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SMALL SETS OF k-TH POWERS

PING DING AND A. R. FREEDMAN

ABSTRACT. Let k > 2 and ¢ = g(k) — G(k), where g(k) is the smallest possible
value of r such that every natural number is the sum of at most r k-th powers and G(k)
is the minimal value of r such that every sufficiently large integer is the sum of r k-th
powers. For each positive integer r > g, let u. = g(k) +r — q. Then for every £ > 0 and
N > N(r, €), we construct a set A of k-th powers such that |JA| < (r(2+¢)" + N/ ktn)
and every nonnegative integer n < N is the sum of /. k-th powers in A. Some related
results are also obtained.

The famous Waring’s problem states that for every k > 2 there exists a number r > 1
such that every natural number is the sum of at most r k-th powers. Let g(k) be the smallest
possible value for r. Analogous to g(k), let G(k) denote the minimal value of r such that
every sufficiently large integer is the sum of r k-th powers. Clearly G(k) < g(k). In 1770,
Lagrange proved that g(2) = 4. Since every positive integer of the form 8¢ + 7 cannot
be written as the sum of three squares, G(2) cannot be 3, and so G(2) = g(2) = 4.In
1909, Wieferich [8] proved g(3) = 9. Landau [2] and Linnik [3] obtained G(3) < 8 and
G(3) < 7in 1909 and 1943 respectively. Though forty-nine years have passed without
an improvement to G(3), it is never-the-less conjectured that G(3) = 4 (cf. [5], p. 240).

Choi, Erdds and Nathanson [1] showed that for every N > 1, there is a set A of squares
such that |A| < (4/ log 2)N'/3 log N and every n < N is a sum of four squares in A; here
and below we denote by |A| the cardinality of set A. Nathanson [4] proved the following
more general result.

THEOREM A. Letk > 2 ands = gk)+ 1. For any ¢ > 0 and all N > N(¢) there
exists a finite set A of k-th powers such that

A] < 2+ )N/

and each nonnegative integer n < N is the sum of s elements belonging to A.

Our Theorem 1 is a generalization of Theorem A (Theorem A is the special case
r=1).

THEOREM 1. Let k > 2 and for any positive integer r let u, = g(k) + r. Then for
every € > 0 and all N > N(r,€), there exists a finite set A of k-th powers such that

|A| < C(r, e)N'/®n
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and every nonnegative integer n < N is the sum of u, k-th powers in A, where C(r,¢) =
r(l+e) +1.

Since in most cases G(k) < g(k), one could naturally think of sharpening Theorem 1
in terms of G(k). Our Theorem 2 achieves this goal.

THEOREM 2. Let k > 2 and q = g(k) — G(k). For each positive integer r > q let
u. = g(k)+r — q. Then for every € > 0 and all N > N(r,€), there exists a finite set A of
k-th powers such that
A < C'(r, N!0

and every nonnegative integer n < N is the sum of u, elements of A, where C'(r,e) =
rQ+e) + 1.

We list known values and estimations for some g(k) and G(k) in order to facilitate the
comparing of Theorem 1 and 2 (cf. [5], Chapter 4, [6], and [7]):

8(4) =19, G(4) = 16; g(5) = 37, 6 < G(5) < 18; g(6) =73, 9 < G(6) < 28;
143 < g(7) <3806, 8 < G(7) <41; 279 < g(8) < 36119, 32 < G(8) <57,
g(9) > 548, 13 < G(9) <75; g(10) > 1079, 12 < G(10) < 93.

To compare Theorems 1 and 2 let the r of Theorem 1 equal the r — g of Theorem 2.
For example, if k = 6 let r = g+1 > 46. Theorem 2 gives |A| < (6(2+¢)°+1)N'/*2 and
Theorem 1 gives |A| < (6(1 +e) + I)N 1/7 and in both cases all n < N (for sufficiently
large N) are the sum of 74 elements of A. It appears that g is large for all k > 3 (even
small k).

We give a corollary which is an application of Theorem 2 to cubes.

COROLLARY. For every € > 0 and all N > N(¢), there exists a finite set A of cubes

such that
| Al S N(l/ 5)+e

and every nonnegative integer n < N is the sum of nine cubes in A.
Next, Theorem 3 is for squares.

THEOREM 3. For every N > 2, there is a set A of squares such that
|A| < TN'/4
and every nonnegative integer n < N is the sum of at most five squares in A.

Since g(2) = 4, g(2) + 1 = 5. Taking k = 2 in Theorem A, the conclusion is that
there exists a finite set of squares such that || < (2 + €)N'/? and every nonnegative
integer n < N is the sum of 5 squares. Hence our Theorem 3 is better, for large N,
than the case k = 2 in Theorem A. For example, if N = 10'2, then Theorem A gives
|A] < (2 +¢)N'/? & 20,000 while Theorem 3 gives |A| < 7N'/* = 7,000.
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Unfortunately our methods do not readily lead to infinite basic sets A of k-th powers
with |[AN{1,2,...,N}| < cN* for all N where o < 1/k.
PROOF OF THEOREM 1. Let ¢ > 0 and r and N be positive integers. Define
Ag={d":0<a<1+e)yN/En}
A = {[s:/ka/(k(kw))]k 1<s <A +£)r~lNl/(k+r)}’

A2 — {[s;/kN(k+l)/(k(k+r))]k -1 S 5 S (1 + E)rVZN[/(k+r)},

A, = {Si/kN(k+r—1)/(k(k+r.))]k 11 <s, <NV,
Let A =AgUA;UAU---UA,. Then
Al < (1+ @+ + A+ +- -+ (1+e) )N/® < C(r, )N
It follows from the definition of g(k) that each integer n € [0, (1 + &)*N¥/**)] js a

sum of g(k), hence of u, = g(k) + r, elements of Ay C A.
We need two lemmas.

LEMMA 1. IfFNK&D < < (14 &) N®*D/®D then there is an integer t’l‘ €A
such that n — tjf is a sum of g(k) elements of Ay.
PROOF. Suppose N¥/®1 < p < p(1 + ) 'N*®*D/®+ Define s; = [W’{“—)} and
1y = [s)/*N'/®m] Then s, < (1 + )~ IN/h+n),
n— £ > s NHED g NkIKD o
and
n—f < (s1+ DNF®D (5 /AN Ken e

k— .
— (51 + DN g ko0 S <k> (= Dk plten
Jj=0

S Nk/(k+r) +2k(sl)(k—l)/kN(k—l)/(k+r)
< (1 +2k(1 +E)r(k*1)/kN—l/(k(k+l)))Nk/(k+r)
S (1 +€)Nk/(k+r),

provided N is sufficiently large. So n — £ is a sum of g(k) elements of Ay C A and
consequently » is a sum of g(k) + 1 elements of A. This completes the proof of Lemma 1.

LEMMA 2. Let NKD/®) <y < (1 4 gy = INKHD/CD ywheore | < < 7 — 1.
Then there exists an integer tfﬂ € Ajy such that n — tﬁl € [0, (1 + e)N*+/k+ny C
[0, (1 + E)r_iN(k+i)/(k+r)],

PROOF.  Suppose N*/®+1 < < (1 4 gy =i INW#+D/U0) where | <i <r— 1.
Define 511 = [Nﬁm] and iy = [Sil+/1kN( ke /(K41 Then £, € A1, sipt NED/ K40 <

n < (sisg + HNED/E+D and S:+/lkN(k+i)/(k(k+r)) 1<ty < S}Jr/IkN(k+l)/(k(k+r)). So

n— ti‘(+l Z Si+lN(k+i)/(k+r) _ S,’+1N(k+i)/(k+r) =0
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and
i 1/k
n— 1 < (sip + DNED/ K (Si+/1 NKD/Glher) 1y
= (501 + DN&D/ ) _ o Nk [ Ger)

-y (k) (— DI kD ke
j:0 J i+

< N(k+i)/(k+r) + 2k(si+1)(k—l)/kN(kAl)/(k+r)
< N(k+i)/(k+r) +2k(1 + E)(rwi)(kfl)/kN(k—l)/(k(k+r))+(k-l)/(k+r)

_ (1 + 2K(1 4 )=/ kpy=Giv1 /k)/(k+r)) Nk /et

< (1 + )N/ G

for sufficiently large N. This completes the proof of Lemma 2.

If N/ &0 < < (14 ) IN®D/®+_ then it follows from Lemma 1 that there exists
an integer & € A; such that n — £ is a sum of g(k), hence of g(k) +r, elements of Ay C A.

Suppose N&/ k0 <y < (1 4 gy~ IN®*#*D/G+0) 1 < j < r — 1. By Lemma 2,
there exists an integer X, € A such that n — 5, € [0, (1 + )’ IN®D/®1] Write
m=n—t, Ifme[0,(1+e) N/®] then m is sum of g(k) elements of Ay, and so n
is a sum of g(k) + 1 elements of A. If m € (Nk/ *+0 (1 + )~ INK+D/ "‘*’)], then Lemma 1
yields that there is an integer #f € A, such that m — £ is a sum of g(k) elements of A,
and so n is a sum of g(k) + 2 elements of A (note that in this case r = 2). If

me (N(k+j)/(k+r),(1 + E)r—j*11\,(k+j+1)/(k+r)]

for some j, 1 < j < i, then again by Lemma 2, there exists an integer tfﬂ € Aj;1 such
that m — %, € [0,(1 + e)N**/*+1] Repeatedly using this method, finally we get a

sequence {aj, @z, ..., a, } of positive integers, where o} > ap > -+ >, 1 < v </,
such that #£, € Ay, forall 1 <w <vand

et —th, =t €[0,(1+ o) NE),
Therefore n — t’;l - ’]&2 —e = t’fx is a sum of g(k) elements of Ay, and so n is a sum of

g(k) + v, hence of g(k) + r for v < r, elements of A, as required.
PROOF OF THEOREM 2. Let € > 0. Define
Ap={d":0<a<2+eyN/ENY,
Ai = {[s)/FN®HDI G < < 24y TINYEOY =1,
LetA =AgUA; U---UA,, then
Al < (1+Q+e)+Q2+e)+---+(2+e) )NV/ED
< (r2+e) + )N/ &
= C'(r,e)N'/®0,

for sufficiently large N. Now each integer n € [0, (2 + €)*N¥/**"] is a sum of g(k) (of
course of u/. (> g(k))) elements of Ay. Again we need two lemmas. We omit the proofs
which are analogous to those of Lemmas 1 and 2. (Just let s;,; here be one less than the
sispinLemmas 1and2 (0 <i<r—1).)
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LEMMA 3. [FNY®) < p < (24 &) 'N®D/®D | then there is an integer tt € A,
such that n — &% is a sum of G(k) elements of Ao.

LEMMA 4. Let N&D/) <y < (2 4g)—im I NKi+D /4D yopore | < i < r—1. Then
there exists an integer tiy; € Auy) such thatn — £, € [NK+D/ht) (9 4 )N/ (ki) ]
[N(k+i)/(k+r), (2 + E)r—iN(k+i)/(k+r)].

If NH 64D < g < (24 )~ INKD/K40 then it follows from Lemma 3 that there exists
an integer t’,‘ € Aj such that n — t’l‘ is a sum of G(k) elements of Ay and so » is a sum of
G(k) + 1 elements of A.

Suppose N&/ 0 < p < (2 4 g)—mINkiD/ () 1 < j < p — 1. By Lemma 4,
there exists an integer &X,, € Ay such that n — 15, € [NKD/k0) (3 4 gyr=iNGKsd/tken],
Write m = n—t%,,. If m € [N¥/®*) (2 +£)"N¥/®D] then m is a sum of G(k) elements of
Ao, and 5o n is a sum of G(k) + 1 elements of A. If m € (N*/®+7, (2 4 g)r=INGK+D/ (e |
then Lemma 3 yields that there is an integer X € A; such that m — £ is a sum of G(k)
elements of Ay, and so n is a sum of G(k)+2 elements of A (note that in this case r = 2). If
me (N(’”j)/ k) (2 4 )i NkH+D/ (""’)] for some j, 1 < j < i, then again by Lemma 4,
there exists an integer 15, € Ay, such thatm — &, € [NKD/® (2 4 g)r=iNtke/ken ],
Repeatedly using this method, finally we get a sequence {ay, a,...,a,} of positive
integers, where oy > ap > -+ > «a,, 1 < v < i, such that tﬁ €Ay, foralll <w <y
and

n—t, —& —. .~ € [NVED (24 ey NH K,

ay [£4]

Therefore n — t’(;l - ’]&2 —— t’c‘, is a sum of G(k) elements of Ag, and so n is a sum of
G(k) +v, hence of G(k) + r as v < r, elements of A. Since G(k) = g(k) — g, we complete
the proof of Theorem 2.

PROOF OF COROLLARY. Since g(3) = 9 and G(3) < 7 by Linnik’s theorem, we can
take r = g > 2 in Theorem 2. Then u, = 9 and the result follows for sufficiently large
N.If G(3) = 4, then this corollary is immediately improved to

|A] < N'/B4e

PROOF OF THEOREM 3. We start with a lemma the simple proof of which may be
found in [1].

LEMMA 5. Leta > 1. Let m > a*> and m # 0 (mod 4). Then either m — a* or
m — (a — 1)? is a sum of three squares.

Now define A; = {b?: 0 < b < 3N'/* and b* < N}. Let A, consist of the squares of
all numbers of the form [k;/ZN'/“] — i, where 9 < k; <N'*andi € {0,1}, and let As
consist of the squares of all numbers of the form [k;/ IN3/8] — j, where 2 < kp < N'/4
andj € {0,1}. Then |A;| < 3N'/4 +1, |4;] < 2N'/* — 16, and |A;] < 2N'/4 — 2. Let
A = A; UA; UAs; then |A| < TN'/4.

The set A; contains all squares not exceeding min(N, 9N'/2). This implies that if 0 <
n < min (N, 9N"'/2) then n is a sum of four squares in A, C A.
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Now suppose ON'/2 < n < N*/4. Putky = [z ], b = [k}/*N'/4].

Clearly 9 < k; < N'/* and b? < n. If either c = b or ¢ = b — 1 then Lagrange’s
theorem yields that n — ¢? is the sum of four squares. Note also ¢ € A,. Since k;N'/2 <
n < (ky + DN'/2 and b < kl/>NV/* < b+ 1, it follows that

0<n—c<(k+DHN/2—(b-1)7
< (kg + N2 — (kPN /4 — 22
< N2 4 4PN/

< 9N'/2,

Thus n — c? is the sum of four squares in A;. Hence if 0 < n < N*/4andn # 0 (mod 4),
then n is a sum of five squares in A.

We now consider the case N>/4 < n < N.Putk, = [;p'i/;], a= [k;/2N3/8]. If ¢ is
either a or a — 1, then

0<n—c®<(kp+DN¥*—(a— 1) < N*/* + 4N'/2,

If0 < n—c® < 9N'2 then n — ¢2 is a sum of four squares in A;. Suppose now
9N'/2 < n — c* < N3/* + 4N'/2, Write m = n — ¢® where may choose ¢ so that m % 0
(mod 4). Putks = [ ] and b = [k}/*N'/*]. Thus 9 < ks < N'/*+4,b> < ksN'/2 < m.
If d is either bor b — 1, then d is in A, and

0<m—d*<(ks+1)N'/2 —(b—1)> <9N'/2,

Thus, by Lemma 5, we may choose d such that m — d? is a sum of three squares in Aj.
Hence r is the sum of five squares from A. This completes the proof.
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