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Abstract

We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share
values in a finite set and share values weighted by multiplicities.
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1. Introduction

LetM(C) be the field of meromorphic functions over the field C of complex numbers.
In this paper, we will study the uniqueness problem for meromorphic functions in
the extended Selberg class S] of M(C). The extended Selberg class S] is the set of
L-functions

L(s) =

∞∑
n=1

a(n)
ns (1.1)

in a complex variable s ∈ C which satisfy the following axioms (see [9]).

(i) Ramanujan hypothesis. a(n)� nε for any ε > 0, where the implicit constant may
depend on ε.

(ii) Analytic continuation. There is a nonnegative integer k such that (s − 1)kL(s) is
an entire function of finite order.

(iii) Functional equation. L satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) = L(s)Qs
K∏

j=1

Γ(λ js + µ j)

with positive real numbers Q, λ j and complex numbers µ j, ω with Re µ j ≥ 0 and
|ω| = 1.
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Further, an L-function L in S] is in the Selberg class S if L also satisfies the following
additional axiom (see [9]).

(iv) Euler product. L(s) satisfies

L(s) =
∏

p

Lp(s),

where

Lp(s) = exp
( ∞∑

k=1

b(pk)
pks

)
with suitable coefficients b(pk) satisfying b(pk)� pkθ for some θ < 1

2 .

In the sequel, we mainly consider a subset S](1) of S] defined by

S](1) = {L ∈ S] | L is expressed by a series of the form (1.1) with a(1) = 1}.

The classical question in the uniqueness theory of meromorphic functions is as
follows.

Question 1.1. For a family F in M(C), determine subsets S of C = C ∪ {∞} of
minimal cardinal such that any two elements f and g of F are algebraically dependent
if f −1(a) = g−1(a) counting multiplicity for each a ∈ S , that is, if f and g share each
element of S CM (counting multiplicity).

For the case F =M(C), a famous theorem of Nevanlinna claims that any subset
S ⊂ C of four distinct elements is a solution of Question 1.1 and the number ‘four’ is
sharp (see, for example, [4] or [10]). Furthermore, two such elements in M(C) are
related by a fractional linear transformation.

If F = S](1), a result due to Steuding (see [8] or [9]) shows that any subset S of C
of one element is a solution of Question 1.1. Further, two such L-functions in S](1)
must be equal.

In 1976, Gross (see [3]) extended Question 1.1 as follows.

Question 1.2. For a family F inM(C), determine subsets S1, . . . , Sq of C in which the
cardinal of each S j is as small as possible and minimise the number q such that any
two elements f and g of F are algebraically dependent if f −1(S j) = g−1(S j) counting
multiplicity for each j, that is, if f and g share each S j CM (counting multiplicity).

Denote the pre-image of a subset S ⊂ C under f by

E(S , f ) =
⋃
c∈S

{s ∈ C | f (s) − c = 0},

where a zero of f − c with multiplicity m counts m times in E(S , f ). If E(S , f ) =

E(S , g), then f and g share the set S CM.
If q ≥ 4, Question 1.2 is completely answered by the theorem due to Nevanlinna.

But it is still interesting in the cases q < 4. For the family F = A(C) ⊂ M(C) of
entire functions over C, Gross partially solved Question 1.2 by finding three finite
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sets S j ( j = 1, 2, 3). Since then, there have been many studies of the uniqueness of
meromorphic functions sharing sets (see, for example, [1, 2, 6, 7, 10–13]).

For the family F = S](1), we answer Question 1.2 completely as follows.

Theorem 1.3. Fix a positive integer n and take a subset S = {c1, . . . , cn} ⊂ C − {1} of
distinct complex numbers satisfying

n + (n − 1)σ1(c1, . . . , cn) + · · · + 2σn−2(c1, . . . , cn) + σn−1(c1, . . . , cn) , 0,

where σ j are the elementary symmetric polynomials defined by

σ j(c1, . . . , cn) = (−1) j
∑

1≤i1<i2<···<i j≤n

ci1 ci2 · · · ci j , j = 1, 2, . . . , n − 1.

If two L-functions L1(s) and L2(s) in S](1) share S CM, then L1(s) ≡ L2(s).

In particular, the result due to Steuding is a special case of Theorem 1.3
corresponding to the case n = 1.

Let k denote a nonnegative integer or +∞. For any c ∈ C, we denote by Ek(c, f ) the
set of all c-points of f , where a c-point of multiplicity m is counted m times if m ≤ k
and k + 1 times if m > k. For S ⊆ C, we define

Ek(S , f ) =
⋃
c∈S

Ek(c, f ).

If Ek(S , f ) = Ek(S , g), then f and g share the set S weighted by k (or with weight k,
or truncated multiplicity k + 1). For the notation and basic results from Nevanlinna
theory and further details related to F =M(C) orA(C), see [4, 10].

Questions 1.1 and 1.2 are special cases of the following general question.

Question 1.4. For a family F inM(C), determine subsets S1, . . . , Sq of C in which the
cardinal of each S j is as small as possible and minimise the number q such that any two
elements f and g of F are algebraically dependent if f and g share each S j weighted
by k (or with truncated multiplicity k + 1).

For the case F =M(C), q ≥ 5, k = 0, Nevanlinna completely settled Question 1.4
by choosing S j = {c j} for distinct elements c j of C, and proved that two such functions
must be equal. However, Question 1.4 is still interesting for the cases q ≤ 4.

If F is the subfamily S]e(1) of the family S](1) satisfying the same functional
equation and with an additional condition, Steuding (see [9] or [8]) partially answered
Question 1.4 for the case k = 0, q = 2, where the S j = {c j} consist of two distinct
elements c j of C. For the case F = S

]
e(1), Li (see [5]) completely solved this case by

removing the additional condition in Steuding’s result. Moreover, in order to extend
Steuding–Li’s result from the subfamily S]e(1) to the global family S](1), it would be
desirable to remove the assumption that both L-functions satisfy the same functional
equation (see [8]). By including weights, we can reach this goal as follows.
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Theorem 1.5. Let c1, c2 be two distinct complex numbers and take two positive integers
k1, k2 with k1k2 > 1. If two L-functions L1(s) and L2(s) in S](1) share c1, c2 weighted
k1, k2, respectively, then L1(s) ≡ L2(s).

Theorem 1.6. Let k1, k2 be two positive integers with k1k2 > 1 and take a complex
number c and a nonempty subset S = {c1, . . . , cn} ⊂ C − {1, c} of distinct complex
numbers satisfying

n + (n − 1)σ1(c1, . . . , cn) + · · · + 2σn−2(c1, . . . , cn) + σn−1(c1, . . . , cn) , 0,

where

σ j(c1, . . . , cn) = (−1) j
∑

1≤i1<i2<···<i j≤n

ci1 ci2 · · · ci j , j = 1, 2, . . . , n − 1.

If two L-functions L1(s) and L2(s) in S](1) share c, S weighted k1, k2, respectively,
then L1(s) ≡ L2(s).

2. Proofs of the theorems

2.1. Proof of Theorem 1.3. First of all, assume that L1(s), L2(s) are both entire
functions and share the set S = {c1, c2, . . . , cn} CM. We obtain an entire function

l(s) =
(L1(s) − c1)(L1(s) − c2) · · · (L1(s) − cn)
(L2(s) − c1)(L2(s) − c2) · · · (L2(s) − cn)

with l(s) , 0,∞. By the first fundamental theorem,

T
(
r,

1
L2(s) − ci

)
= T (r,L2) + O(1)

for i = 1, 2, . . . , n. If we denote the order of a meromorphic function f by ρ( f ), then it
follows that

ρ
( 1
L2 − ci

)
= ρ(L2) = 1.

Moreover,
ρ(L1 − ci) = ρ(L1) = 1, i = 1, 2, . . . , n.

Since the order of a finite product of functions of finite order is less than or equal to
the maximum of the order of these factors (see [10]), we have ρ(l) ≤ 1. This implies
that l(s) is of the form

l(s) = eP(s),

where P(s) is a polynomial of degree at most ρ(l) ≤ 1. Since L j(s)→ 1 as s→ +∞ for
j = 1, 2,

lim
s→+∞

l(s) =
(1 − c1)(1 − c2) · · · (1 − cn)
(1 − c1)(1 − c2) · · · (1 − cn)

= 1.

This implies that the polynomial P(s) ≡ 0, that is, l(s) ≡ 1.
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If L1(s) or L2(s) has a pole at s = 1 with multiplicity k1 (≥ 0) or k2 (≥ 0),
respectively, we may set

l(s) =
(s − 1)k(L1(s) − c1)(L1(s) − c2) · · · (L1(s) − cn)

(L2(s) − c1)(L2(s) − c2) · · · (L2(s) − cn)
,

where k = n(k2 − k1) is an integer. Repeating the argument above, we see that l(s) is of
the form

l(s) = eP(s),

where P(s) is a polynomial of degree at most λ(l) ≤ 1. If P(s) is a polynomial of degree
one, denote it as As + B, where A(, 0), B are constants. This leads to a contradiction
because

lim
s→+∞

(s − 1)−keAs+B = lim
s→+∞

(s − 1)−kl(s) = lim
s→+∞

(1 − c1)(1 − c2) · · · (1 − cn)
(1 − c1)(1 − c2) · · · (1 − cn)

= 1.

(2.1)
Therefore, P(s) is a constant. In view of (2.1), we get k = 0. Then it follows that
l(s) ≡ 1.

If L1(s) . L2(s), on account of

l(s) =
(L1(s) − c1)(L1(s) − c2) · · · (L1(s) − cn)
(L2(s) − c1)(L2(s) − c2) · · · (L2(s) − cn)

≡ 1,

we have the following equations:

(L1 − c1)(L1 − c2) · · · (L1 − cn) ≡ (L2 − c1)(L2 − c2) · · · (L2 − cn),
Ln

1 + σ1L
n−1
1 + · · · + σn−2L

2
1 + σn−1L1 ≡ L

n
2 + σ1L

n−1
2 + · · · + σn−2L

2
2 + σn−1L2,

(Ln
1 − L

n
2) + σ1(Ln−1

1 − Ln−1
2 ) + · · · + σn−2(L2

1 − L
2
2) + σn−1(L1 − L2) ≡ 0

and

(L1 − L2)((Ln−1
1 +Ln−2

1 L2 + · · · +Ln−1
2 ) + σ1(Ln−2

1 +Ln−3
1 L2 + · · · +Ln−2

2 )
+ · · · + σn−2(L1 +L2) + σn−1) ≡ 0,

where
σ j = (−1) j

∑
1≤i1<i2<···<i j≤n

ci1 ci2 · · · ci j , j = 1, 2, . . . , n − 1.

Set

h(s) = (Ln−1
1 +Ln−2

1 L2 + · · · +Ln−1
2 ) + σ1(Ln−2

1 +Ln−3
1 L2 + · · · +Ln−2

2 )
+ · · · + σn−2(L1 +L2) + σn−1.

Since L j(s) tends to 1 as s→ +∞ for j = 1, 2, it is easy to deduce that

lim
s→+∞

h(s) = n + (n − 1)σ1 + · · · + 2σn−2 + σn−1 , 0.

Thus, we have L1 ≡ L2. This completes the proof of Theorem 1.3.
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2.2. Proof of Theorem 1.5. We first look at the simple case when one of L1(s) and
L2(s), say L1(s), is constant. Then L1(s) ≡ 1 by the assumption that a(1) = 1. Since
L2(s) − c j and L1(s) − c j ( j = 1, 2) have the same zeros by the assumption, it is easy
to see that L2(s) ≡ 1 when c1 or c2 is 1, or L2(s) , c1, c2 in C when c1, c2 , 1. In the
latter case, noting that an L-function has at most one pole, L2(s) must be constant and
thus L2(s) ≡ 1 since a(1) = 1, by the class Picard theorem (see for example [10]) that
a nonconstant meromorphic function in C assumes each value in C ∪ {∞} infinitely
many times with at most two exceptions. Therefore, L1(s) ≡ L2(s).

We thus assume, in the following, that L1(s) and L2(s) are nonconstant. We
consider the following two auxiliary functions:

F1(s) =
L′1(s)
L1(s) − c1

−
L′2(s)
L2(s) − c1

, (2.2)

F2(s) =
L′1(s)
L1(s) − c2

−
L′2(s)
L2(s) − c2

. (2.3)

If F1(s) ≡ 0, by integration, we have from (2.2) that

L1(s) − c1 ≡ A(L2(s) − c1),

where A , 0 is a constant. This implies that L1(s) and L2(s) share c1 CM; thus,
L1(s) ≡ L2(s). If F2(s) ≡ 0, by repeating the argument above, we also get L1(s) ≡
L2(s). Next, we assume that F1(s) . 0 and F2(s) . 0. Since L1(s), L2(s) share
(c1, k1), (c2, k2), from (2.2),

k2N(k2+1

(
r,

1
L1 − c2

)
≤ N(2

(
r,

1
L1 − c2

)
+ (k2 − 1)N(k2+1

(
r,

1
L1 − c2

)
≤ N

(
r,

1
F1

)
≤ T (r, F1) + O(1) ≤ N(r, F1) + m(r, F1) + O(1)

≤ N(k1+1

(
r,

1
L1 − c1

)
+ N(r,L1) + N(r,L2) + S (r,L1) + S (r,L2)

≤ N(k1+1

(
r,

1
L1 − c1

)
+ O(log r). (2.4)

Similarly, from (2.3),

k1N(k1+1

(
r,

1
L1 − c1

)
≤ N(2

(
r,

1
L1 − c1

)
+ (k1 − 1)N(k1+1

(
r,

1
L1 − c1

)
≤ N

(
r,

1
F2

)
≤ T (r, F2) + O(1) ≤ N(r, F2) + m(r, F2) + O(1)

≤ N(k2+1

(
r,

1
L1 − c2

)
+ N(r,L1) + N(r,L2) + S (r,L1) + S (r,L2)

≤ N(k2+1

(
r,

1
L1 − c2

)
+ O(log r). (2.5)
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Combining (2.4) and (2.5),

N(k1+1

(
r,

1
L1 − c1

)
≤

1
k1

N(k2+1

(
r,

1
L1 − c2

)
+ O(log r)

≤
1

k1k2
N(k1+1

(
r,

1
L1 − c1

)
+ O(log r).

Since k1k2 > 1,

N(k1+1

(
r,

1
L1 − c1

)
= O(log r). (2.6)

Substituting (2.6) into (2.4),

N(k2+1

(
r,

1
L1 − c2

)
= O(log r). (2.7)

Furthermore,

N(2

(
r,

1
L1 − c2

)
= O(log r). (2.8)

Substituting (2.7) into (2.5),

N(2

(
r,

1
L1 − c1

)
= O(log r).

In addition, from (2.2) and (2.6),

T (r, F1) = N(r, F1) + m(r, F1)

≤ N(k1+1

(
r,

1
L1 − c1

)
+ N(r,L1) + N(r,L2) + S (r,L1) + S (r,L2)

= O(log r);

this implies that F1(s) is a rational function. Set F1(s) = (P(s)/Q(s)), that is,

L′1(s)
L1(s) − c1

−
L′2(s)
L2(s) − c1

=
P(s)
Q(s)

; (2.9)

integrating both sides of the equality (2.9),

L1(s) − c1

L2(s) − c1
= e

∫
(P(s)/Q(s)) ds. (2.10)

Since L j(s)→ 1 as s→ +∞ for j = 1, 2,

lim
s→+∞

L1(s) − c1

L2(s) − c1
= 1

for c1 , 1. If c1 = 1, then we can replace c1 by c2. Thus,

lim
s→+∞

∫
P(s)
Q(s)

ds = 0.
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It follows that deg(P(s)) < deg(Q(s)). In addition, by a simple calculation, we see that
all poles of F1(s) are simple. Therefore, we can rewrite F1(s) as

F1(s) =
P(s)
Q(s)

=
c
∏m

i=1(s − ai)∏n
j=1(s − b j)

=

n∑
j=1

λ j

s − b j
,

where c , 0 is a constant, m, n are two positive integers satisfying m < n and ai
(i = 1, 2, . . . ,m), b j ( j = 1, 2, . . . , n) with bi , b j (i , j) being the zeros and poles of
F1(s), respectively. Then∫

P(s)
Q(s)

ds =

n∑
j=1

∫
λ j

s − b j
ds =

n∑
j=1

λ j ln(s − b j) + C1,

where C1 is a constant. Note that the λ j ( j = 1, 2, . . . , n) are integers becauseL1(s) and
L2(s) are both meromorphic functions. Using this in (2.10),

L1(s) − c1 = A(L2(s) − c1)
n∏

j=1

(s − b j)λ j = A(L2(s) − c1)

∏t1
j=1(s − b j)λ j∏n

j=t1+1(s − b j)−λ j
, (2.11)

where A , 0 is a constant, λ j > 0 ( j = 1, . . . , t1) and λ j < 0 ( j = t1 + 1, . . . , n).
If N1)(r, 1/L1 − c2) , S (r,L1), then, for any s0 such that L1(s0) = c2, we have

L2(s0) = c2. Thus, from (2.11),

A
t1∏

j=1

(s0 − b j)λ j =

n∏
j=t1+1

(s0 − b j)−λ j .

Set

M(s) = A
t1∏

j=1

(s − b j)λ j −

n∏
j=t1+1

(s − b j)−λ j .

Then M(s) has at most n zeros, which contradicts N1)(r, 1/L1 − c2) , S (r,L1).
Therefore, we have N1)(r, 1/L1 − c2) = S (r,L1). Combining this with (2.8),

N
(
r,

1
L1 − c2

)
= N1)

(
r,

1
L1 − c2

)
+ N(2

(
r,

1
L1 − c2

)
= S (r,L1) = O(log r). (2.12)

Since L1, L2 share c2 weighted k2,

N
(
r,

1
L2 − c2

)
= O(log r).

In the following, we consider the function

H =
L′′1

L′1
−

2L′1
L′1 − c1

−

(L′′2
L′2
−

2L′2
L′2 − c1

)
.

If H . 0, then it follows that

m(r,H) = S (r,L1) + S (r,L2) = O(log r)
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and

N(r,H) ≤ N(2(r,L1) + N(2(r,L2) + N(2

(
r,

1
L1 − c1

)
+ N(2

(
r,

1
L2 − c1

)
+ N(2

(
r,

1
L1 − c2

)
+ N(2

(
r,

1
L2 − c2

)
+ N⊗

(
r,

1
L′1

)
+ N⊗

(
r,

1
L′2

)
≤ N⊗

(
r,

1
L′1

)
+ N⊗

(
r,

1
L′2

)
+ O(log r),

where N⊗(r, 1/L′1) denotes the reduced counting function of the zeros of L′1 which are
not the zeros of (L1 − c1)(L1 − c2). Since L1, L2 share c1 weighted k1 (≥ 1), by a
simple calculation, we can deduce that the simple zeros of L1 − c1 are the zeros of H.
Thus, by the first fundamental theorem,

N1)

(
r,

1
L1 − c1

)
≤ N

(
r,

1
H

)
≤ N(r,H) + m(r,H) ≤ N⊗

(
r,

1
L′1

)
+ N⊗

(
r,

1
L′2

)
+ O(log r).

Noting that the zeros of L1 − c1 with multiplicity k ≥ 2 are the zeros of L′1 with
multiplicity k − 1,

N
(
r,

1
L1 − c1

)
= N1)

(
r,

1
L1 − c1

)
+ N(2

(
r,

1
L1 − c1

)
≤ N0

(
r,

1
L′1

)
+ N0

(
r,

1
L′2

)
+ O(log r),

where N0(r, 1/L′1) denotes the counting function of the zeros of L′1 which are not the
zeros of L1 − c2. Suppose that

ψ =
L′1

L1 − c2
;

then it is easy to see that

m(r, ψ) = S (r,L1), N(r, ψ) ≤ N(r,L1) + N
(
r,

1
L1 − c2

)
and

N0

(
r,

1
L′1

)
≤ N

(
r,

1
ψ

)
.

By the first fundamental theorem and (2.12),

N0

(
r,

1
L′1

)
= S (r,L1) = O(log r).

The same argument shows that

N0

(
r,

1
L′2

)
= S (r,L2) = O(log r).

Therefore, we have N(r, 1/L1 − c1) = O(log r). By the second fundamental second
theorem,

T (r,L1) ≤ N(r,L1) + N
(
r,

1
L1 − c1

)
+ N

(
r,

1
L1 − c2

)
+ S (r,L1) = O(log r),
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which is a contradiction. Thus, H ≡ 0. By integration,

1
L1 − c1

≡
A

L2 − c1
+ B,

where A , 0, B are two constants. It shows that L1, L2 share c1 CM. Thus, we have
L1 ≡ L2. This completes the proof of Theorem 1.5.

2.3. Proof of Theorem 1.6. By the same argument as in the proof of Theorem 1.5,
we see that if one of L1 and L2 is constant, then L1 ≡ L2. In the following, we
consider the case that L1(s) and L2(s) are nonconstant. Define two functions

l1(s) = (L1(s) − c1)(L1(s) − c2) · · · (L1(s) − cn),
l2(s) = (L2(s) − c1)(L2(s) − c2) · · · (L2(s) − cn).

Then l1(s), l2(s) share the values a = (c − c1)(c − c2) · · · (c − cn) , 0 and 0 with the
weights k1 and k2, respectively. Next, we consider the following two auxiliary
functions:

F1(s) =
l′1(s)
l1(s)

−
l′2(s)
l2(s)

, (2.13)

F2(s) =
l′1(s)

l1(s) − a
−

l′2(s)
l2(s) − a

. (2.14)

If F1(s) ≡ 0, by integration, then we have l1(s) ≡ Al2(s) from (2.13), where A , 0 is
a constant. This implies that l1(s), l2(s) share the value 0 CM. From the definition
of li(s) (i = 1, 2), we deduce that L1(s) and L2(s) share the set S = {c1, c2, . . . , cn}

CM. By Theorem 1.3, L1(s) ≡ L2(s). If F2(s) ≡ 0, from (2.14), we have l1(s) − a ≡
A(l2(s) − a). Since l1(s), l2(s) share the value 0 with weight k2, we have A = 1. Thus,
l1(s) ≡ l2(s). From the definition of li(s) (i = 1, 2), we deduce that L1(s) and L2(s)
share the set S = {c1, c2, . . . , cn} CM and, by Theorem 1.3, we get L1(s) ≡ L2(s). If
F1(s) . 0 and F2(s) . 0, then we repeat the argument from the proof of Theorem 1.5
to reach the same conclusion. This completes the proof of Theorem 1.6.
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