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Two Volume Product Inequalities and
Their Applications

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Alina Stancu

Abstract. Let K ⊂ R
n+1 be a convex body of class C2 with everywhere positive Gauss curvature. We

show that there exists a positive number δ(K) such that for any δ ∈ (0, δ(K)) we have Vol(Kδ) ·

Vol((Kδ)∗) ≥ Vol(K) · Vol(K∗) ≥ Vol(Kδ) · Vol((Kδ)∗), where Kδ , Kδ and K∗ stand for the convex

floating body, the illumination body, and the polar of K , respectively. We derive a few consequences of

these inequalities.

1 Introduction

Besides their intrinsic interest, convex floating bodies, respectively, illumination bod-

ies, have been useful in convex geometry in a number of ways. These bodies provide

geometric interpretations of affine surface area, they appear in volume estimates for

approximations of convex bodies by polytopes, and, more importantly, they gener-

alize the definition of affine surface area to arbitrary convex bodies consistent with

the other existing generalizations, while they surface in other applications as well, see

[2, 3, 20, 21, 27, 29, 30, 32, 33]. In what concerns the extension of affine surface area,

recall that Blaschke’s original definition in R
3, extended by Leichtweiss to higher di-

mensions, is so that a convex body K ⊂ R
n+1 with boundary of class C2 has affine

surface area

Ω(K) =

∫

∂K

K(q)
1

n+2 dµ∂K (q),

where K denotes the Gauss curvature at q ∈ ∂K and dµK stands for the surface area

measure of the convex body, [5, 11].

In this paper, we show that by taking convex floating bodies, respectively illumina-

tion bodies, of small factors Vol(K) · Vol(K∗), the product of the volume of a convex

body of class C2
+ containing the origin by the volume of its polar body increases,

respectively decreases. This is not only interesting in itself, but it implies two charac-

terizations of ellipsoids among convex bodies of class C2
+ which were conjectured to

be true among all convex bodies by Schütt and Werner.

The quantity Vol(K)·Vol(K∗) may immediately bring to mind the volume product

functional on convex bodies. Let K be a convex body in R
n+1 containing the origin
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in its interior and denote by K∗ := {x : x · y ≤ 1 for all y ∈ K} its polar body

with respect to the origin. Taking the origin to coincide with the Santaló point of K ,

i.e., the unique point of int(K) for which the volume of K∗ is minimal, the volume

product functional associates with the convex body K the value Vol(K)·Vol(K∗), [26].

In this case, a standard notation for the aforementioned product is Vol(K)·Vol(K s(K))

which we will use when the origin is the Santaló point of K . Throughout the paper,

Vol( · ) refers to the top dimensional volume with the standard metric inherited from

the ambient Euclidean space.

Recall that Vol(K) · Vol(K s(K)) is the object of the famous Blaschke–Santaló in-

equality

(1.1) Vol(K) · Vol(K s(K)) ≤ σ2
n+1,

where equality holds if and only if K is an ellipsoid. Here σn+1 is the volume of the

unit ball in R
n+1. The classical proof belongs to Blaschke [4] in R

3 and to Santaló

[24] in higher dimensions, including equality conditions under sufficient smooth-

ness assumptions. These conditions without smoothness hypotheses are due to Saint

Raymond [23] for centrally symmetric bodies and to Petty [22] for arbitrary convex

bodies. In fact, simpler proofs were found for arbitrary convex bodies. In particular,

Meyer and Pajor obtained an upper bound for Vol(K) · Vol(Kz) for z satisfying a cer-

tain property. Their inequality is more general than Blaschke–Santaló’s inequality,

and from this they deduced that equality in the latter holds only for ellipsoids [19].

An alternate proof is due to Lutwak [16] who also relates Blaschke–Santaló inequality

to several other affine inequalities emphasizing its central role [14, 17].

The quantity Vol(K) · Vol(K∗) for K whose centroid is at the origin, denoted in

this case by Vol(K) · Vol(K c), is the object of Mahler’s conjecture

(1.2) Vol(K) · Vol(K c) ≥
(n + 2)n+2

((n + 1)!)2
,

with equality if and only if K is a simplex. Note that our constants in both (1.1) and

(1.2) are rescaled to reflect the fact that K lies in R
n+1. For references and partial

results on this outstanding problem, see [6, 7, 9, 10, 12].

Our main result shows that the minimum of the volume product functional can-

not be reached for a centrally symmetric convex body belonging to C2
+.

2 Preliminaries

A convex body K ⊂ R
n+1 is a compact, convex set in R

n+1 with non-empty interior.

Throughout this paper we will use the following notations. Let S
n be the unit sphere

in R
n+1 and let hK : S

n → R, hK (u) = max{〈x, u〉 : x ∈ K} be the support function

of K . Often we will identify a convex body with its support function and vice versa.

We may assume, without any loss of generality, that the origin is contained in the

interior of K in order to have a support function strictly positive in all directions and

facilitate the calculations. We will use fK(u) to denote the curvature function of K at

the point of ∂K where the support hyperplane has normal u. If ∂K is of class C2
+, then
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the support function of K is of class C2, the boundary of K has strictly positive Gauss

curvature everywhere, and the curvature function coincides with the reciprocal of

the Gauss curvature K of ∂K at the point where the support hyperplane touches it.

The Gauss curvature is viewed here as a function on the unit outer normals to ∂K ,

hence on S
n.

We will consider illumination bodies and convex floating bodies associated with

K as previously defined in the literature.

Definition 2.1 [33] Let K ⊂ R
n+1 be a convex body and let δ > 0 be a real number.

The convex set Kδ
= {x ∈ R

n+1 : Vol(co[x, K] \ K) ≤ δ} is called the δ-illumination

body of K , where co[x, K] is the convex hull of x and K .

The name illumination body could be motivated by the fact that, if at any point

on the boundary of Kδ we place a source of light, the illuminated cone formed by the

point and ∂K has volume δ. It is not hard to see that Kδ is itself a convex body in

R
n+1 containing K .

Werner has shown that

(2.1)

∫

∂K

K
1

n+2 (q) dµK(q) =
1

cn
lim
δ→0

Vol(Kδ) − Vol(K)

δ
2

n+2

,

where cn is a normalization constant such that the affine area of Bn+1
2 , the Euclidean

ball in R
n+1, is Ω(Bn+1

2 ) = Vol(Bn
2). This constant depends solely on the dimension n

and its precise value is known [33].

Since the right-hand side of (2.1) does not require any regularity assumptions on

∂K , it can be used to extend the definition of the affine surface area to arbitrary

convex bodies as

(2.2) Ω(K) :=
1

cn
lim
δ→0

Vol(Kδ) − Vol(K)

δ
2

n+2

,

with cn as above [33].

This extension is equivalent with the others given in the last decade by Leichtweiss

[11], Lutwak [15], Meyer and Werner [18], Schmuckenschläger [25], Schütt and

Werner [30]. Note also [8, 13, 28] for related references.

However, for our paper, the regularity of ∂K plays an important role.

Lemma 2.2 Let K ⊂ R
n+1 be a convex body of class C2

+. There exists a positive number

δK such that for any δ ∈ (0, δK), we have in all unitary directions u ∈ S
n

(2.3) hKδ (u) ≥ hK (u) + δ
2

n+2 cn f
− 1

n+2

K (u) + o(δ
2

n+2 ),

where cn =
1
2

[

(n+1)(n+2)
σn

]

2
n+2 , with σn = Vol(Bn

2), is the same constant as in (2.1), and

f = o(s) means f /s → 0 as s → 0.

Proof The inequality (2.3) is meaningful as long as δ < 1. However, in this paper we

focus on illumination bodies of small factor δ, i.e., δ close to zero, and in this context,

(2.3) is extremely useful.
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Let u ∈ S
n be a fixed, arbitrary, unitary direction. As K is convex, there exists a

unique hyperplane of normal u supporting the boundary of K ,

Hu = {y ∈ R
n+1 | 〈u, y〉 = hK (u)},

and, similarly, there exists a unique hyperplane of normal u supporting the boundary

of Kδ , H
δ
u = {y ∈ R

n+1 | 〈u, y〉 = hδ
K(u)}. The distance d between the two parallel

hyperplanes described above is precisely the difference hKδ (u) − hK (u).

Choose coordinates x1, x2, . . . , xn+1 in R
n+1 such that {e1, . . . , en, u} is a basis of

R
n+1 and the supporting point {q} := Hu ∩ ∂K (unique due to the strict convexity

of K), lies at the origin. Then ∂K is locally a graph in these coordinates,

xn+1 = −
1

2

n
∑

i, j=1

hi jxix j + o(|x|2),

where hi j is the second fundamental form of ∂K at the supporting point and | · | is

the Euclidean norm in R
n+1.

Moreover, there exists a volume preserving linear transformation that fixes u and

brings ∂K locally to the form

xn+1 = −
1

2
K

1/n(q)

n
∑

i=1

x2
i + o(|x|2),

where K(q) = det[(hi j)i j](u) = f −1
K (u) is the Gauss curvature of ∂K at the point q.

Following the line of direction u for distance d ′ ≤ d from q, one reaches the point

x ∈ Kδ for which the cone of light co[x, K] \ K has volume δ. In particular, we will

have d ′
= d if and only if the hyperplane supporting Kδ at x has normal u.

Moreover, one has a description of the cone’s volume as

Vol
(

co[x, K] \ K
)

=
(2d ′)

n
2

+1

K
1
2

σn

(n + 1)(n + 2)
+ o

(

d ′ n+2
2

)

,

where σn is the volume of the unit ball in R
n.

Recalling that the above volume is equal to δ, we obtain

d ′
=

1

2

[ (n + 1)(n + 2)

σn

]
2

n+2

K
1

n+2 δ
2

n+2 + o(δ
2

n+2 ),

which concludes the proof of the lemma.

We recall now the definition of the convex floating body belonging to Schütt and

Werner [30].

Definition 2.3 Suppose that K is a convex body in R
n+1 with support function

hK : S
n → R. From the convexity of K , we have that for each unitary direction

u ∈ S
n, there exists a unique hyperplane of normal u supporting the boundary of K ,

Hu = {y ∈ R
n+1 | u · y = hK (u)}.
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If Hu,δ = {y ∈ R
n+1 | u · y = hKδ

(u)} denotes the hyperplane parallel to Hu such

that the (n + 1)-dimensional volume of the cap cut from K by Hu,δ is precisely δ,

Vol({y ∈ K | hKδ
(u) ≤ u · y ≤ hK (u)}) = δ,

for some positive δ < Vol(K)/2, then

Kδ =
⋂

u∈Sn

{y ∈ R
n+1 | u · y ≤ hKδ

(u)}

is said to be the convex floating body of K of factor δ.

The convex floating body of a convex body always exists as long as δ ≤ Vol(K)/2,

reducing to a point in the upper limiting case.

An equivalent formula to (2.2) was shown by Schütt and Werner [30]; namely, for

any convex body K ⊂ R
n+1 one has

(2.4) lim
δ→0

Vol(K) − Vol(Kδ)

δ
2

n+2

= dn Ω(K),

where dn =
1
2

(

n+2
σn

)

2
n+2 once again depends only on the dimension.

Convex floating bodies have been the object of an earlier paper whose main the-

orem, conjectured by Schütt and Werner in [30] for arbitrary convex bodies, is the

following.

Theorem 2.4 [31] Let K ⊂ Rn+1 be a convex body with boundary of class C≥4. There

exists a positive number δ(K) such that Kδ is homothetic to K with respect to the same

center of homothety, for some δ < δ(K), if and only if K is an ellipsoid.

In a manner analogous with the calculations of Lemma 2.2, we have the following

asymptotic expansion of the support function of a convex floating body Kδ in terms

of the support function of the original body K .

Lemma 2.5 [31] Let K ⊂ R
n+1 be a convex body of class C2

+. There exists a positive

number δK such that for any δ ∈ (0, δK)

(2.5) hKδ
(u) = hK (u) − δ

2
n+2 dn f

− 1
n+2

K (u) + o(δ
2

n+2 ), ∀u ∈ S
n,

where dn is as above.

To conclude the preliminaries, we recall an existing characterization of ellipsoids

which in many instances, including the present paper, is used in technical arguments.

Lemma 2.6 (Petty’s Lemma [22]) Let K ⊂ R
n+1 be a convex body with boundary

of class C2 for which hK and fK denote the support function and the curvature function,

respectively, as functions on the unit sphere S
n. If there exists a non-zero constant c such

that for all u ∈ S
n, hK (u) f

1/(n+2)
K (u) = c, then K is an ellipsoid.
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3 Results

Theorem 3.1 Let K ⊂ R
n+1 be a convex body of class C2

+ containing the origin in its

interior. There exists a positive constant δ(K) such that for any δ ∈ (0, δ(K)),

Vol(Kδ) · Vol((Kδ)∗) ≥ Vol(K) · Vol(K∗) ≥ Vol(Kδ) · Vol((Kδ)∗).

Furthermore, each equality is reached if and only if K is an ellipsoid.

Proof For the first inequality, we start with the asymptotic description of the support

function of the floating body (2.5) as ht(u) = h(u) − dn f
−1/(n+2)
K (u)t + o(t), where t

stands for δ
2

n+2 . To simplify the calculations, on what follows, we will often consider

t instead of δ
2

n+2 and, based on this correspondence between t and δ, we will also use

the notations ht , ht for the support function hKδ
, hKδ

respectively.

From here, we may estimate the volume of the dual polar of the floating body

Vol((Kt)
∗) =

1

n + 1

∫

Sn

h−(n+1)
t dµSn

= Vol(K∗) + t dn

∫

Sn

h−(n+2) f
− 1

n+2

K dµSn + o(t).

On the other hand, due to (2.4), one also has Vol(Kt) = Vol(K) − dn Ω(K) t + o(t).

Consequently,

1

dn
· lim

tց0

Vol(Kt) · Vol((Kt)
∗) − Vol(K) · Vol(K∗)

t

= Vol(K) ·

∫

Sn

h−(n+2) f
− 1

n+2

K dµSn − Ω(K) · Vol(K∗)

= Vol(K∗) ·

∫

Sn

h−(n+2) f
− 1

n+2

K dµSn

×

[

∫

Sn h fK dµSn

∫

Sn h−(n+1) dµSn

−

∫

Sn f
n+1
n+2

K dµSn

∫

Sn h−(n+2) f
− 1

n+2

K dµSn

]

.

Recall now a generalized Hölder inequality due to Andrews, which we will use to

conclude that the above limit is non-negative. If M is a compact manifold with a

volume form dω, g is a continuous function on M and F is a decreasing real, positive

function, then

(3.1)

∫

M

gF(g) dω
∫

M

F(g) dω

≤

∫

M

g dω
∫

M

dω

.

If F is strictly decreasing, then equality occurs if and only if g is constant, see [1,

Lemma I3.3]. Similarly, if F is an increasing real, positive function, the conclusion
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holds with ≥ in (3.1) and, similarly, if F is strictly increasing, then equality occurs if

and only if g is a constant function.

Taking g = hn+2 fK , F(x) = x−1/(n+2), x > 0, and dω = h−(n+1) dµSn
in (3.1), one

deduces that Vol(K) · Vol(K∗) increases as we pass to convex floating bodies, unless

g = constant.

Similarly, one uses (2.2) and (2.3) to obtain

Vol(K t) = Vol(K) + cn Ω(K) t + o(t),

respectively,

Vol((K t)∗) =
1

n + 1

∫

Sn

(ht)−(n+1) dµSn

≤
1

n + 1

∫

Sn

(

h + tcn f
− 1

n+2

K + o(t)
)−(n+1)

dµSn

≤ Vol(K∗) − t cn

∫

Sn

h−(n+2) f
− 1

n+2

K dµSn + o(t).

Therefore,

1

cn
· lim

tց0

Vol(K t) · Vol((K t)∗) − Vol(K) · Vol(K)

t

≤ −Vol(K) ·

∫

Sn

h−(n+2) f
− 1

n+2

K dµSn + Ω(K) · Vol(K∗),

concluding the proof of the second inequality by the same argument as before.

Note that in each case, equality occurs when hn+2 fK is constant in all directions,

hence, by Petty’s lemma, when K is an ellipsoid. (In that case, equality is reached in

(2.3) in all unitary directions as well.)

As a corollary, we validate Schütt-Werner conjecture for convex bodies of class C2
+.

Corollary 3.2 Let K ⊂ Rn+1 be a convex body of class C2
+. There exists a positive num-

ber δ(K) such that Kδ is homothetic to K with respect to the same center of homothety,

for some δ < δ(K), if and only if K is an ellipsoid.

Proof If K is an ellipsoid, the implication is trivial. In the other direction, the proof

is immediate too as K homothetic to Kδ with respect to the same center of homothety

implies the equality Vol(K) · Vol(K∗) = Vol(Kδ) · Vol((Kδ)∗).

The proof of Theorem 2.4 for convex bodies K of class C4
+ can be slightly adjusted

to extend it to the class C4. However, in Corollary 3.2 the assumption of an every-

where positive Gauss curvature cannot be dropped.

Similarly, we have a second characterization of ellipsoids.

Corollary 3.3 Let K ⊂ Rn+1 be a convex body of class C2
+. There exists a positive num-

ber δ(K) such that Kδ is homothetic to K with respect to the same center of homothety,

for some δ < δ(K) if and only if K is an ellipsoid.
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Moreover, in connection to (1.2), the right inequality of Theorem 3.1 implies the

following two consequences.

Corollary 3.4 (On Mahler’s conjecture) Denote by K s(K) the polar of a convex body

K ⊂ R
n+1 with respect to its Santaló point and by K c(K) the polar of a convex body

K ⊂ R
n+1 with respect to its centroid.

(i) If K is centrally symmetric and is of class C2
+, then Vol(K) · Vol(K s(K)) (also equal

to Vol(K) · Vol(K c(K)))) is not minimal among volume products of centrally sym-

metric convex bodies.

(ii) Vol(K) · Vol(K s(K)) is not minimal among volume products of convex bodies in

R
n+1 if K ∈ C2

+.

Proof (i) is immediate, while for (ii) note that

Vol(K) · Vol(K s(K)) ≥ Vol(Kδ) · Vol((Kδ)s(K))

≥ Vol(Kδ) · Vol((Kδ)s(Kδ)),

where the first inequality is strict if K is not an ellipsoid.

We are inclined to believe that the minimum of the volume product functional

K 7→ Vol(K) · Vol(K c) does not occur for a centrally symmetric convex body.

In a separate paper, we will introduce weighted illumination bodies which are

used to give a new geometric interpretation of the p-affine surface area. Analogous

to Theorem 3.1, we derive two inequalities for the volume product for weighted il-

lumination bodies and weighted convex floating bodies, the latter being defined by

Werner in [34].

Acknowledgement The author is indebted to the referee for comments and sugges-

tions which improved the original manuscript.
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[19] M. Meyer and A. Pajor, On Santaló’s inequality. In: Geometric Aspects of Functional Analysis,

Lecture Notes in Math. 1476, Springer, Berlin, 1989, pp. 261–263.
[20] M. Meyer and S. Reisner, Characterization of ellipsoids by section-centroid location. Geom. Dedicata

31(1989), 345–355.
[21] , A geometric property of the boundary of symmetric convex bodies and convexity of flotation

surfaces. Geom. Dedicata 37(1991), 327–337.
[22] C. M. Petty, Affine isoperimetric problems. Ann. New York Acad. Sci. 440(1985), 113–127.
[23] J. Saint Raymond, Sur le volume des corps convexes symétriques. Initiation à l’analyse, Exp. No. 11,
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