S of C
of one element is a solution of Question 1.1. Further, two such L-functions in S*(1)
must be equal.

In 1976, Gross (see [3]) extended Question 1.1 as follows.

Question 1.2. For a family ¥ in M(C), determine subsets Si, ..., S, of C in which the
cardinal of each S; is as small as possible and minimise the number g such that any
two elements f and g of F are algebraically dependent if £=1(S i) = g7 1S ;) counting
multiplicity for each j, that is, if f and g share each §; CM (counting multiplicity).

Denote the pre-image of a subset S c C under f by
ES. fr=| Jisecifs)-c=0),

ceS
where a zero of f — ¢ with multiplicity m counts m times in E(S, f). If E(S, f) =
E(S, g), then f and g share the set S CM.
If g > 4, Question 1.2 is completely answered by the theorem due to Nevanlinna.
But it is still interesting in the cases ¢ < 4. For the family ¥ = A(C) c M(C) of
entire functions over C, Gross partially solved Question 1.2 by finding three finite
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sets S; (j =1,2,3). Since then, there have been many studies of the uniqueness of
meromorphic functions sharing sets (see, for example, [1, 2, 6, 7, 10-13]).
For the family ¥ = S*(1), we answer Question 1.2 completely as follows.

Tueorem 1.3. Fix a positive integer n and take a subset S = {cy,...,c,} CC —{1} of
distinct complex numbers satisfying

n+m-Do(cr,...,cp) +-+20,0(ct,...,cp) +0p1(ct,...,cn) 0,

where o j are the elementary symmetric polynomials defined by

oier e =D Y een e, j=12,n-1,

1<i<ip<-+<ij<n
If two L-functions L,(s) and L>(s) in S*(1) share S CM, then L(s) = L(s).

In particular, the result due to Steuding is a special case of Theorem 1.3
corresponding to the case n = 1.

Let k denote a nonnegative integer or +oo. For any ¢ € C, we denote by Ex(c, f) the
set of all c-points of f, where a c-point of multiplicity m is counted m times if m < k
and k + 1 times if m > k. For S C C, we define

ExS, ) =) Exe, D).
ceS
If Ex(S, f) = Ex(S, g), then f and g share the set S weighted by k (or with weight £,
or truncated multiplicity k£ + 1). For the notation and basic results from Nevanlinna
theory and further details related to & = M(C) or A(C), see [4, 10].
Questions 1.1 and 1.2 are special cases of the following general question.

Question 1.4. For a family ¥ in M(C), determine subsets S, ..., S, of C in which the
cardinal of each S is as small as possible and minimise the number g such that any two
elements f and g of ¥ are algebraically dependent if f and g share each §; weighted
by k (or with truncated multiplicity k + 1).

For the case ¥ = M(C), g > 5, k = 0, Nevanlinna completely settled Question 1.4
by choosing S; = {c;} for distinct elements c; of C, and proved that two such functions
must be equal. However, Question 1.4 is still interesting for the cases g < 4.

If ¥ is the subfamily Sﬁ(l) of the family S*(1) satisfying the same functional
equation and with an additional condition, Steuding (see [9] or [8]) partially answered
Question 1.4 for the case k =0, g = 2, where the §; = {c;} consist of two distinct
elements c; of C. For the case F = Sg(l), Li (see [5]) completely solved this case by
removing the additional condition in Steuding’s result. Moreover, in order to extend
Steuding-Li’s result from the subfamily Sg(l) to the global family S*(1), it would be
desirable to remove the assumption that both L-functions satisfy the same functional
equation (see [8]). By including weights, we can reach this goal as follows.
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THueEOREM 1.5. Let ¢y, ¢y be two distinct complex numbers and take two positive integers
ki, ky with kiky > 1. If two L-functions L(s) and L,(s) in SH(1) share ¢y, ¢» weighted
k1, ky, respectively, then L1(s) = L(s).

THEOREM 1.6. Let ki, ko be two positive integers with kik, > 1 and take a complex
number ¢ and a nonempty subset S ={ci,...,c,} € C—{l,c} of distinct complex
numbers satisfying

n+m-Do(cr,...,cp)+ - +20,0(ct,...,cn) + 0ui(ct,...,cn) £0,
where

oier, o)== > eenec, j=12n-1.

1<ij<ip<-<ij<n

If two L-functions L£,(s) and Ly(s) in S¥(1) share ¢, S weighted ki, ka, respectively,
then Li(s) = Ly(5).

2. Proofs of the theorems

2.1. Proof of Theorem 1.3. First of all, assume that £(s), £>(s) are both entire
functions and share the set S = {c1, ¢z,...,c,} CM. We obtain an entire function

_ (Li(9) = e)(Li(s) = €2) -+ (Li(8) =€)
(Lo(s) — c)(La(s) = c2) -+ - (La(s) — ¢cp)

with I(s) # 0, co. By the first fundamental theorem,

I(s)

1
1(r gy =a) = 70 L + 00)

fori=1,2,...,n. If we denote the order of a meromorphic function f by p(f), then it
follows that

1
) =re=1.
Moreover,
pLyi—-c)=pL)=1, i=12,...,n

Since the order of a finite product of functions of finite order is less than or equal to
the maximum of the order of these factors (see [10]), we have p(I) < 1. This implies
that I(s) is of the form
I(s) = &™),
where P(s) is a polynomial of degree at most p(/) < 1. Since L;(s) — 1 as s — +oo for
j: 1’ 2’
. (I —c)d—c2)---(1—cy)

lim I(s) = =

s—+oo (I=c)d=c2)---(1=cn)
This implies that the polynomial P(s) = 0, that is, I(s) = 1.
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If Li(s) or L5(s) has a pole at s =1 with multiplicity k; (= 0) or k, (= 0),
respectively, we may set
I(s) = (s = DE(Li(8) = eD(Li(s) = ) - - (Li(5) = )
(L2(s) = c)(Lo(s) = c2) - (La() —cn)
where k = n(k, — k1) is an integer. Repeating the argument above, we see that I(s) is of
the form

I(s) = ',

where P(s) is a polynomial of degree at most A(/) < 1. If P(s) is a polynomial of degree
one, denote it as As + B, where A(# 0), B are constants. This leads to a contradiction
because

. _ 1\k As+B _ 7 1k T (1_01)(1_C2)"'(1_Cn)_
sl—l>I-Poo(S e h sEr-Poo(S D7) = S1—1>I-Poo I=c)d=c2)---(1=cp)
2.1)
Therefore, P(s) is a constant. In view of (2.1), we get k = 0. Then it follows that
I(s)=1.
If £1(s) # L>(s), on account of
_ (Li(9) = e(Li(s) = ¢2) - (Li(8) =€)
(L2(s) — c)(La(s) = c2) -+ - (Lals) — cn)

we have the following equations:
(Li—c)Li—c)(Li—cn) =Ly —c)Lr—c2) - (Lo —cp),
Li+vo L+t oLl o L= L+ o Ly + o+ oLy + o Lo,

(L =LY+ (L =LY+ (L= LD + 01 (L~ L2)=0

I(s) 1,

and
(L - L)L+ L7 L+ + LY+ oL+ L7 L+ + L7
+oot oo (L + L) o) =0,
where '
o= > eenea, j=12.n-1
I<ij<ip<-<ij<n
Set

W)= (L + L7+ + LY+ o (L7 + L7 L+ -+ L5
+o oo (L + L)+ o

Since L;(s) tends to 1 as s — +oo for j = 1,2, it is easy to deduce that

Iim h(s)=n+n—-1Do; +---+ 20,0 +0,_1 #0.

s—+00

Thus, we have £; = £;. This completes the proof of Theorem 1.3.
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2.2. Proof of Theorem 1.5. We first look at the simple case when one of £;(s) and
Lo(s), say L;(s), is constant. Then £;(s) = 1 by the assumption that a(1) = 1. Since
Lo(s) — ¢j and Li(s) — ¢; (j = 1,2) have the same zeros by the assumption, it is easy
to see that £;(s) = 1 when ¢; or ¢; is 1, or L,(s) # ¢y, ¢, in C when ¢y, ¢; # 1. In the
latter case, noting that an L-function has at most one pole, £>(s) must be constant and
thus £L,(s) = 1 since a(1) = 1, by the class Picard theorem (see for example [10]) that
a nonconstant meromorphic function in C assumes each value in C U {co} infinitely
many times with at most two exceptions. Therefore, L;(s) = L;(s).

We thus assume, in the following, that £(s) and L,(s) are nonconstant. We
consider the following two auxiliary functions:

L(s) L(s)

Fi(s) = - 22
W= o Lo -a @2
Fa(s) = i) 5 2.3)

Li) -2 L(s)-c
If Fi(s) =0, by integration, we have from (2.2) that
Li(s) = c1 = A(La(s) = c1),

where A # 0 is a constant. This implies that £;(s) and L,(s) share ¢; CM; thus,
L1(s) = Lo(s). If Fo(s) =0, by repeating the argument above, we also get £L(s) =
L>(s). Next, we assume that F;(s) 0 and F,(s) £0. Since L;(s), L>(s) share
(c1, k1), (c2,k2), from (2.2),

— 1
kzN(k2+1(r, 7

) + (ks - 1>N<k2+1(r,
1 —C2

; )
.l:1 - -51 —C
< N(r, Fi) <T(r, F1) + O(1) < N(r, Fy) + m(r, Fy) + O(1)
1

) < N(z(l’,

< N(M(r, ) + NG L1) + N(r, £2) + S, £1) + S(r, L2)

1
Lyi—c

< N(k,+1(r, + O(log r). (2.4)

1 )
Ll - Cl

— 1
klN(k1+1(r,_£

)+ (k1 — I)N(kl+1(r,
1=l

1 1 )
Ly —c Ly —c

< N(r, Fi) <T(r. F>) + 0(1) < N(r. Fa) + m(r, F») + O(1)
2

) < N(z(l’,

_ 1 _ _
< N(km(r, ~ ) + NG, L) + NG, L2) + S L2) + S (r, L)

1~ C

< N(k2+1(r, + Olog ). 2.5)

7l
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Combining (2.4) and (2.5),

_ 1 1— 1
N ( , ) < —N ( ,—) + O(l
N R g (log”)
1 — 1
<N ( —) + O(log r).
PaTALE v s (logr)
Since ki1 ky > 1,
— 1
N, (r,—)=010 r). 2.6
wr\ 7o (logr) (2.6)
Substituting (2.6) into (2.4),
— 1
N, (r,—)zOlo r). 2.7
(kp+1 Ti-o (logr) 2.7
Furthermore,
— 1
N(r, )=010r. 2.8
\r 7o (logr) (2.8)
Substituting (2.7) into (2.5),
— 1
N, (r,—)zOlo r).
el (logr)

In addition, from (2.2) and (2.6),
T(r,Fy) = N(r, Fy) + m(r, Fy)
_ 1 _ _
< N1 )+ NG £+ NG L2+ 50 L) + 5 L2)
Ly —c
= O(logr);

this implies that F'{(s) is a rational function. Set F'{(s) = (P(s)/Q(s)), that is,
Lis) L) PG
Lis)—c1 Ls)—cr Q)
integrating both sides of the equality (2.9),

(2.9)

LiG) —c1 _ o) ds
_ ' 2.10
Lo - ¢ =

Since L;(s) — 1 as s — +oo for j = 1,2,

lim Li(s)—cr _
s—+c0 L5(8) — ¢y

for c; # 1. If ¢; = 1, then we can replace c; by ¢,. Thus,
P
lim ) ds =0.

s—+00 O(s)
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It follows that deg(P(s)) < deg(Q(s)). In addition, by a simple calculation, we see that
all poles of F|(s) are simple. Therefore, we can rewrite F(s) as

P(s) cllis—a) < 4

o) ITjs(s=by oS- b;’

Fi(s) =

where ¢ # 0 is a constant, m,n are two positive integers satisfying m < n and q;
i=12,...,m),b; (j=1,2,...,n) with b; # b; (i # j) being the zeros and poles of
F(s), respectively. Then

P(s) ,  ~ Y K- .

where C is a constant. Note that the A; (j = 1,2,...,n) are integers because £ (s) and
L>(s) are both meromorphic functions. Using this in (2.10),

[T, (s — b)Y
[Tj= i (s — by’
where A # Ois aconstant, ;>0 (j=1,...,f1)and ;<0 (j=t +1,...,n).

If Niy(r, 1/Ly = ¢2) # S(r, L)), then, for any s such that £;(so) = ¢, we have
L5(s9) = ¢3. Thus, from (2.11),

A Joo-bpv = [ [ tso-bp7™
j=1

j=t+1

Li(s) —c1 = A(La(s) — ¢1) 1_[(5 — b)Y = A(La(s) - ¢1)

J=1

@2.11)

Set .
1 n
M(s)=A] |s=by" = [ ] s-bp™.
j=1 Jj=ti+1

Then M(s) has at most n zeros, which contradicts Nyy(r, 1/L; —c2) # S(r, L1).
Therefore, we have Nyy(r, 1/ Ly — ¢2) = S(r, £;). Combining this with (2.8),

N(r, 7 1_ cz) - Nl)(r, 7 1_ cz) + N(Q(r, 7 1_ cz) = S(r, L)) = O0(ogr). (2.12)

Since L, L, share ¢, weighted k»,

N

(r, 7 1_ 62) = O(logr).

In the following, we consider the function

If H # 0, then it follows that
m(r,H)=S(r, L) +S(r, L) = O0(ogr)
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and

— — — 1 — 1
N(r,H) < No(r, £1) + Nao(r, Lo) + N(2(r’ m) + N(2(r’ - Cl)

+N(2(r, 2 1_ Cz) + N(z(r, 2 1_ Cz) + N®( 7 ) + N®(r %)

< N®( 7 ) + N®( 7 ) + O(log r),

where N®(r, 1/L}) denotes the reduced counting function of the zeros of L] which are
not the zeros of (£, — c)(Ly — ¢2). Since L, L, share ¢; weighted k; (= 1), by a
simple calculation, we can deduce that the simple zeros of L — ¢, are the zeros of H.
Thus, by the first fundamental theorem,

1
N])(I‘,
1 —C]

) < N(r, %) <N(r,H)+m(r,H) < N@,(r, %,1) + N®( .5’ ) + O(log r).

Noting that the zeros of L — ¢; with multiplicity k > 2 are the zeros of £ with
multiplicity k — 1,

N(r, ﬁ) = N])(r, 7 1_ o ) + N(z(r, 7 1_ o ) < No( .[:' )+ NO( 7 )+ O(logr),

where Ny(r, 1/.L}) denotes the counting function of the zeros of L] which are not the
zeros of L — ¢;. Suppose that

74
‘El .
Li—-c’

w:

then it is easy to see that

mrg) =S, L0, NOw) < NG, L)+ N[, ! )
Ll —C2

and 1
wlr ) <Me )
o{ - Z v
By the first fundamental theorem and (2.12),

No( : ) S(r, £1) = O(log r).
L

The same argument shows that

Nl z ) =5, £2) = Otlogn),
Therefore, we have N(r,1/L; — c¢;) = O(log r). By the second fundamental second
theorem,

— — 1 — 1
T(r,Ll)SN(r,£1)+N(r, )+N(r, )+S(r,.£1): O(logr),
Li—c Li-c
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which is a contradiction. Thus, H = 0. By integration,

L __A +B
Li—-a LHr-c ’
where A # 0, B are two constants. It shows that £;, £, share ¢c; CM. Thus, we have
L, = L,. This completes the proof of Theorem 1.5.

2.3. Proof of Theorem 1.6. By the same argument as in the proof of Theorem 1.5,
we see that if one of £; and £, is constant, then £, = £,. In the following, we
consider the case that £(s) and L,(s) are nonconstant. Define two functions

1i(s) = (Li(s) = c)(Li(s) = c2) -+ - (Li(s) = ),
() = (La(s) = c)(La(s) = ¢2) -+ - (La(s) = cp).

Then [;(s), l(s) share the values a = (c — c1)(c — ¢3) -+ (¢ — ¢,) # 0 and O with the
weights k; and k,, respectively. Next, we consider the following two auxiliary

functions:
RACERAS
Fl(S)—m—m, (2.13)
F(s) = A H(s) (2.14)

L(s)—a bL(s)—a

If Fi(s) =0, by integration, then we have [;(s) = Al (s) from (2.13), where A # 0 is
a constant. This implies that [;(s), [>(s) share the value 0 CM. From the definition
of l;(s) (i =1,2), we deduce that £;(s) and L,(s) share the set S = {c1,¢2,...,Cp}
CM. By Theorem 1.3, Li(s) = Ly(s). If Fy(s) =0, from (2.14), we have [1(s) —a =
A(lL(s) — a). Since [1(s), [,(s) share the value O with weight k,, we have A = 1. Thus,
[1(s) = I,(s). From the definition of /;(s) (i = 1,2), we deduce that £;(s) and L, (s)
share the set S = {cy,cs,...,c,} CM and, by Theorem 1.3, we get L1(s) = Lr(s). If
F1(s) # 0 and F,(s) # 0, then we repeat the argument from the proof of Theorem 1.5
to reach the same conclusion. This completes the proof of Theorem 1.6.
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