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Comparison Properties of the Cuntz
Semigroup and Applications to C*-algebras

Joan Bosa andHenning Petzka

Abstract. We study comparison properties in the category Cu aiming to li� results to the C∗-alge-
braic setting. We introduce a new comparison property and relate it to both the corona factorization
property (CFP) and ω-comparison. We show diòerences of all properties by providing examples
that suggest that the corona factorization for C*-algebras might allow for both ûnite and inûnite
projections. In addition, we show that Rørdam’s simple, nuclear C*-algebra with a ûnite and an
inûnite projection does not have the CFP.

Introduction

Over the last 25 years, the classiûcation of simple, nuclear C*-algebras has inspired a
greatwealth of research. Recently, a classiûcation has been carried out in two ground-
breaking articles [15, 33] for simple C*-algebras of ûnite nuclear dimension. Nu-
clear dimension plays the role of a non-commutative covering dimension for nuclear
C*-algebras. Requesting this dimension to be ûnite is one of the strong regularity
conditions occurring in the Toms–Winter conjecture that predicts that three regular-
ity conditions, each with a diòerent �avour, are, in fact, equivalent. Counterexamples
to the conjecture stating that the same classifying invariant, which works in the case
of ûnite nuclear dimension (the so-called Elliott invariant), should work in the gen-
eral case, appeared in 2003 due to Rørdam [29] and in 2008 due to Toms [31]. _e
latter exhibited two non-isomorphic AH-algebras that agreed not only on the Elliott
invariant, but also on awhole swathe of topological invariants. However,Toms’ exam-
ples can be distinguished using the Cuntz semigroup Cu( ⋅ ). In this paper, we focus
on studying some comparison properties, such as the corona factorization property
and weak comparison conditions for the Cuntz semigroup, to capture the structure
of some simple C*-algebras.

_ere are a number of regularity properties dividing those C*-algebras not han-
dled by the classiûcation theorem from [33] into classes of regular and irregular
C*-algebras. One of them is the corona factorization property (CFP), which is amild
regularity property introduced in [13] in order to understand the theory of extensions
and in particular of when extensions are absorbing [21, 22]. Zhang proved that, un-
der the additional assumption of the CFP, there is no simple C*-algebra of real rank
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zero containing both a ûnite and an inûnite projection. (_e same follows from the
methods developed in [23].) In addition to its analytical deûnition, the CFP has been
characterized in [24], for σ-unital C*-algebras, as a certain comparison property of
the Cuntz semigroup, also called the CFP (for semigroups). Another related com-
parison property is the ω-comparison, a generalization of the almost unperforation
property, which holds in the case of well-behaved C*-algebras (in the sense of the
abovementioned classiûcation theorem) [26].

_e study of comparison and divisibility properties for the Cuntz semigroup was
initiated in [7, 23, 24, 28], where the preceding properties play important roles. In
particular, it was shown that ω-comparison implies the CFP for Cuntz semigroups
and the conversewas le� open [23, Proposition 2.17]. In Example 4.15,we answer this
question negatively providing an abstract Cuntz semigroup that satisûes the CFP, but
not ω-comparison. Our abstract semigroup lies in the category Cu (as deûned in [11]
and extended by additional axioms from [27,30]) to which the Cuntz semigroup of a
C*-algebra naturally belongs.
All of the comparison properties mentioned above have in common (suitably

stated) that they are characterized by those elements in the Cuntz semigroup of a uni-
tal C*-algebra that cannot be represented by the Cuntz equivalence class of a positive
element in somematrix algebra over the given algebra, but only appear as the equiva-
lence class of a positive element in the stabilization. If there is a largest element in the
Cuntz semigroup (which does exist in the simple case), then we are concerned about
properties of this largest element. In particular, we focus on the following questions.
● If amultiple of some element x in a Cuntz semigroup equals the largest element, is
x itself already the largest element?

● If all functionals on the Cuntz semigroup are inûnite on an element x, must x be
the largest element?

● If the sum of two elements x and y equals to the largest element, and y is small in a
suitable sense,must x already be equal to the largest element?

To this end, we introduce a new comparison property involving the largest element
in a Cu-semigroup, which we call the β-comparison, using as our motivation, the
concept of an order unit norm as deûned in [17]. We set this new property in rela-
tion to the other comparison properties, andwe highlight diòerenceswith the help of
examples.

In the C*-algebra framework, there aremultiple implications that can be deduced
from our study of comparison properties. First, Example 4.16 suggests that the ex-
pected dichotomy (of being either stably ûnite or purely inûnite) in the simple real
rank zero case might require an analytical approach. _e given examples of abstract
Cu-semigroups answer the corresponding question negatively in the algebraic setting,
butwe do not knowwhether these examples can be realized as the Cuntz semigroup of
a C*-algebra. Secondly, we relate the comparison properties studied in this paper for
those Cu-semigroups coming from a C*-algebra. In this setting,we show that for sim-
ple C*-algebras β-comparison and ω-comparison are equivalent properties and that
the so-called elementaryCu-semigroups as in [5] cannot arise as theCuntz semigroup
of a C*-algebra. Finally, in _eorem 5.8 we conclude that the only known example of
a simple, nuclear C*-algebra with both ûnite and inûnite projections constructed in
[29] does not have the CFP.
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_e outline of the paper is as follows. A�er ûxing notation and recalling some ba-
sic facts on Cuntz semigroups in Section 1, we explore the diòerence between states
and functionals on Cu-semigroups in Section 2. _e results are used subsequently in
the deûnition of the value β(x , y) in Section 3 andwe explore some of its characteris-
tics. Section 4 is focused on comparison properties. We recall all properties relevant
for this paper and deûne both the β-comparison property associated with the value
β(x , y) and cancellation of small elements at inûnity. We further show some relations
between all described comparison properties and give examples. In Section 5, we ap-
ply and expand the results obtained in the algebraic framework to the framework of
C*-algebras.

1 Notation and Preliminaries

1.1 Partially Ordered Abelian Semigroups

_roughout, (W , ≤) will denote a partially ordered abelian monoid, i.e., a partially
ordered abelian semigroup with neutral element 0. We shall exclusively be interested
in positively ordered semigroups, i.e., semigroups where 0 ≤ x for all x ∈ W . In
particular, ≤ will extend the algebraic order, that is, if x + z = y, then x ≤ y.

In the following we want to remind the reader of some commonly used terminol-
ogy. An order unit in W is a nonzero element u such that, for all x ∈ W , there is an
n ∈ N such that x ≤ nu. We deûne the ideal generated by an element y as

Wy ∶= {x ∈W ∣ there exists n ∈ N such that x ≤ ny}.
Given two elements x , y ∈W , one writes x ∝ y if x satisûes x ≤ ny for some n ∈ N.

Given an increasing sequence (yn) in W , an element y is a supremum of (yn)
when it is a least upper bound. When they exist, suprema of increasing sequences
are unique, and we will denote them by sup(yn). We say that an ordered abelian
semigroup (W , ≤) is sequentially directed complete if all the increasing sequences have
suprema in W . In order to ease notation, we will o�en omit the word sequentially
directed, and just write complete semigroups.

Onewrites x ≪ y if,whenever {xn} is an increasing sequence forwhich the supre-
mum exists and satisûes y ≤ sup xn , then x ≤ xn for some n. An element x is called
compact, if x ≪ x. We write y <s x if there exists k ∈ N such that (k + 1)y ≤ kx.
Finally, an element x in W is said to be full if for any y′ , y ∈ W with y′ ≪ y, one has
y′ ∝ x, denoted by y∝x. A sequence {xn} in W is said to be full if it is increasing
and for any y′ , y ∈ W with y′ ≪ y, one has y′ ∝ xn for some (hence all suõciently
large) n. Notice that if x ∈W is an order unit, it is also a full element, but the reverse
is not true.

We say that W is simple if x∝y for all nonzero x , y ∈ W . In other words, every
nonzero element in a simple semigroup is full.

1.2 Cu-semigroups

Given a partially ordered abelian monoid S, the following axioms were introduced
in [11] in order to deûne a category Cu of semigroups containing Cuntz semigroup
Cu(A) of any C*-algebra.
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(O1) Every increasing sequence (an)n∈N in S has a supremum in S.
(O2) Every element a ∈ S is the supremum of a sequence (an)n such that an ≪ an+1

for all n.
(O3) If a, a′ , b, b′ ∈ S satisfy a′ ≪ a and b′ ≪ b, then a′ + b′ ≪ a + b.
(O4) If (an)n and (bn)n are increasing sequences in S, then

sup
n

(an + bn) = sup
n

(an) + sup
n

(bn).

A sequence as in (O2) is called rapidly increasing. Moreover, note that, for semigroups
in Cu, the order satisûes x ≤ y if and only if x′ ≤ y for all x′ ≪ x.

Deûnition 1.1 A Cu-semigroup is a partially orderedmonoid that satisûes axioms
(O1)–(O4). _at is, S is a Cu-semigroup precisely when S lies in the category Cu.

If A denotes a C*-algebra, then its Cuntz semigroup is the ordered semigroup of
Cuntz-equivalence classes of positive elements in the stabilization ofA,with the direct
sum as addition and the order is given by Cuntz-subequivalence. We refer the reader
to [2] for the deûnition of the Cuntz relation and information on the Cuntz semi-
group of a C*-algebra. If A denotes a C*-algebra, then its Cuntz semigroup Cu(A) is
a Cu-semigroup [11]. If a is a positive element in a the stabilization of a C*-algebra
A, then we denote by ⟨a⟩ its equivalence class in Cu(A). We will also consider the
originalCuntz semigroupW(A) of equivalence classes of positive elements in matrix
algebras over A.

_ere are two additional axioms (O5) and (O6) that have been shown to hold for
any Cu-semigroup S coming from a C*-algebra, i.e., for any S such that there is a
C*-algebra Awith S = Cu(A) (see [27] for (O5) and [30] for (O6)).

(O5) (Almost algebraic order) If x′ ≪ x ≤ y in S, then there is some z ∈ S such that
x′ + z ≤ y ≤ x + z.

(O6) (Almost Riesz decomposition) If x′ ≪ x ≤ y1 + y2 in S, then there are elements
x1 ≤ x , y1 and x2 ≤ x , y2 such that x1 + x2 ≥ x′.

_erefore, it would be natural to include (O5) and (O6) in the deûnition of the
category Cu and in the deûnition of a Cu-semigroup. Since, at times, we would like
to highlight the usage of these additional axioms, we leave the deûnition of the cate-
gory Cu (and Cu-semigroup) as it is andmention explicitly when we assume a given
Cu-semigroup satisûes the additional axioms.

If S is a Cu-semigroup, let us recall that an element a ∈ S is ûnite if for every
element b ∈ S such that a + b ≤ a, one has b = 0. An element is inûnite if it is not
ûnite. An inûnite element a ∈ S is properly inûnite if 2a ≤ a. We say that S is stably
ûnite if an element a ∈ S is ûnitewhenever there exists ã ∈ S with a ≪ ã. In particular,
if S contains a largest element, denoted by∞, then the latter condition is equivalent to
a ≪∞ [5]. A largest element,∞, always exists whenever S is simple, and it is unique
whenever it exists [5, Paragraph 5.2.2.]. If S is simple, then we say that S is purely
inûnite if S = {0,∞}, i.e., if S contains only the zero element and the largest element.

We ûnish our preliminary part by recalling that a Cu-semigroup S is said to be
algebraic if every element x ∈ S is the supremum of a sequence of compact elements,
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i.e., of elements such that a ≪ a. ACu-semigroup S = Cu(A) coming from a C*-alge-
bra A is algebraic whenever the underlying C*-algebra A has real rank zero.

2 States and Functionals on Cu-semigroups

In this section, we recall the notions of a (extended valued) state and a functional on
Cu-semigroups, and we will study their interplay. While functionals (by deûnition)
preservemore of the order structure of the Cu-semigroup, there are very useful results
about general states to conclude how two given elements order-relate. For additional
information on states and functionals, we refer the reader to [5, §5.2].
For an ordered semigroup S, and y ∈ S, we denote by S(S , y) the collection of

(extended valued) states normalized at y. Recall that a (extended valued) state is an
ordered semigroup map f ∶ S → [0,∞].
By a functional on a Cu-semigroup S, we mean an ordered semigroup map that

preserves suprema of increasing sequences (which always exist in a Cu-semigroup),
and we denote the set of functionals on S by F(S). As before, the set of functionals
on S normalized at z is denoted by F(S , z).

If S is a simple Cu-semigroup, then every (nonzero) functional is faithful, i.e., for
nonzero µ ∈ F(S), µ(x) /= 0 for every nonzero element x ∈ S, but states do not need to
be faithful. To understand this diòerence better, we consider a helpful subsemigroup.
If S is a simple Cu-semigroup, then S contains a largest element∞, and we let

S≪∞ ∶= {s ∈ S ∣ s ≪∞}.

Note that whenever S is simple, x ∈ S≪∞, and y ∈ S is nonzero, then there is some
n ∈ N such that x ≤ n ⋅ y (because∞ = supn n ⋅ y). _is implies for both states and
functionals on S alike that, if a state or functional is zero on some nonzero element
x ∈ S≪∞, then it is zero on all of S≪∞. If this happens for a functional then, as every
x ∈ S can be written as the supremum of a rapidly increasing sequence (in particular,
as the supremum of elements in S≪∞) and because functionals preserve suprema of
increasing sequences, the functional must be zero everywhere. _at is, nonzero func-
tionals are faithful on simple Cu-semigroups. But for states there is no such condition
on suprema of increasing sequences, so a statemay very well be nonzero, but zero on
S≪∞. In fact, faithfulness of functionals on simple Cu-semigroups is a consequence
of themore general fact that functionals are uniquely determined (also for nonsimple
S) on S≪ = {s ∈ S ∣ ∃t ∈ S with s ≪ t} (and states are not), which agrees with S≪∞
whenever S contains a largest element.

Remark 2.1 IfA is a unitalC*-algebra, then consider its (original)Cuntz semigroup
W(A) of equivalence classes of positive elements in matrix algebras over A. For every
x ∈ W(A) ⊆ Cu(A) we have that x ≤ ⟨N ⋅ 1A⟩ ≪ ∞ for some N . Hence W(A) ⊆
Cu(A)≪. Whether the converse holds, a problem that appeared in the literature under
the name of “hereditariness of the Cuntz semigroup,” is an open question in general.
Positive answers in quite general settings can be found in [4,7].

Existence of states is connected to inûniteness of the element at which we would
like to normalize. _is follows from the result of [8] on extensions of states on pre-
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ordered semigroups, which generalizes the well-known corresponding result on ex-
tensions of states on ordered groups by Goodearl andHandelman [18].

_eorem 2.2 ([8, Corollary 2.7]) Let (W , ≤, u) be a preordered semigroup with u
an order-unit, and let W0 be a subsemigroup containing u (equipped with the relative
preordering). _en every state on W0 extends to a state on W .

If u is not an order unit, consider I(u), the order ideal generated by u. _en a state
on a subsemigroup W0 containing u can be extended to a state f in S(I(u), u). As
we consider extended valued states, i.e., we allow states to take the value∞, we can
extend f to all ofW by setting

f (x) ∶=
⎧⎪⎪⎨⎪⎪⎩

f (x), x ∈ I(u),
∞, x ∉ I(u).

Hence, the assumption on u being an order unit can be dropped if one considers
extended valued states.

Of course, S(S , y) = ∅ whenever somemultiple of y is properly inûnite. If, on the
other hand, no multiple of y is properly inûnite, then f (n ⋅ y) = n is a well-deûned
state on {0, y, 2y, 3y, . . .} ⊆ S, which extends to a state on S. For later reference, we
put this observation into a lemma.

Lemma 2.3 Let S be an ordered semigroup and let y ∈ S. _en the set S(S , y) of
states normalized at y is empty if and only if somemultiple of y is properly inûnite.

For functionals there is no such characterization. Obviously, if y is properly inû-
nite, then λ(y) =∞ for all nonzero functionals λ. But it is possible that in a (simple)
Cu-semigroup S (with S = Cu(A) for some C*-algebra A) there is some y ∈ S such
that every nonzero functional is inûnite on y, while no multiple of y is inûnite (see
Example 4.11). Furthermore, we have the following observation.

Lemma 2.4 Let S be a simple Cu-semigroup and let y ∈ S. _en λ(y) = ∞ for all
nonzero functionals λ ∈ F(S) if and only if there is no faithful state in S(S , y).

Proof Suppose f ∈ S(S , y) is faithful. _en f̃ (x) ∶= supx′≪x f (x′) is a functional
[27] with 0 < f̃ (y) ≤ 1. Conversely, as nonzero functionals on simple Cu-semigroups
are faithful, a suitable scaling of a functionalwith λ(y) <∞would give a faithful state
on S.

Another related useful observation is contained in the following lemma. Let us
denote by λ∞ the functional assigning the value∞ to all nonzero z ∈ S.

Lemma 2.5 Let S be a simple Cu-semigroup. If there exists some x ∈ S≪∞ such that
λ(x) =∞ for all nonzero functionals λ ∈ F(S), then F(S) = {0, λ∞}. In this case, for
every nonzero z ∈ S, somemultiple of z is properly inûnite.

Proof _e ûrst statement is clear as for any two x , y ∈ S≪∞ there is m ∈ N such that
x ≤ m ⋅ y. For the second statement, pick (nonzero) z′ ≪ z ∈ S, and suppose that
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there is a state f ∈ S(S , z′). _en f̃ (x) ∶= supx′≪x f (x′) is a nonzero functional [27]
with ûnite values, which contradicts the assumption. By Lemma 2.3, some multiple
of z′ is properly inûnite, and hence so is somemultiple of z.

By [24, Proposition 2.1] (which also follows from Goodearl andHandelman [18]),
for elements x , y in an ordered semigroup S, x <s y is equivalent to the statement
that f (x) < f (y) = 1 for all states f normalized at y. We do not know whether,
in the case that S is a Cu-semigroup, this is equivalent to the statement that λ(x) <
λ(y) = 1 for all functionals λ normalized at y. A slightly weaker statementwas shown
by Robert [27].

Lemma 2.6 Let S be a simple Cu-semigroup with a nonzero compact element z ∈ S
and let x , y ∈ S. Suppose that λ(x) < λ(y) for all nonzero functionals λ ∈ F(S) ûnite
on S≪∞. _en, for all x′ ≪ x, we have x′ <s y.

Proof Let (yn) be a rapidly increasing nonzero sequence in S with supremum y.
Suppose ûrst that there is no (nonzero) functional that is ûnite on S≪∞. _en, by

Lemma 2.5, somemultiple of each yn is inûnite. In particular, there is k ∈ N such that
(k + 1)x ≤∞ = ky, implying that x′ <s y.

Hence, from now on, wemay assume that F(S , z) is not empty since z is compact.
Notice that any nonzero functional in F(S) is a (possibly inûnite) multiple of an ele-
ment in F(S , z), and that the set F(S , z) is compact [16]. By assumption, λ(x) < λ(y)
for all nonzero functionals λ ∈ F(S , z), and compactness of F(S , z) gives the exis-
tence of some n ∈ N such that (n + 1)λ(x) ≤ nλ(y) for all λ ∈ F(S , z). Hence, also
(n + 1)λ(x) ≤ nλ(y) for all λ ∈ F(S). Now, using [5, _eorem 5.2.18], the desired
result follows.

From the abovewewere not able to deduce that λ(x) < λ(y) = 1 for all functionals
λ normalized at y implies that x <s y, but we get a weaker statement, suõcient for
our later application.

Lemma 2.7 Let S be a simple Cu-semigroup with a nonzero compact element z ∈ S
and x ∈ S such that x ≪∞. _en there is somem ∈ R such thatwhenever y ∈ S satisûes
that λ(x) ⋅m < λ(y) for all nonzero functionals λ ∈ F(S) ûnite on S≪∞, then x <s y.

Proof Find a rapidly increasing sequence zn ≪ zn+1 such that supn zn = ∞. _en,
as x ≪∞, it follows that x ≪ zn ≪∞ for some n and there exists some m ∈ N such
that zn ≤ m ⋅ x. Hence, x ≪ m ⋅ x. Now whenever λ(m ⋅ x) = m ⋅ λ(x) < λ(y) for all
functionals ûnite on S≪∞, we get that x <s y by Lemma 2.6.

3 The Value β(x , y)
In this sectionwe explore a value associatedwith any two elements x , y in a Cu-semi-
group S called β(x , y). _is value is induced by extending the order-unit norm for
partially ordered abelian groups to semigroups [18]. In Section 4 we will use it to
deûne a comparison property on Cu-semigroups.
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Although we will mainly be concerned about Cu-semigroups, we deûne β(x , y)
more generally for x , y in an arbitrary ordered abelian semigroup (W , ≤).

Deûnition 3.1 ([18, §4]) Let (W , ≤) be an ordered abelian semigroup and x , y ∈W
such that x ∝ y. We deûne the real number β(x , y) as

β(x , y) = inf{l/k ∣ kx ≤ l y where k, l ∈ N}.

Recall that we denote by Wy the order ideal of W such that for all x ∈ Wy there
exists n ∈ N such that x ≤ ny. We provide an equivalent deûnition of the value β(x , y)
in the case that Wy allows a state normalized at y.

Proposition 3.2 Let (W , ≤) be an ordered abelian semigroup. If x ∈Wy and

S(Wy , y) /= ∅,

then β(x , y) = inf{l/k ∣ kx ≤ l y} = sup{ f (x) ∣ f ∈ S(Wy , y)}.

Proof Let us start by deûning W0 ∶= ⟨x , y⟩ = {kx + l y ∣ k, l ≥ 0} ⊆ Wy . Note that
the existence of a state f ∈ S(Wy , y) implies the following property.

(3.1) Whenever z ∈W0 and ky + z ≤ l y + z, then k ≤ l .

Consider themap

f0∶W0 → R+

kx + l y ↦ kβ(x , y) + l .

We claim that f0 is a state in S(W0 , y).
As additivity is clear, we subsequently prove that f0 is well deûned and that it pre-

serves the order. Namely, given two elements inW0, k1x + l1 y and k2x + l2 y, wemust
show that f0(k1x + l1 y) ≤ f0(k2x + l2 y) if k1x + l1 y ≤ k2x + l2 y. We divide the proof
into four cases:
(i) k1 ≤ k2 and l1 ≤ l2,
(ii) k1 ≤ k2 and l1 ≥ l2,
(iii) k1 ≥ k2 and l1 ≤ l2,
(iv) k1 > k2 and l1 > l2.

We note that case (i) is trivial and (iv) stands in contradiction to Condition (3.1),
so let us start by considering (ii). In this case, since k1 , k2 , l1 , l2 are integers, we can
write k2 = k1 + k′ and l1 = l2 + l ′ for some k′ , l ′ ∈ N, obtaining k1x + (l2 + l ′)y ≤
(k1+k′)x+ l2 y. Setting z ∶= k1x+ l2 y,we get l ′y+z ≤ k′x+z where z ∈W0. It follows
then that ml ′y + z ≤ mk′x + z for all m ∈ N.

Wemust show that k1β(x , y)+ l1 ≤ k2β(x , y)+ l2, equivalently β(x , y) ≥ l ′/k′. To
end up with a contradiction, suppose that β(x , y) < l ′/k′. _en there exist a, b ∈ N
such that β(x , y) ≤ b/a < l ′/k′ and ax ≤ by. _en y+k′ax ≤ y+k′by ≤ al ′y. Taking
m = a in the above equation for the second equality, we get

(al ′ + 1)y + z = al y′ + z + y ≤ ak′x + z + y ≤ al ′y + z,

which contradicts Condition (3.1).
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Finally to prove case (iii), we start as before to obtain mk′′x + z′ ≤ ml ′′y + z′
for all m, where z′ = k2x + l1 y. As we can ûnd l0 such that z ≤ l0 y, it follows that
mk′′x ≤ (ml ′′ + l0)y for all m Hence, β(x , y) ≤ inf{ml ′′+l0

mk′′ ∣ m ∈ N} = l ′′/k′′, which
implies that f0(k1x + l1 y) ≤ f0(k2x + l2 y) as desired.
By _eorem 2.2, f0 extends to S(Wy , y). As all the states on S(Wy , y) satisfy that

f (x) ≤ β(x , y) and f0(x) = β(x , y), we conclude that

β(x , y) = sup{ f (x) ∣ f ∈ S(Wy , y)}.

Remark 3.3 Let (W , ≤) be an ordered abelian semigroup, x , y ∈ W and x ∈ Wy ,
and S(Wy , y) /= ∅. _en { f (x) ∣ f ∈ S(Wy , y)} = { f (x) ∣ f ∈ S(W , y)}. Indeed,
let ϕ∶S(Wy , y) → S(W , y) be the map that sends f ↦ f , where f is deûned by
f = f on Wy and ∞ otherwise. Clearly, f is a state and ϕ is well deûned. Notice
that ϕ is injective. Hence, the map φ∶S(W , y) → S(Wy , y) deûned by f ↦ fWy is
surjective. It follows that { f (x) ∣ f ∈ S(Wy , y)} = { f (x) ∣ f ∈ S(W , y)}, and that
β(x , y) = inf{l/k ∣ kx ≤ l y} = sup{ f (x) ∣ f ∈ S(W , y)}.

_e next lemmas show some properties of the value β(x , y).

Lemma 3.4 Let (W , ≤) be an ordered abelian semigroup and x , y, z ∈W .
(i) If x ∝ y and y ≤ z, then β(x , y) ≥ β(x , z).
(ii) If y ∝ z and x ≤ y, then β(x , z) ≤ β(y, z).

Proof (i) If kx ≤ l y, then kx ≤ l y ≤ lz; thus, {l/k ∣ kx ≤ l y} ⊆ {m/n ∣ nx ≤ mz}.
_erefore, inf{l/k ∣ kx ≤ l y} ≥ inf{m/n ∣ nx ≤ mz}.

(ii) If ky ≤ lz, then kx ≤ ky ≤ lz; thus, {l/k ∣ ky ≤ lz} ⊆ {m/n ∣ nx ≤ mz}.
_erefore, inf{l/k ∣ ky ≤ lz} ≥ inf{m/n ∣ nx ≤ mz}.

Note that β(x , y) < 1 if and only if x <s y. Recall that x <s y if (k + 1) ⋅ x ≤ k ⋅ y for
some k ∈ N.

Lemma 3.5 Let (W , ≤) be an ordered abelian semigroup.
(i) If x ∈W and {yn} is a sequence in W satisfying x ∝ y j for all j, then

β(x , y1 + ⋅ ⋅ ⋅ + yn) ≤ (
n

∑
j=1
β(x , y j)−1)−1 .

(ii) If y ∈W and {xn} is a sequence in W satisfying x j ∝ y for all j, then

β(x1 + ⋅ ⋅ ⋅ + xn , y) ≤
n

∑
j=1
β(x j , y).

Proof We only prove the second statement, since the ûrst one is shown in a similar
fashion. We assume n = 2 and note that the general case then follows easily.

Let є > 0. For i = 1, 2 ûnd l i , k i ∈ N such that β(x i , y) ≤ l i
k i

≤ β(x i , y) + є and
k ix i ≤ l i y. _en k1k2(x1 + x2) ≤ k2 l1 y + k1 l2 y, so

β(x1 + x2 , y) ≤
k2 l1 + k1 l2

k1k2
= l1

k1
+ l2

k2
≤ β(x1 , y) + β(x2 , y) + 2є.
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Remark 3.6 We would like to emphasize that given x and a sequence {yn} be-
longing to W such that x <s y j for all j, we have β(x , y1 + y2 + ⋅ ⋅ ⋅ + yk) ≤ 1/k for
all k.

Proof Assume k = 2, since it is easy to extend the proof to general k ∈ N. Consider
y1 , y2 such that (k1+1)x ≤ k1 y1 and (k2+1)x ≤ k2 y2. Using [24,Proposition 2.1], there
exists k0 ∈ N such that (k + 1)x ≤ ky1 and (k + 1)x ≤ ky2 for all k ≥ k0. Adding both
inequalities, we obtain 2kx ≤ k(y1 + y2) for all k ≥ k0. _us, β(x , y1 + y2) ≤ 1/2.

Lemma 3.7 LetW be an abelian ordered semigroup and x , y ∈W , such that y ≤ mx
and x ≤ ny for some m, n ∈ N. _en the following statements are equivalent.

(i) β(x , y) = 0.
(ii) Somemultiple of x is properly inûnite.
(iii) Somemultiple of y is properly inûnite.
(iv) S(W , y) = ∅.

Proof If β(x , y) = 0, then we can ûnd k, l ∈ N such that kx ≤ l y and l/k ≤ 1/2m.
_en 2kx ≤ 2l y ≤ 2lmx ≤ kx, hence kx is properly inûnite. It then follows further
that 2ny ≤ 2nmx ≤ x ≤ ny, so y is properly inûnite. It is easy to see that (iii) implies
(i). Finally, the equivalence with (iv) follows from Lemma 2.3.

4 Comparison Properties

In this sectionwe recall the properties of corona factorization (CFP) and ω-compari-
son forCu-semigroups asdeûned in [24] andwe show a few equivalent reformulations
of each property. We use the value β(x , y) from Section 3 to introduce a new compar-
ison notion, called the β-comparison property, which we also prove to be equivalent
to ω-comparison for many Cu-semigroups of importance. We demonstrate diòer-
ences of all mentioned properties with the help of examples. Finally, we discuss the
relation between the CFP and the non-existence of stably inûnite, but ûnite elements.

Recall that a sequence (xn)n in an ordered abelian semigroupW is called full, if it
is increasing and for any z′ ≪ z, one has z′ ≤ m ⋅ xn for some n,m ∈ N. For future use
note that if (xn) is a full sequence in a Cu-semigroup S, then (n ⋅ xn) is an increasing
sequence in S with supremum equal to the maximal element ∞ in S. (In particular,
a maximal element exists in S.) Indeed, for any t ≪ s one has t ≤ n ⋅ xn for some
n. Now taking the supremum on both sides (ûrst on the right, then on the le�-hand
side) yields s ≤ supn(n ⋅ xn).

We will also want to change a full sequence to amore suitable one in the following
way.

Lemma 4.1 Let S denote aCu-semigroup, and let (xn)n be a full sequence in S. _en
there is a full sequence (x′n)n in S such that x′n ≪ xn for each n ∈ N.

Proof For each n ∈ N ûnd a rapidly increasing sequence (xk
n)k with supremum xn .

Starting with x 1
1 ≪ x1 ≤ x2, we ûnd k2 such that x 1

1 ≤ xk2
2 . Inductively, we ûnd an
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increasing sequence (yn)n ∶= (xkn
n )n with x j

i ≤ xkn
n ≪ xn for each i , j, n ∈ N such

that 1 ≤ i , j ≤ (n − 1). Let us show that the sequence (yn)n is full.
Let z′ ≪ z, and ûnd z′′ such that z′ ≪ z′′ ≪ z. By assumptions on (xn)n , we ûnd

m and k such that z′ ≪ z′′ ≤ m ⋅ xk . _erefore, there is some l such that z′ ≤ m ⋅ x l
k .

We conclude that z′ ≤ m ⋅ x l
k ≤ m ⋅ xkM

M = m ⋅ yM , where M = max{k, l} + 1.

Deûnition 4.2 ([24]) Let W be an ordered abelian semigroup.
● W satisûes the corona factorization property (CFP) if, given any full sequence (xn)n

in W , any sequence (yn)n in W , an element x′ in W such that x′ ≪ x1, and a
positive integer m satisfying xn ≤ myn for all n, then there exists a positive integer
k such that x′ ≤ y1 + ⋅ ⋅ ⋅ + yk .

● W satisûes the strong corona factorization property (StCFP) if, given x′ , x ∈ W , a
sequence (yn) in W , and a positive integer m such that x′ ≪ x ≤ myn for all n,
then there exists a positive integer k such that x′ ≤ y1 + ⋅ ⋅ ⋅ + yk .

Note that the CFP and the StCFP are equivalent in the simple case. _e termi-
nology comes from the fact that a σ-unital C*-algebra has the corona factorization
property if and only if its Cuntz semigroupW(A) has the CFP as deûned above [24].

_e following propositionwas basically shown in [28], but our version diòers from
theirs in that we reduce to elements in S≪. Recall that we denote by S≪ the set of all
y ∈ S such that there exists x ∈ S with y ≪ x, and that it agrees with S≪∞ whenever
S contains amaximal element∞, e.g., when S is simple.

Proposition 4.3 ([28]) Let S be a Cu-semigroup containing a maximal element ∞.
_en the following statements are equivalent.
(i) S has the CFP.
(ii) Given any full sequence (xn)n in S, any sequence (yn)n in S≪, an element x′ in

S such that x′ ≪ x1, and a positive integer m satisfying xn ≤ myn for all n, then
there exists a positive integer N such that x′ ≤ y1 + ⋅ ⋅ ⋅ + yN .

(iii) Given any full sequence (xn)n in S, any sequence (yn)n in S≪ and any positive
integer m satisfying xn ≤ m ⋅ yn for all n, then∞ = ∑∞n=1 yn .

(iv) Given a sequence (yn)n in S≪ such that m ⋅ ∑∞n=k yn = ∞ for some m and all
k ∈ N, then∑∞n=1 yn =∞.

Proof We will show ûrst that, in the deûnition of the CFP, we can reduce to a se-
quence (yn)n ∈ S≪, i.e., condition (ii) implies the CFP. So let (xn)n be a full se-
quence in S, (yn)n a sequence in S, x′ ≪ x1 in S, andm a positive integer m satisfying
xn ≤ myn for all n. Use Lemma 4.1 to ûnd a new full sequence (x′n)n with x′n ≪ xn ,
and we may choose the sequence such that x′ ≪ x′1 . Choose for each n a rapidly
increasing sequence (yk

n)k with supremum yn . _en, for each n ∈ N, there is k(n)
such that x′n ≤ m ⋅ yk(n)

n . As each yk
n ∈ S≪, we can apply (ii) to ûnd N in N such that

x′ ≤ yk(1)
1 + ⋅ ⋅ ⋅ + yk(N)

N ≤ y1 + ⋅ ⋅ ⋅ + yN .
_e converse, that (i) implies (ii), is trivial.
Let us then suppose statement (ii) and that we are given a full sequence (xn)n in

S, a sequence (yn)n in S≪ and a positive integer m satisfying xn ≤ myn for all n. We
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choose an injective map α∶N × N → N. Fix some k, l ∈ N. _en for any x′ ≪ xk ,
(ii) gives some N ∈ N such that x′ ≤ ∑N

n=1 yα(l ,n). Indeed, considering the sequence
{yα(l ,n)}n∈N , one has that xk ≤ myα(l ,n) for all n but at most k elements; hence,
choosing N big enough, one has the desired property. Since x′ ≪ xk was arbitrary,
we get, taking the supremum on both sides, that xk ≤ ∑∞n=1 yα(l ,n). Hence,

∞ ⋅ xk ≤
∞
∑
l=1

∞
∑
n=1

yα(l ,n) ≤
∞
∑
n=1

yn .

_e latter holds for arbitrary k. _us,∞ = supk(∞ ⋅ xk) ≤ ∑∞n=1 yn .
Let us suppose (iii) to hold and thatwe are given a sequence (yn)n in S≪ such that

m ⋅∑∞n=k yn = ∞ for all k ∈ N. Pick an arbitrary full sequence (xn)n and, with the
help of Lemma 4.1, ûnd a new full sequence (x′n)n such that x′n ≪ xn for all n in S.
_en, for any n, k ∈ Nwe have that x′n ≪ xn ≤∞ = m ⋅∑∞j=k y j . Hence, for each n and
k there is N(n, k) ∈ N such that x′n ≤ m ⋅∑N(n ,k)

j=k y j . We choose z1 ∶= ∑N(1,1)
j=1 y j , and

then, inductively, for given zn = ∑M
j=k y j , we choose zn+1 ∶= ∑N(n+1,M+1)

j=M+1 y j . (Note
that each zn ∈ S≪.) It follows that x′n ≤ m ⋅ zn for all n, and, by (iii), we obtain that
∞ = ∑∞n=1 zn = ∑∞n=1 yn .
Finally, suppose that (iv) holds and that we are given a full sequence (xn)n in S,

some x′ ≪ x1, a sequence (yn)n in S≪, and a positive integer m such that xn ≤ m ⋅ yn
for each n. _en for all l , k such that l ≥ k,

m ⋅
∞
∑
n=k

yn ≥
∞
∑
n=l

m ⋅ yn ≥
∞
∑
n=l

xn ≥∞ ⋅ x l .

Taking the supremum over l , m ⋅∑∞n=k yn =∞ for each k, which by (iv) implies that
∑∞n=1 yn = ∞. Hence, x′ ≪ x ≤ ∑∞n=1 yn , which shows the existence of some k such
that x′ ≤ ∑k

n=1 yn . _us, (iv) implies (ii), which completes the proof.

Deûnition 4.4 An ordered abelian semigroup W has the ω-comparison property
if, whenever x′ , x , y0 , y1 , y2 , . . . are elements in W such that x <s y j for all j and
x′ ≪ x, then x′ ≤ y0 + y1 + ⋅ ⋅ ⋅ + yn for some n.

_e following lemma constitutes a reduction step in the proof of Proposition 4.6.

Lemma 4.5 Let S be a Cu-semigroup. In the deûnition of ω-comparison one may,
without loss of generality, assume that y j ∈ S≪ for all j. _at is, ω-comparison is equiv-
alent to the following property.
● If x′ , x , y0 , y1 , y2 , . . . are elements in S≪ such that x <s y j for all j and x′ ≪ x, then
x′ ≤ y0 + y1 + ⋅ ⋅ ⋅ + yn .

Proof We suppose that we are given a Cu-semigroup S for which we only know the
condition of ω-comparison to holdwhen y j ∈ S≪ for all j. Wewill show that then the
ω-comparison holds.

Let x′ , x , y0 , y1 , y2 , . . . be elements in S such that x <s y j for all j and x′ ≪ x.
We ûnd x′′ such that x′ ≪ x′′ ≪ x. For each ûxed j there is some n ∈ N such that
(n + 1)x′′ ≪ ny j . Choosing a rapidly increasing sequence (yk

j )k with supremum
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y j , the sequence (n ⋅ yk
j )k increases rapidly and has supremum n ⋅ y j . It follows that

x′′ <s y l
j for some l = l( j). Set y′j ∶= y l( j)

j for each j. Now x′ ≪ x′′ <s y′j ≪ y j and
our assumption implies that x′ ≤ ∑N

j=1 y′j ≤ ∑N
j=1 y j .

For equivalent notions of ω-comparison we only consider simple Cu-semigroups.
_e reason for restricting ourselves to simple Cu-semigroups is that in the deûnition
of the ω-comparison, as it was introduced in [24], there is no assumption on fullness
of x. In this way, ω-comparison is more similar to the StCFP than to the CFP.

Proposition 4.6 Let S be a simple Cu-semigroup. _en the following statements are
equivalent.

(i) S has ω-comparison.
(ii) Whenever (yn) is a sequence of nonzero elements in S≪∞ such that yn <s yn+1

for all n, then∑∞n=1 yn =∞ (in S).
(iii) Whenever (yn) is a sequence in S≪∞ such that λ (∑∞n=k yn) = ∞ for all k ∈ N

and all functionals λ ∈ F(S), then∑∞n=1 yn =∞.
(iv) Whenever (yn) is a sequence of nonzero elements in S≪∞ such that λ (∑∞n=1 yn) =

∞ for all functionals λ ∈ F(S), then∑∞n=1 yn =∞.

Proof By Lemma 4.5wemay assume in the deûnition ofω-comparison that y j ≪∞
for all j. Now note that instead of the condition that x <s y j ≪ ∞ for all j, one
may assume that y j <s y j+1 ≪ ∞ for all j. Indeed, use simplicity to ûnd for given
σ ∶= ∑l

j=k y j some m ∈ N such that σ ≤ m ⋅ x. _en σ = ∑l
j=k y j ≤ m ⋅ x <s ∑l+m

j=l+1 y j .
Using this and starting with σ ∶= y1 = ỹ1, by iteration, we ûnd the desired sequence
( ỹ j) j with ỹ j <s ỹ j+1 ≪ ∞, j ∈ N, and ∑∞j=1 y j = ∑∞j=1 ỹ j . One now shows that (i)
implies (ii) in an analogous way to the proof of (i) implies (ii) of Proposition 4.3, and
the implication from (ii) to (i) is easy.

To connect the statements (i) and (ii) to statements (iii) and (iv), consider ûrst the
case that there is x ∈ S≪∞ with λ(x) =∞ for all λ ∈ F(S). _en, by Lemma 2.5, there
exists a unique nonzero functional λ = λ∞, and every element is stably inûnite. In this
case, the conditions on the yn in (ii)–(iv) all just reduce to the condition that yn /= 0
for every n. Hence (ii)–(iv) are trivially equivalent in this case. We may therefore
assume in what follows that there are functionals ûnite on S≪∞.

To see that (iii) implies (ii), we use that y j <s y j+1 implies that λ(y j) < λ(y j+1)
for all functionals λ ûnite on S≪∞. _e converse is shown by induction and by us-
ing Lemma 2.7 as follows. If y′j = ∑bk=a y j has been determined, then ûnd m as in
Lemma 2.7 for y′j , and then ûnd c ∈ N such that m ⋅ λ(y′j) < ∑cj=b+1 λ(y j). Set
y′j+1 ∶= ∑cj=b+1 y j .
Finally, to see that (iii) and (iv) are equivalent is easy as we have already reduced

to the case that λ(y j) <∞ for all j.

Remark 4.7 _e assumption that all elements y j in (iv) are nonzero is necessary
(see Example 4.13).
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Wewill now deûne a new regularity property on comparison in an ordered abelian
semigroup W based on the value β(x , y) for x , y ∈ W as deûned in Section 3. Note
that β(x , y) = 0 if and only if for every є > 0 there is k ∈ N such that kx ≤ ⌊kє⌋y,
where ⌊a⌋ denotes the greatest integer smaller than a.

Deûnition 4.8 LetW be an ordered abelian semigroup. Wewill say thatW satisûes
the β-comparison property if whenever x , y are two elements in W with β(x , y) = 0,
then x ≤ y.

Lemma 4.9 Let S be a simpleCu-semigroup. _en the following statements are equiv-
alent.
(i) S satisûes the β-comparison property.
(ii) Whenever β(x , y) = 0 for some nonzero x, then y =∞.

Proof Suppose β(x , y) = 0 for some nonzero x, which implies β(n ⋅ x , y) = 0 for
each n ∈ N by a simple computation. Letting x′ ≪ x, we have β(n ⋅ x′ , y) = 0 by
Lemma 3.4. Now (i) implies that n ⋅ x ≤ y for all n ∈ N, hence y = ∞ by simplicity.
_e other implication is trivial.

_e following lemma characterizes β-comparison using functionals and states.

Lemma 4.10 Let S be a simple Cu-semigroup. _en the following statements are
equivalent for an element y ∈ S.
(i) _ere is some nonzero x ∈ S such that β(x , y) = 0.
(ii) _ere is no faithful state f ∈ S(S , y).
(iii) λ(y) =∞ for all nonzero functionals λ ∈ F(S).

Proof By Lemma 2.4, (ii) and (iii) are equivalent.
Suppose that the set of states S(S , y) normalized at y is empty. _en, by Lemma

2.3, there is n ∈ N such that n ⋅ y is properly inûnite; hence, n ⋅ y = ∞. In this
case, β(x , y) = 0 and λ(y) = ∞ for all functionals λ, so all three statements hold.
Otherwise, there is a state f ∈ S(S , y) and β(x , y) = sup{ f (x) ∣ f ∈ S(S , y)}. _us,
(i) and (ii) are also equivalent in this case.

With respect to Lemma 4.10, one may wonder about the existence of a simple
Cu-semigroup S with a stably ûnite element y ∈ S such that β(x , y) = 0 for some
nonzero x (equivalently, λ(y) =∞ for all nonzero λ ∈ F(S)). _is question on exis-
tence has a positive answer, which is explained based on the C*-algebra constructed
in [25].

Example 4.11 Petzka [25] constructed a stably ûnite projection Q in themultiplier
algebra of a separable stable simple C*-algebra A, which is of the form Q = ∑∞j=1 p j ,
where the p j are pairwise orthogonal projections in A and such that λ(p j) = λ(p i)
for all i , j and all functionals λ.
Considering a ∶= ∑∞j=1 1

2 j p j , we ûnd a positive element a ∈ A such that its Cuntz
class, y = ⟨a⟩, satisûes that λ(y) = ∞ for all nonzero λ, hence β(x , y) = 0. We will
show that y is stably ûnite.
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Indeed, that the multiplier projection Q is stably ûnite is shown in [25] by the
existence of projections gn such that for each nwe have gn â n⋅Q. Assuming n⋅y =∞,
we get in particular that gn ⪯ n ⋅ a. By compactness of ⟨gn⟩, there is some N(n) ∈ N
such that gn ⪯ n ⋅∑N(n)

j=1
1
2 j p j ∼ ∑N(n)

j=1 p j . Now the Cuntz subequivalence is just the

Murray–von Neumann subequivalence of projections; hence, gn ⪯ ∑N(n)
j=1 p j < Q, a

contradiction. It follows that n ⋅ y <∞ for all n and y is stably ûnite.

Our goal is now to relate β-comparison to ω-comparison.

Proposition 4.12 Let S be aCu-semigroup. If S has β-comparison, then S has ω-com-
parison.

Proof Assume that S does not satisfy ω-comparison. _en there exists a sequence
{yn} and x , x′ in S such that x′ ≪ x <s y j for all j and x′ /≤ y1 + y2 + ⋅ ⋅ ⋅ + yk for any
k. Let y ∶= supn(∑

n
j=1 y j) and notice that x /≤ y.

We have that x ≤ ∞ ⋅ y j ≤ ∞ ⋅ y for all j, so x∝y. By Lemma 3.4, β(x′ , y) ≤
β(x′ ,∑k

j=1 y j) for any k. Using Remark 3.6, one gets β(x′ , y) ≤ 1/k for all k. Letting
k go to inûnity, β(x′ , y) = 0. Hence β(x′ , y) = 0 for all x′ ≪ x, but x ≰ y, so S does
not satisfy β-comparison.

_e converse is not true for general (simple) Cu-semigroups, but it is true for sim-
ple Cu-semigroups satisfying the additional axioms (O5) and (O6) and containing no
minimal element, which is the content of the following example and proposition.

Example 4.13 _ere exists a simpleCu-semigroup S, such that S hasω-comparison,
but no β-comparison.

Proof Let S = {0} ∪ {1} ∪ {∞} with 1 + 1 = ∞ and 1 compact. If one wants to
exclude minimal (necessarily compact) elements in a Cu-semigroup, then one can
similarly consider S̃ = {0} ∪ (1, 2] ∪ {∞} with x + y = ∞ for any nonzero x , y ∈ S̃.
Both semigroups are given the order inherited from R. Since the endpoint at 1 is not
included in S̃, every element can bewritten as the supremumof a rapidly, i.e., strictly,
increasing sequence. One checks that S and S̃ are both simple, satisfying the axioms
(O1)–(O4). Moreover, note that S satisûes (O5) and (O6). However, the order in S̃ is
not almost algebraic, so (O5) fails in S̃.

We show that S and S̃ have ω-comparison, but no β-comparison. For the failure
of β-comparison, note that 2x = ∞ for every nonzero x in S and S̃. _us, we have
that β(x , y) = 0 for arbitrary nonzero x , y. But in S we have 1 /=∞ and in S̃ we have
3/2 /=∞.

On the other hand, S and S̃ both have ω-comparison. To verify this, ûx some
nonzero x in S or S̃. _en for any sequence (y j) so that x <s y j for all j, the y j ’s are
necessarily nonzero, so∑∞j=1 y j =∞ ≥ x.

In the previous example, instead of the semigroup S, we could have considered
more generally the semigroup Sn = {0, 1, 2, . . . , n,∞} for some n ∈ N, equipped with
the natural order and the natural addition except that x + y =∞whenever the sumof
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x and y exceeds n inR. _ese Cu-semigroups were also studied in [5]. _e following
proposition states that, in the class of simple Cu-semigroups satisfying (O1)–(O6),
these are the only semigroups that distinguish ω-comparison from β-comparison.

Proposition 4.14 Let S be a simple Cu-semigroup with a nonzero compact element
z ∈ S satisfying axioms (O1)–(O6) and S /= Sn for any n ∈ N. If S has ω-comparison,
then S has β-comparison, and hence they are equivalent by Proposition 4.12.

Proof Let y ∈ S such that β(x , y) = 0 for some nonzero x. _en by Lemma 4.10 we
have that λ(y) = ∞ for all nonzero functionals λ ∈ F(S). Pick a rapidly increasing
sequence (y i) of nonzero elements with supremum y.
Focusing on functionals in F(S , z), as λ(y) =∞ and λ preserves suprema, we can

(a�er possibly changing to a subsequence) assume that λ(y i) + i ≤ λ(y i+1) for all i
and all λ ∈ F(S , z). (Here we are using compactness of F(S , z), which was shown in
[16,_eorem 4.8]). Using (O5), we can ûnd for each i some z i ∈ S such that y i + z i ≤
y i+2 ≤ y i+1 + z i .

We will distinguish between the case that λ(y i) = ∞ for some (and hence all)
i and for all nonzero λ ∈ F(S) ( i.e., by Lemma 2.5 there exists a unique nonzero
functional deûned by λ = λ∞ ) and the case that there is some nonzero functional λ
with λ(y i) <∞ for all i.
First, suppose the latter, and notice that this implies the existence of a functional

µ ∈ F(S , z) such that µ(y i) < ∞ for all i. _en µ(z i) ≥ µ(y i+2) − µ(y i+1) ≥ i + 1
for such a functional in F(S , z). It follows, in particular, that z i is nonzero. If now
ν is any nonzero functional, then either ν is inûnite on S≪∞ or ν is ûnite on each y j
and ν(z i) ≥ i + 1. Indeed, this follows from the fact that every functional in F(S) is a
multiple of some functional in F(S , z).

In particular, we get for all nonzero functionals λ that λ(∑∞i=k z2i+1) = ∞ for all
k. Now ω-comparison implies that∑∞i=1 z2i+1 =∞ (by Proposition 4.6). But, for any
N ∈ N, we have
2N+1

∑
i=1

z2i+1 ≤ y1 + z1 + z3 + z5 + ⋅ ⋅ ⋅ + z2N+1 ≤ y3 + z3 + z5 + ⋅ ⋅ ⋅ + z2N+1 ≤ ⋅ ⋅ ⋅ ≤ y2N+1 .

Hence∞ = ∑∞i=1 z2i+1 ≤ supi y i = y.
In the other case, in which the only functional on S is the trivial functional λ∞

assigning ∞ to all nonzero z ∈ S, we only need to ûnd for each y ∈ S a sequence
of nonzero z j ’s such that ∑∞j=1 z j ≤ y. _en an application of ω-comparison on the
sequence (z j) j yields the desired conclusion that y =∞. _at such a sequence can be
found in the simple Cu-semigroup S /= Sn satisfying axioms (O1)–(O6) follows from
the fact that these semigroups have the Glimm halving property [27], i.e., for every
nonzero x ∈ S there is some nonzero z ∈ S such that 2z ≤ x.

In [24, Proposition 2.17] it was proved that if a complete abelian ordered semi-
group satisûes ω-comparison, then it also satisûes the corona factorization property.
In the same paper it was le� unanswered whether the converse holds. _e example
below shows that both properties are not equivalent for Cu-semigroups, and hence
neither for general complete abelian ordered semigroups. It remains an open question
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whether the two notions are equivalent for Cu-semigroups S coming from a C*-alge-
bra, i.e., for S = Cu(A) for some C*-algebra A.

Example 4.15 _ere exists a simple Cu-semigroup that satisûes the corona factor-
ization property but does not have the ω-comparison property.

Proof Let S = [0, 1] ∪ {∞} be equipped with the usual order and addition, except
that if x , y ∈ S are such that x + y > 1 in R, we set x + y =∞.

It is easy to check that S is simple, totally ordered, and that it satisûes the (strong)
corona factorization property.

On the other hand, let us check that S does not satisfy ω-comparison. To do so,
ûrst note that for 0 ≤ x , y ≤ 1 in S, x ≪ y if and only if x < y, and that ∞ ≪ ∞.
Now consider the sequence {yn} = {1/2n+1} and the elements x = 1, x′ = 3/4. Clearly
x′ ≪ x and we get x <s y j for all j, since in fact x <s y holds for arbitrary x , y in S.
But as ∑∞j=1 y j = 1/2 ≱ 3/4, we conclude that S does not satisfy the ω-comparison

property.

_ere is also a stably ûnite Cu-semigroup distinguishing ω-comparison and
the CFP.

Example 4.16 Let S = {(0, 0)}∪ ((0, 1]∪{∞})× (0,∞], with addition deûned by
componentwise addition and with the additional condition that if in the ûrst compo-
nent we have x + y > 1, then x + y =∞. Namely, (x , r)+ (y, s) = (∞, r + s) whenever
x + y > 1 in R. _e order is componentwise with the natural ordering in each com-
ponent. Note that the relation of compact containment is given by componentwise
strict inequalities and with (∞, r) ≪ (∞, s) whenever r < s.

It is easy to check that S is simple and satisûes all axioms (O1)–(O6). Note that
all elements except those of the form (x ,∞) are stably ûnite. _is makes S a simple
stably ûnite Cu-semigroup.

If λ is a nonzero functional on S, then λ((x ,∞)) =∞ for all λ ∈ F(S). Indeed, by
construction, there exists m ∈ N such that m(x ,∞) = (∞,∞), so m ⋅ λ((x ,∞)) =
λ((∞,∞)) = ∞. _erefore, by Proposition 4.10, there is some nonzero (y, r) ∈ S
such that β((y, r), (x ,∞)) = 0, while (x ,∞) is ûnite. Hence, S does not have
β-comparison (see Lemma 4.9), and neither does S satisfy ω-comparison by Propo-
sition 4.14. On the other hand, it is easy to see with Proposition 4.3 that S satisûes the
(strong) corona factorization property.

Remark 4.17 One can even ûnd an algebraic, simple, stably ûnite Cu-semigroup
with the CFP and failing ω-comparison by a small modiûcation of the previous ex-
ample. Take

S = {(0, 0)} ∪ (((Q ∩ (0, 1]) ⊔ (0, 1]) ∪ {∞}) × ((Q ∩ (0,∞)) ⊔ (0,∞])

with addition and order similar to before, but now addition and order in each com-
ponent are deûned as in the Cuntz semigroup of the universal UHF-algebra [9]. By
construction, the semigroup S is algebraic, and one shows the required properties of
S in the same way as above.
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Note that the simple Cu-semigroup in Example 4.15 is neither stably ûnite nor
purely inûnite. _is behavior is in general ruled out by the property of β-comparison.

Proposition 4.18 Let S be a simpleCu-semigroupwith β-comparison. _en S is either
stably ûnite or purely inûnite.

Proof Suppose S is not stably ûnite, so that there is some x ≪ ∞ which is not û-
nite. In other words,∞ is compact, and for every nonzero y ∈ S some ûnite multi-
ple of it is properly inûnite. By Lemma 3.7, β(x , y) = 0 for every nonzero x , y. By
β-comparison, every nonzero element is inûnite and S = {0,∞}, i.e., S is purely
inûnite.

Hence, in the simple case, β-comparison implies the dichotomy of being either
stably ûnite or purely inûnite. By Proposition 4.14, ω-comparison implies the same
dichotomy of a simple Cu-semigroup S satisfying (O1)–(O6) and diòerent from Sn
for any n.

One sees from the above example that the CFP allows for the existence of both
ûnite and inûnite elements in simple Cu-semigroups. In particular, the CFP is not
equivalent to the following stronger statement: ifm ⋅∑∞n=1 yn =∞, then∑∞n=1 yn =∞.

We now turn our attention to Cu-semigroups without the CFP (therefore without
ω-comparison and β-comparison) that are neither stably ûnite nor purely inûnite.
_e next result provides a characterization of a simple Cu-semigroup not having the
CFP, which we subsequently use to ûnd an explicit simple Cu-semigroup without the
CFP that is neither stably ûnite nor purely inûnite. However, this semigroup does not
satisfy the axiom (O6). (See_eorem 5.8 for the existence of a simple Cu-semigroup
with (O6) and without the CFP that is neither stably ûnite nor purely inûnite, which
is given as the Cuntz semigroup of a C*-algebra. _is Cuntz semigroup, however, has
not been computed yet.)

Proposition 4.19 Let S be a simpleCu-semigroup, containing a ûnite compact element
and with ∞ ≪ ∞. _en S does not have the CFP if and only if there is a sequence of
elements (zn) in S≪∞ such that 2zn =∞ and∑∞n=1 zn <∞.

Proof It is clear that the existence of such a sequence implies the lack of the CFP.
Conversely, suppose S does not have the CFP. _en by Proposition 4.3, there is m ∈ N
and a sequence (yn) in S≪∞ such that m ⋅∑∞n=k yn =∞ for all k; however,∑∞n=1 yn /=
∞. Choosing m to be minimal, replacing each yn with a suitable multiple of itself,
and possibly discarding a ûnite number of yn ’s, we may assume that m = 2. Now
2 ⋅ ∑∞n=k yn = ∞ for all k and ∞ is compact. _us, for each k there is some N(k)
such that 2 ⋅∑N(k)

n=k yn = ∞. Choose z1 = ∑N(1)
n=1 yn and then choose zn+1 inductively

from zn = ∑t
n=s yn to be zn+1 = ∑N(t+1)

t+1 yn . _en the sequence (zn) in S≪∞ satisûes
2zn =∞, and∑∞n=1 zn = ∑∞n=1 yn <∞ as required.

Explicitly, we have the following example.
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Example 4.20 We construct an example of a simple Cu-semigroup satisfying (O5),
without the CFP and which is neither stably ûnite nor purely inûnite. However, our
example does not satisfy axiom (O6) of almost Riesz reûnement.

Proof Let S = [0, 1]N ∪ {∞}, with addition given by componentwise addition and
with the relation that x + y =∞whenever any component exceeds 1. One checks that
S is simple and that it satisûes all the required axioms, i.e., (O1)–(O5).

Letting yn denote the element in S, which is 1 at position n and zero elsewhere,
Proposition 4.19 applies to show that S does not have the CFP.

To see that (O6) does not hold, consider y1 = (1, 0, 0, . . . ) and y2 = (0, 1, 0, 0, . . . ).
Wehave y1 ≤ y2+y2 =∞, butwe cannotûnd anynonzero elements x1 , x2 ≤ y1 , y2.

Alternatively, in the previous example one could have used S = {0, 1}N ∪ {∞} in-
stead, but our aim was to show that one can guarantee the non-existence ofminimal
nonzero elements in S. _e failure of axiom (O6) in the last example can be general-
ized as follows.

Proposition 4.21 ([5, Lemma 5.1.18]) Let S be a simpleCu-semigroup satisfying (O6).
_en for any ûnite number of nonzero elements y1 , . . . , yn in S≪∞ there is some nonzero
z ∈ S such that z ≤ y j for all j.

Remark 4.22 _eorem 5.8 shows the existence of a simple C*-algebra A such that
itsCuntz semigroupCu(A) is neither stably ûnite nor purely inûnite and fails to have
the CFP. On the other hand, it seems diõcult to write down an explicit example of
a simple Cu-semigroup S, neither stably ûnite nor purely inûnite, satisfying all the
axioms (O1)–(O6) and failing to satisfy the CFP. By the previous proposition, in such
a semigroup, for any ûnite number of nonzero elements y1 , . . . , yn one can ûnd a
nonzero element z ∈ S such that z ≤ y j for all j = 1, 2, . . . , n. However, if the CFP fails
in S and this failure is witnessed by a sequence (y j), then there is no nonzero z ∈ S
such that z ≤ y j for all j ∈ N, as otherwise∑∞j=1 y j ≥∞ ⋅ z =∞.

_e CFP is closely related to property (QQ), which was introduced in [24].

Deûnition 4.23 ([24]) A positively ordered abelian semigroupW satisûes the prop-
erty (QQ) if every element in W for which a multiple is properly inûnite, is itself
properly inûnite.

_e following relations are immediate.

Proposition 4.24 Let S be a simple Cu-semigroup.

(i) If S has β-comparison, then S has property (QQ).
(ii) If S has (QQ), then S has the CFP.

Proof For (i), let x ∈ S and n ∈ N with n ⋅ x =∞. _en β(z, x) = 0 for all z, and by
β-comparison, x =∞. Statement (ii) is trivial (by Proposition 4.3).
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Remark 4.25 Attempting to prove the converse to (i) in the most direct fashion,
one would hope that β(x , y) = 0 for some nonzero x (equivalently, λ(y) =∞ for all
functionals λ) implies that some multiple of y should be inûnite. _at this does not
hold in general has already been noted in Example 4.11. Hence, to show that the con-
verse to (i) holds, one would need that the existence of some y /=∞ with β(x , y) = 0
for some nonzero x implies the existence of some z /= ∞ in S (possibly z /= y) such
that n ⋅ z =∞.

We introduce a new property related to the existence of both ûnite and inûnite
elements in S≪∞.

Deûnition 4.26 A complete abelian positively ordered semigroupW , containing a
largest element∞, has cancellation of small elements at inûnity, if whenever x and y
are elements in W with x ≪∞, y /= 0, and x + y =∞, then y =∞.

It is clear that if S /= {0,∞} and ∞ is compact in S, then cancellation of small
elements at inûnity fails. Example 4.16 shows that cancellation of small elements at
inûnity can also fail in a stably ûnite Cu-semigroup satisfying all axioms (O1)–(O6).
It is not known (but possibly expected) whether cancellation at inûnity holds for the
Cuntz semigroup Cu(A) of a simple stably ûnite C*-algebra A.

_e next result shows that cancellation of small elements at inûnity holds when S
satisûes either (QQ) or ω-comparison or β-comparison.

Proposition 4.27 Let S be a simple Cu-semigroup.
(i) If S has property (QQ), then it has cancellation of small elements at inûnity.
(ii) If S has β-comparison, then it has cancellation of small elements at inûnity.

Proof Suppose x ≪∞ and x + y =∞. Since x ≪∞ and also using simplicity, there
is n ∈ N such that x ≤ n ⋅ y. Hence (n + 1) ⋅ y =∞. By property (QQ), we get y =∞.
_e second statement easily follows from combining (i) with Proposition 4.24.

As we shall see below, the converse to Proposition 4.27 (i) holds for certain simple
Cu-semigroups. Recall that a Cuntz semigroup is called algebraic, if every element
can be written as the supremum of an increasing sequence of compact elements.

Proposition 4.28 Let S be a simple algebraic Cu-semigroup with (O5). _en S has
property (QQ) if and only if S has both the CFP and cancellation of small elements at
inûnity.

Proof Proposition 4.27 and Proposition 4.24 show the only if direction.
Using Proposition 4.3 one sees that, under the assumption of cancellation of small

elements at inûnity, the CFP can be rephrased as the statement that if (y j) j is a se-
quence in S≪∞ such that m ⋅∑∞j=1 y j =∞ for somem ∈ N, then∑∞j=1 y j =∞. Loosely
speaking, the CFP equals property (QQ) for elements of the form y = ∑∞j=1 y j with
y j ≪∞ for all j. Using (O5) and the assumption that S is algebraic, one see that every
element in S can be written as ∑∞j=1 y j for suitable y j ≪ ∞. Hence, property (QQ)
holds.
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Proposition 4.28 can be generalized to the simple non-algebraic case with aminor
technical limitation. (_e only if direction holds for a general simple Cu-semigroup.)

Proposition 4.29 Let S be a simple algebraic Cu-semigroup with (O5) and with can-
cellation of small elements at inûnity. Suppose that S does not have property (QQ) and
the failure of (QQ) iswitnessed by an element x ∈ S and somem > 2, such thatm⋅x =∞,
but (m − 1)x <∞. _en S does not have the CFP.

We omit the proof as the arguments are similar to the ones in the ûrst part of the
proof of _eorem 5.9, in which we overcome the technical limitation of needing m
to be strictly greater than 2, and prove the conclusion of Proposition 4.28 for any Cu-
semigroup S = Cu(A) coming from a simple C*-algebra A.

5 Applications to the Cuntz Semigroup of a C*-algebra

In this ûnal section we use the results obtained in the previous sections at the level
of general Cu-semigroups to Cu-semigroups arising from C*-algebras, i.e., the case
where S = Cu(A). _eorem 5.9 shows that, for any simple C*-algebra A, the CFP in
combination with cancellation of small elements at inûnity is equivalent to property
(QQ). We summarize the relations between all regularity properties studied in this
paper in_eorem 5.10. Finally,we show in_eorem 5.8 that the C*-algebra described
in [29], containing both a nonzero ûnite projection and an inûnite projection, does
not have the CFP.

Deûnition 5.1 LetW be an ordered abelian semigroup. We say thatW has theweak
halving property if for every x ∈ W there are y1 , y2 ∈ W such that y1 + y2 ≤ x and
x ∝ y j for j = 1, 2.

Note that if an ordered abelian semigroup W has the weak halving property, then
inductively one can ûnd a sequence (yn)n of elements in W such that for each n ∈ N
one has y1 + y2 + ⋅ ⋅ ⋅ + yn ≤ x and x ∝ yn for all n. In the case of a complete ordered
semigroup, we also get∑∞j=1 y j ≤ x.

Lemma 5.2 Let A be a unital simple C*-algebra not of type I.Denoting by W(A) the
(original) Cuntz semigroup given by equivalence classes of positive elements in matrix
algebras over A, it follows that W(A) has the weak halving property.

Proof Let x ∈W(A) be given. Upon replacing A by amatrix algebra over A,wemay
assume that x = ⟨a⟩ for some positive element a in A. We may also assume that a is
nonzero (as it is trivial to halve the zero-element). Take amaximal abelian sub-C*-al-
gebra D of aAa. _en D is inûnite-dimensional (by the assumption that A is not of
type I), and hence contains two nonzero pairwise orthogonal positive elements b1 , b2.
Put y j = ⟨b j⟩. _en y1 + y2 = ⟨b1 + b2⟩ ≤ ⟨a⟩ = x, and x ∝ y j for j = 1, 2, because
W(A) is algebraically simple, i i.e., x ∝ y for all x , y ∈W(A).
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_e next example shows that the Cu-semigroups Sn (see the paragraph before
Proposition 4.14) cannot arise as the Cuntz semigroup of a C*-algebra ( cf. [5, Re-
mark 5.1.17]). Hence, this shows that ω-comparison and β-comparison are equivalent
properties for any Cu-semigroup coming from a C*-algebra.

Example 5.3 Let n be a natural number and let Sn = {0, 1, 2, . . . , n,∞} be as in
Proposition 4.14. _en Sn is simple and satisûes ω-comparison, but not the property
(QQ) (the element 1 is ûnite, but∞ = (n+ 1) ⋅ 1 is properly inûnite), therefore neither
does it satisfy β-comparison.

However, note that the semigroup Sn fails to have theweak halving property, hence
it cannot be theCuntz semigroupof anon-type I and simpleC*-algebra byLemma 5.2.
(Note that if Cu(A) = Sn for the completed Cuntz semigroup of a simple C*-algebra
A, then also W(A) = Sn .)

Remark 5.4 Leonel Robert showed [27] that a simple Cuntz semigroup S with
axioms (O1)–(O6) has either Glimm halving (for every nonzero x ∈ S there is some
nonzero z ∈ S such that 2z ≤ x) or S = Sn for some n ∈ N ∪ {∞}. By the C*-algebraic
proof of theweak halving property above,we can rule out the possibility of S = Sn for
some n ∈ N. It follows that every Cuntz semigroup S = Cu(A), coming from a simple
nonelementary C*-algebra A, has the Glimm halving property.

We characterizeω-comparison for simpleCu-semigroups S = Cu(A) coming from
a C*-algebra.

Proposition 5.5 ([7]) If there is a simple C*-algebra A such that S = Cu(A), then the
ω-comparison property is also equivalent to the following statements (see Proposition
4.6).

(iv) If y ∈ S is such that λ(y) =∞ for all functionals λ ∈ F(S), then y =∞.
(v) A is regular, i.e., whenever D is a non-unital hereditary subalgebra of A⊗K with

no bounded quasitrace, then D is stable.

Proof By Lemma 5.2 (and Example 5.3), S /= Sn for any n ∈ N. It follows from
Proposition 4.14 that S has the ω-comparison if and only if it has the β-comparison.
_is shows the equivalence of ω-comparison and (iv)with the help of Lemma 4.9 and
Lemma 4.10.

Since (iv) and (v) both imply dichotomy (by Proposition 4.18 and [22, Lemma 4.6],
respectively), it suõces to show the equivalence of (iv) and (v) in the case that all
projections in the stabilization of A are ûnite. In this case, the desired equivalencewas
shown in [7,_eorem 4.2.1 (i) and (iii)] (see also the last paragraph of [7, §3]).

Remark 5.6 Notice that it follows fromProposition 5.5 that, for a simpleC*-algebra,
rA,∞ (radius of comparison with respect to ∞ (see [7] for further details)) is zero if
and only if Cu(A) satisûes ω-comparison. Combining thiswith Proposition 4.18, one
gets that a simple C*-algebra Awith rA,∞ = 0 is either stably ûnite or purely inûnite.
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It was shown in [24] that a σ-unital C*-algebra A has the corona factorization
property, i.e., every full projection in M(A ⊗ K) is properly inûnite, if and only if
Cu(A) has the CFP.We discussed in Section 4 that the corona factorization property
might allow for the existence of both ûnite and inûnite compact elements in a simple
Cu-semigroup (Example 4.15). Onemay therefore ask the question whether the sim-
ple nuclear C*-algebra A containing both a nonzero ûnite and an inûnite projection
constructed in [29] has the CFP. _at this is not the case is proved in _eorem 5.8.
Before proving _eorem 5.8, let us ûrst state the following result, which follows im-
mediately fromProposition 4.19. (Butnote that the proof to_eorem 5.8 only requires
the trivial direction of Proposition 5.7.)

Proposition 5.7 Let A be a simple C*-algebra containing both a ûnite and an inûnite
projection. _en A does not have the CFP if and only if there is a sequence of elements
(zn)n in Cu(A) such that zn ≪∞, 2zn =∞, and∑∞n=1 zn <∞.

_eorem 5.8 _e Cuntz semigroup of the simple nuclear C*-algebra C constructed in
[29], containing both a nonzero ûnite and an inûnite projection, does not have the CFP.

Proof We will remind the reader of some key features of the construction retaining
the notation from [29]. _e algebra in question is a crossed product C = D ⋊α Z. We
will then ûnd the desired elements for the application of Proposition 5.7 right from
its construction.
At ûrst, let A ∶= C(∏∞

j=1 S2 ,K). _ere is an injectivemap φ from A into its multi-
plier algebraM(A) with certain properties (see [29, Proposition 5.2]), which extends
to an injective map φ∶M(A) → M(A). _is extension φ induces an inductive se-
quence with limit B given by

M(A)
φ //

µ∞,0

55M(A)
φ // M(A)

φ // ⋅ ⋅ ⋅ // B .

Let α denote the natural automorphism on B coming from this inductive limit struc-
ture. Now the algebraD in the crossed product is given by the inductive limit of build-
ing blocks Dn = C*(A−n , . . . ,A−1 ,A0 ,A1 , . . . ,An) with injective connecting maps
given by inclusion. Here A0 ∶= µ∞,0(A) ≅ C(∏∞

j=1 S2 ,K), An ∶= αn(µ∞,0(A)) for all
n ∈ Z. _e properties of φ imply that An ∩ Am = {0} and AnAm = Amin{n ,m}.

_e inûnite projection µ∞,0(g) in D ⋊α Z is given by the image of the trivial pro-
jection g in C(∏∞

j=1 S2 ,K) ≅ A0 = D0. (_e map is given by the composition of the
inclusion of D0 into D and the natural inclusion of D into D ⋊α Z.) _e ûnite pro-
jection is given by the image of the Bott projection, Q ∶= µ∞,0(p1) ∈ D0 ↪ D ⋊α Z,
where p1 denotes the Bott projection over the ûrst coordinate of∏∞

j=1 S2.
We have that α(µ∞,0(p1)) = µ∞,0(φ(p1)). InM(A),we have that φ(p1) > qn , n =

1, 2, . . . for an inûnite sequence ofmutually orthogonal projections qn in A. Each qn
is equivalent in A to a Bott projection pν(n) with ν(n) ∈ N denoting the coordinate
of ∏∞

j=1 S2 over which the Bott projection is taken. (In the notation of [29] we have
φ(p1) > ∑0

j=−∞ S jpν( j,1)S∗j , so qn ∶= S(−n)pν(−n ,1)S∗(−n).)
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Setting zn ∶= ⟨µ∞,0(qn)⟩ (where ⟨a⟩ denotes the Cuntz class of a), we have that
∞
∑
n=1

zn =
∞
∑
n=1

⟨µ∞,0(qn)⟩ < ⟨µ∞,0(φ(p1))⟩ = ⟨α(µ∞,0(p1))⟩ = ⟨µ∞,0(p1)⟩ = ⟨Q⟩

is ûnite, and

2 ⋅ zn = 2 ⋅ ⟨µ∞,0(qn)⟩ = ⟨µ∞,0(pν(−n ,1) ⊕ pν(−n ,1))⟩ ≥ ⟨µ∞,0(g)⟩ =∞, n ∈ N.

_enext result provides the relation between the corona factorization property and
property (QQ) for simple C*-algebras. Proposition 4.24 shows that property (QQ)
implies the CFP. Example 4.15 and Example 4.16 show that the converse does not hold.
However, ifwe rule out examples like the ones in Examples 4.15 and 4.16 by assuming
cancellation of small elements at inûnity, then we do get the converse.

_eorem 5.9 Let A be a simple C∗-algebra. _en Cu(A) has property (QQ) if and
only if Cu(A) has both the CFP and cancellation of small elements at inûnity.

Proof Proposition 4.27 and Proposition 4.24 show that the only if direction holds.
For the converse let us assume cancellation of small elements at inûnity to hold.

As in the proof of Proposition 4.28, we note that all we need to show is that, if there
is some x ∈ Cu(A) with m ⋅ x = ∞ for some m, yet x /= ∞, then there is a sequence
(zn)n such that N ⋅∑∞n=1 zn = ∞ for some N , yet ∑∞n=1 zn /= ∞. (In Proposition 4.28
we saw that this is easy with axiom (O5) in the algebraic case, i.e., in the case that
every element in Cu(A) can be written as the supremum of compact elements.)

_e proof is divided in cases.
At ûrst, suppose that we have x ∈ Cu(A) such that m ⋅ x =∞ for some m > 2, but

(m − 1) ⋅ x /=∞. Find a ∈ (A⊗K)+ of norm 1 with ⟨a⟩ = x. For given α < β ∈ R, let
fα ,β denote the function from R+ into itself given by

fα ,β(t) =
⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ t ≤ α and t ≥ β,
1 t = (β + α)/2,

and linear elsewhere.

Note that fα ,β(a) ≪∞ for each 0 < α < β. We set an ∶= f1/2n ,3/2n(a) and zn ∶= ⟨an⟩,
n ≥ 1. _en a2n is orthogonal to a2k , and a2n+1 is orthogonal to a2k+1, whenever
k /= n. It follows that ∑∞n=1 z2n ≤ ⟨a⟩ = x, and also ∑∞n=1 z2n−1 ≤ x, so ∑∞n=1 zn ≤ 2x.
On the other hand, ∑N

n=1 zn ≥ ⟨(a − 1/2N)+⟩ for each N , where (a − є)+ = g(a) for
g(t) = max{0, t − є}. Hence, ∑∞n=1 zn ≤ 2x < ∞ and m ⋅∑∞n=1 zn ≥ m ⋅ x = ∞. We
found our desired sequence (zn)n .

In the case where m = 2, we may try to proceed as before to ûnd the sequence
(zn)n . In this case there exist two possibilities: if we are fortunate, the zn ’s satisfy
∑∞n=1 zn < ∞, in which case we are done, just as before. But possibly ∑∞n=1 zn = ∞,
in which case we need to restart to choose the zn ’s more carefully. Let us study this
second case.

Suppose 2x = ∞, x /= ∞, and ûnd a ∈ (A ⊗ K)+ of norm 1 with ⟨a⟩ = x. Set
a1 ∶= (a − 1/2)+, and z1 ∶= ⟨a1⟩ ∈ Cu(A)≪∞. Let y2 ∶= ⟨ f0,3/4(a)⟩. _en 2y2 + 2z1 ≥
2x =∞. By cancellation of small elements at inûnity wemust have that 2y2 =∞. We
can write y2 = supn⟨ f1/n ,3/4(a)⟩. Hence, z1 ≪ ∞ = 2 ⋅ y2 = 2 ⋅ supn⟨ f1/n ,3/4(a)⟩, so

https://doi.org/10.4153/CJM-2016-049-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-049-8


50 J. Bosa andH. Petzka

we can ûnd 0 < δ2 < 1/2 such that z1 ≤ 2 ⋅ ⟨ fδ2 ,3/4(a)⟩. We set a2 ∶= fδ2 ,3/4(a) and
z2 ∶= ⟨a2⟩.

Now to ûnd δ2 < γ2 < 1/2, set a3 ∶= fδ2/2,γ2(a) and set z3 ∶= ⟨a3⟩ ∈ Cu(A)≪∞.
Similarly to the previous step, we set y4 ∶= ⟨ f0,3δ2/4(a)⟩ and get

z3 ≪∞ = 2 ⋅ y4 = 2 ⋅ sup
n

⟨ f1/n ,3δ2/4(a)⟩.

_us, proceeding inductively, we get a sequence (an)n of positive elements in A⊗K

and a sequence (zn)n in Cu(A), such that:

(1) zn = ⟨an⟩ ≪∞ for all n.
(2) an ≤ a for all n.
(3) For all n /= k, a2n is orthogonal to a2k , and a2n+1 is orthogonal to a2k+1.
(4) z2n−1 ≤ 2zn for all n.
(5) ∑∞n=1 z2n ≤ ⟨a⟩ = x and∑∞n=1 z2n+1 ≤ x.
(6) ∑∞n=1 zn ≥ ⟨a⟩ = x.

Recall that by assumption we have∑ zn =∞, and that by (4) it follows that

∞
∑
n=1

z2n−1 ≤ 2 ⋅
∞
∑
n=1

z2n .

_erefore, 3 ⋅∑∞n=1 z2n ≥ ∑∞n=1 zn =∞, while∑∞n=1 z2n ≤ x /=∞. We found the desired
sequence with (z2n)n .

We conclude this paper with an overview of our results on comparison proper-
ties for the Cuntz semigroup of a C*-algebra, together with a list of interesting open
questions that naturally arise from our studies.

_eorem 5.10 Let A be a simple C*-algebra. _en we have the following diagram of
relations for comparison properties of the Cu-semigroup Cu(A):

ω − compar ison
KS

�� '/β − compar ison
KS

��

(QQ)
KS

��
λ(y) =∞ for all functionals λ⇔ y =∞

KS

��

CFP and cancel
small elements at∞

∄ faithful state f ∈ S(Cu(A), y)⇔ y =∞

08
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Question 5.11 ● Is there any simple C*-algebra A such that Cu(A) = [0, 1] ∪ {∞}
or any stably ûnite C*-algebra such thatCu(A) = {(0, 0)}∪((0, 1]∪{∞})×(0,∞]?

● Does Cu(A) have cancellation of small elements at inûnity for any simple stably
ûnite C*-algebra?

● Is CFP plus cancellation of small elements at inûnity equivalent to ω-comparison
for any Cu-semigroup? What about for the Cu-semigroup arising from a C*-alge-
bra?

● Is CFP equivalent to ω-comparison for the Cuntz semigroup arising from a C*-al-
gebra?
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