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Abstract

In this paper, using the framework of self-regularity, we propose a hybrid adaptive
algorithm for the linear optimization problem. If the current iterates are far from
a central path, the algorithm employs a self-regular search direction, otherwise the
classical Newton search direction is employed. This feature of the algorithm allows
us to prove a worst case iteration bound. Our result matches the best iteration bound
obtained by the pure self-regular approach and improves on the worst case iteration
bound of the classical algorithm.
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1. Introduction

Since Karmarkar’s landmark paper [3], interior point methods (IPMs) have become a
highly active research area, producing a large quantity of research results, and several
powerful optimization packages based on IPMs have been developed; see [1, 2, 5, 7, 8,
10–12] and references therein. By introducing the class of self-regular (SR) IPMs [6],
Peng et al. significantly reduced the worst case iteration bound of primal–dual
IPMs. In the best case, their new approach achieves an O(

√
n log n log(x0)T s0/ε)

worst case iteration bound compared to the O(n log(x0)T s0/ε) iteration bound of
the classical approaches. In this paper, using the framework of self-regularity, we
propose a hybrid adaptive algorithm for linear optimization (LO) which achieves an
O(
√

n log n log(x0)T s0/ε) worst case iteration bound by utilizing both the classical
and SR search directions. Our result improves on classical algorithms while matching
the order of the pure SR approach. The search directions in our new algorithm are
defined based on the current iterate, which is not the case in the pure SR or classical
approaches.
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Throughout the paper we deal with the standard form of the LO problem,

min
x

{
cT x : Ax = b, x ≥ 0

}
, (P)

where A ∈ Rm×n satisfies rank(A)= m, b ∈ Rm , c ∈ Rn , and its dual problem,

max
y,s

{
bT y : AT y + s = c, s ≥ 0

}
. (D)

It is customary in IPM theory to assume that both (P) and (D) satisfy the interior point
condition (IPC) [7], that is, there exists an (x0, s0, y0) such that

Ax0
= b, x0 > 0 and AT y0

+ s0
= c, s0 > 0.

Finding an optimal solution of (P) and (D) is equivalent to solving the system

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (1.1)

xs = 0,

where xs is the componentwise product of vectors x and s. The basic idea of primal–
dual IPMs is to replace the third equation in (1.1) by the parameterized equation
xs = µ1, where 1 is a vector of 1s. This leads to the system

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (1.2)

xs = µ1.

If the IPC holds, then System (1.2) has a unique solution for each µ > 0. This solution,
denoted by (x(µ), y(µ), s(µ)), is called the µ-centre of the primal–dual pair (P) and
(D). The set of µ-centres gives the central path of (P) and (D) [4, 9] and it has been
shown that the limit of the central path (as µ goes to zero) exists and it converges
to an optimal solution [7]. Primal–dual IPMs follow the central path (x(µ), s(µ))
approximately by staying in a certain neighbourhood of it and approach the optimal
set as µ goes to zero. To do so, starting from a strictly feasible point (x, y, s), they
solve the following system for µ= βµg:

A1x = 0, AT1y +1s = 0,

s1x + x1s = µ1− xs,
(1.3)

where µg = xT s/n denotes the current central path parameter value corresponding
to the duality gap and 0< β < 1. Under the assumption that rank(A)= m, the
Newton system (1.3) has a unique solution. The step size is chosen so that the
new iterates (x + α1x, y + α1y, s + α1s) give a sufficient complementarity gap
reduction, while staying in a predefined neighbourhood of the central path. We repeat
this procedure until the complementarity gap equals or decreases below a prescribed
tolerance ε, after which we have reached an ε-solution of (P) and (D) [7, 10].
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The rest of the paper is organized as follows. In Section 2, we introduce the family
of SR functions and SR-IPMs for LO. In Section 3, we first introduce a specific SR
proximity measure, and then we discuss the role of the parameter µ in the proximity
function and how we adaptively choose this parameter. Finally, we outline our new
algorithm. In Section 4, we prove the polynomial iteration bound of the new algorithm.
To improve the readability of the paper we have relegated some of the proofs to an
appendix.

1.1. Conventions
• (x−q)T s−q

=
∑

i∈I x−q
i s−q

i , where q ≥ 1 and I = {1, . . . , n}.
• For any x = (x1, x2, . . . , xn)

T
∈ Rn , xmin =min{x1, x2, . . . , xn}.

• Rn
+ denotes the nonnegative orthant and Rn

++ denotes the interior of Rn
+.

2. SR functions and SR-IPMs

The family of univariate SR functions is defined as follows.

DEFINITION 1. A twice continuously differentiable function ψ(t) : (0,∞)→ R is
SR if it satisfies the following two conditions.
(SR.1) The function ψ(t) is strictly convex for t > 0 and ψ(1)= ψ ′(1)= 0.

Furthermore, there exist positive constants ν2 ≥ ν1 > 0 and p ≥ 1, q ≥ 1 such
that

ν1

(
t p−1
+ t−1−q

)
≤ ψ ′′(t)≤ ν2

(
t p−1
+ t−1−q

)
, ∀t ∈ (0,∞).

(SR.2) For any t1, t2 > 0,

ψ
(

tr
1 t1−r

2

)
≤ rψ(t1)+ (1− r)ψ(t2), ∀r ∈ [0, 1].

If ψ(t) is SR, then the parameter q is called the barrier degree and the parameter p
is called the growth degree of ψ(t). Two popular families of SR functions are known:
the first is given by

ϒp,q(t)=
t p+1
− 1

p(p + 1)
+

t1−q
− 1

q(q − 1)
+

p − q

pq
(t − 1) , p ≥ 1, q > 1,

with ν1 = ν2 = 1; the second is given by

0p,q(t)=
t p+1
− 1

p + 1
+

t1−q
− 1

q − 1
, p ≥ 1, q > 1, (2.1)

with ν1 =min(p, q) and ν2 =max(p, q). For p, q = 1 in both cases the kernel
function of the classical logarithmic barrier function

011(t)= ϒ11(t)=
t2
− 1
2
− log t (2.2)

is obtained. See [6] for properties of these functions.

https://doi.org/10.1017/S1446181109000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000340


[4] A self-regular Newton based algorithm for linear optimization 289

Let v ∈ Rn
++. Then an SR proximity function 9: Rn

++→ R+ measures the
discrepancy between the vectors v and e, and is defined as9(v)=

∑n
i=1 ψ(vi ), where

ψ(t) is a univariate SR function, called the kernel function of the SR proximity. In
classical primal–dual IPMs one solves (1.3), while in SR-IPMs the Newton system
(1.3) is modified. To define the modified system we introduce the notation

v :=

√
xs

µ
and v−1

:=

√
µ1
xs
.

Then the Newton system for SR-IPMs for LO is given by

A1x = 0, AT1y +1s = 0,

s1x + x1s =−µv∇9(v),
(2.3)

where v∇9(v)= (v1ψ
′(v1), . . . , vnψ

′(vn))
T (see [6]). For ease of reference, we also

scale the search directions 1x and 1s in the scaled v-space as

dx :=
v1x

x
and ds :=

v1s

s
.

Using this, the Newton system (2.3) can be written as

Ādx = 0, ĀT1y + ds = 0,

dx + ds =−∇9(v),
(2.4)

where Ā = (1/µ)AV−1 X , X = diag(x) and V−1
= diag(v−1). It is worth noting that

the right-hand side of the third equation in (2.4) is the negative gradient of the SR
proximity function, similar to the classical case which is the negative gradient of the
classical logarithmic barrier function.

3. Proximity measure and barrier parameter

Throughout this paper we use the following SR proximity measure:

8(x, s, µ) :=
1T v2

− n

2
+

1T v−log n
− n

log n
. (3.1)

This proximity measure is induced by the kernel function 01q(t), given by (2.1), with
q = 1+ log n. The generalized harmonic mean of the vectors x and s is denoted by
µh and given by

µh =

(
n

(x−log n/2)T s−log n/2

)2/log n

.

The following result shows that the global minimum of the proximity measure (3.1) as
a function of µ, unlike the case of the primal–dual logarithmic barrier function, does
not occur at µg .
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PROPOSITION 3.1. For any fixed point (x, s) ∈ Rn
++ × Rn

++, the proximity measure
8(x, s, µ), as a function of µ, has its global minimizer at

µ∗ =

(
xT s

(x−log n/2)T s−log n/2

)2/(2+log n)

=

(
µgµ

log n/2
h

)2/(2+log n)
.

Moreover,8(x, s, µ) is a decreasing function ofµ whenµ≤ µ∗, and increasing when
µ > µ∗.

PROOF. By differentiating the proximity function with respect to µ we have

8′µ(x, s, µ)=−
xT s

2µ2 +
µ(log n/2)−1(x−log n/2)T s−log n/2

2
.

Now the statements of the proposition are obvious. 2

COROLLARY 3.2. For any (x, s) ∈ Rn
++ × Rn

++, one has µh ≤ µ
∗
≤ µg .

PROOF. Using the generalized harmonic-geometric mean inequality, µh ≤ µg . By the
definition of µ∗ given in Proposition 3.1 one has the desired results. 2

In order to prove the polynomiality of the IPM based algorithm, we require keeping
the iterate in a certain neighbourhood of the central path. Most practical algorithms
use the negative infinity norm neighbourhood, which is defined as

N−∞(ρ) :=
{
(x, s) > 0

∣∣∣ Ax = b, AT y + s = c,
∥∥∥(v2
− 1)−

∥∥∥
∞

≤ ρ
}
,

where a− =min(a, 0) and ρ ∈ (0, 1) is a constant independent of n. The closer the ρ
value to one, the larger the neighbourhood is. To achieve our goal, we define the SR
neighbourhood in such a way that it contains the negative infinity norm neighbourhood
and these two neighbourhoods almost match each other. Our SR neighbourhood is
defined as

N (n, τ ) :=
{
(x, s) > 0

∣∣∣ Ax = b, AT y + s = c, 8(x, s, µg)≤ η(n, τ )
}
,

where η(n, τ ) is a positive function that depends on a constant τ and the dimension
of the underlying problem, and it will be determined in the sequel. Assume that
(x, s) ∈N−∞(ρ); then, for µ= µg ,

8(x, s, µg)=
1T v−log n

− n

log n
≤

n(1− ρ)−log n/2
− n

log n
=

n(τ log n/2
− 1)

log n
=: η(n, τ ),

where τ = 1/(1− ρ). One can easily see that by this choice of η(n, τ ) the
neighbourhood N (n, τ ) contains the neighbourhood N−∞(ρ). The reverse statement
also holds, but for a bigger ρ value. This is shown in the next lemma.
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LEMMA 3.3. Let (x, y, s) be a point in N (n, τ ). Then it belongs to the set
N−∞(1− e−2τ−1).

PROOF. Let (x, y, s) ∈N (n, τ ). Then from the definition of the proximity function,
we have

8(x, s, µg)=
1T v−log n

− n

log n
≤ η(n, τ ).

This further implies that for all i ∈ I , v−log n
i ≤ nτ log n/2 or vi ≥ e−1τ−1/2. Therefore

(x, y, s) ∈N−∞(1− e−2τ−1). 2

REMARK 2. From our discussion it follows that operating in a SR neighbourhood is
like operating in a negative infinity norm neighbourhood. Moreover, we note that
just the starting point of the algorithm is taken from this neighbourhood; for the later
iteration we use the solvability of (3.2).

COROLLARY 3.4. The inequalities 8(x, s, µg)≤ η(n, τ ) and µg ≤ τµh are
equivalent.

PROOF. The proof follows from the definition of the proximity function. 2

Henceforth, without loss of generality, let us assume that there exists a feasible
solution for problems (P) and (D) for which µg ≤ τµh . We now describe the adaptive
choice of the barrier parameter, which is an important ingredient of our algorithm. We
define the barrier parameter as the smallest positive root of the equation

8(x, s, µ)=
(τ − 1)n

2
.

After expanding this equation we have

2(x−log n/2)T s−log n/2µ1+log n/2
− (2+ τ log n)nµ+ n log nµg = 0,

or

2
(
µ

µh

)log n/2

µ− (2+ τ log n)µ+ log nµg = 0. (3.2)

In the next lemma some conditions are given under which (3.2) is solvable. Its
smallest positive root is denoted by µt .

LEMMA 3.5. For all (x, s) ∈ Rn
++ × Rn

++ for which µg ≤ τµh , Equation (3.2) has
two positive solutions, one less than or equal to µ∗ and the other greater than or
equal to µ∗.

PROOF. See Appendix A. 2

The following technical lemma plays a crucial role in our later analysis.

LEMMA 3.6. For any (x, s) ∈ Rn
++ × Rn

++ for which Equation (3.2) is solvable,

τ log n/(2+log n)
≤
µg

µt
≤

(
τ +

2
log n

)
.
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PROOF. See Appendix A. 2

Although we are utilizing a specific proximity function to find the barrier parameter,
the search directions throughout this paper are either based on the SR proximity
function (3.1) as

A1x = 0, AT1y +1s = 0,

s1x + x1s = µ1+log n/2(x−log n/2)s−log n/2
− xs,

(3.3)

or the classical Newton step (1.3).

LEMMA 3.7. Let (1x(µt ), 1y(µt ), 1s(µt )) be the solution of System (3.3) with
µ= µt . Then

(x + α1x(µt ))
T (s + α1s(µt ))=

(
1− α + α

µ
(2+log n)/2
t

µg(µh)log n/2

)
xT s, (3.4)

where

µh =

(
n

(x−log n/2)T s−log n/2

)2/log n

.

PROOF. The proof follows from the third equation of (3.3). 2

LEMMA 3.8. Let (1x(µt ), 1y(µt ), 1s(µt )) be the solution of System (1.3) with
µ= µt . Then

(x + α1x(µt ))
T (s + α1s(µt ))=

(
1− α + α

µt

µg

)
xT s. (3.5)

PROOF. This follows from the third equation of (1.3). 2

Now the question is: does the complementarity gap (3.4) or (3.5) decrease for
α > 0?

REMARK 3. Since by our construction µt < µg , then for the Newton directions, the
complementarity gap always decreases. For the SR directions also by our construction
we will have µt < µ

∗, which implies that the complementarity gap decreases.

In the following lemma we give a lower bound for the smallest coordinate of v that
motivates the way we determine which value of q should be utilized in the definition
of the search direction, and subsequently we present our new algorithm.

LEMMA 3.9. Let (x, y, s) be a feasible point, and µg and µh the corresponding
parameter values. Suppose that for the given point Equation (3.2) has two positive
roots and denote its smaller one by µt . Then

vmin ≥ e−1
(
τ +

2
log n

)−1/log n

. (3.6)
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PROOF. Using the fact that µt ≤ µ
∗ and Lemma 3.6,

v
−log n
min ≤

∥∥∥v−log n/2
∥∥∥2
≤ ‖v‖2 =

µg

µt
n ≤

(
τ +

2
log n

)
n.

Then (3.6) holds. 2

In our algorithm the classical Newton direction is used whenever the actual iterate
is not too far from the central path, while if the actual point is farther away, the SR
search direction with barrier degree 1+ log n is employed.
• Newton step. We employ the Newton search direction when

vmin ≥ e−1/2
(
τ +

2
log n

)−1/log n

.

• SR step. We employ the SR search direction otherwise.
Now we can outline our hybrid adaptive algorithm. The term K ∗q is the

reduction proved for the proximity measure in one of Theorems 4.4 and 4.5 for the
corresponding q value.

Hybrid adaptive algorithm

Input:
A neighbourhood parameter τ ≥ 6 and n ≥ 4;
an accuracy parameter ε > 0;
(x0, y0, s0) ∈N (n, τ ).

begin
while xT s ≥ ε do
Compute µt , the smallest positive root of Equation (3.2).

If vmin ≥ e−1/2
(
τ + 2

log n

)−1/log n
, then solve (1.3) with µ= µt ,

otherwise solve (3.3).
Find the maximum step size α for which
8(x(α), s(α), µt )≤8(x, s, µt )− K ∗q .
Set (x, y, s)= (x(α), y(α), s(α)).
end

end

4. Iteration bound

In this section we derive the worst case iteration bound of our hybrid adaptive
algorithm. To do so, first we prove some necessary technical lemmas. For notational
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convenience, we define

σ`q =

(
n∑

i=1

(vi − vi
−1−log n)(vi − vi

−q)

)1/2

,

where ` stands for 1+ log n and σq = ‖v − v
−q
‖ = ‖dx + ds‖, where q = 1 or

1+ log n. It is easy to check that σ`q and σq are well defined. The following two
lemmas specify the relation between σ`q , σq and ‖(dx , ds)‖.

LEMMA 4.1. For q = 1 or q = 1+ log n, one has σq ≤ σ`q .

PROOF. If vi ≥ 1 then vi − vi
−q
≤ vi − vi

−1−log n , otherwise vi
−q
− vi ≤ vi

−1−log n

− vi , thus σq ≤ σ`q . 2

LEMMA 4.2. σ`q ≥
√
(τ log n/(2+log n) − 2)n.

PROOF. From the definition of σ`q ,

σ 2
`q ≥

∥∥∥v − v−1
∥∥∥2
=
µg

µt
n − 2n +

∥∥∥v−1
∥∥∥2
≥
µg

µt
n − 2n ≥

(
τ log n/(2+log n)

− 2
)
n,

where the last inequality follows from Lemma 3.6. 2

REMARK 4. It is worth noting that τ log n/(2+log n)
− 2> 0 for all n ≥ 4 and τ ≥ 6.

The following lemma also is useful in proving the reduction of the proximity
measure for different q values.

LEMMA 4.3. Suppose that for the current iterates Equation (3.2) is solvable and
µ= µt is its smallest positive root. Then

vmin ≥ e−1/2
(
τ +

2
log n

)−1/log n

⇒ v
1+log n
min σ`1 ≥

(τ log n/(2+log n)
− 2)1/2

e1/2
(
τ + 2

log n

)1+1/log n
:= C1

(4.1)
and

vmin ≥ e−1
(
τ +

2
log n

)−1/log n

⇒ v
1+log n
min σ`` ≥

1
2
. (4.2)

PROOF. See Appendix A. 2

In the next two theorems we discuss the reduction of the proximity measure after
each iteration for different q values.

THEOREM 4.4. Suppose that for the current iterates Equation (3.2) has two positive
roots and vmin ≥ e−1/2(τ + 2/ log n)−1/log n . Furthermore, let (1x, 1y, 1s) be the
solution of (3.3) with µ= µt as the smaller positive root of (3.2) and q = 1. Then

8(x(α∗1), s(α∗1), µt )≤8(x, s, µt )−
α∗1σ

2
`1

4
,
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where

α∗1 = C1

[
e1/2

(
τ +

2
log n

)1/log n

(1+ C1)σ`1 log n

]−1

.

PROOF. See Appendix A. 2

THEOREM 4.5. Suppose that for the current iterates Equation (3.2) has two positive
roots and vmin ≥ e−1(τ + 2/log n)−1/log n . Moreover, let (1x, 1y, 1s) be the
solution of (3.3) with µ= µt and q = 1+ log n. Then

8(x(α∗2), s(α∗2), µt )≤8(x, s, µt )−
α∗2σ

2
``

4
,

where

α∗2 =

[
6e

(
τ +

2
log n

)1/log n

σ`` log n

]−1

.

PROOF. By a proof similar to that of Theorem 4.4 and using (A.2) and inequality (4.2),

ᾱ1 ≥
vminσ``v

1+log n
min

σ``(1+ log n)(1+ σ``v
1+log n
min )

≥
1

6e
(
τ + 2

log n

)1/log n
σ`` log n

=: α∗2 .

Moreover, by [6, Lemma 1.3.3], for α = α∗2 ,

8(x(α), s(α), µt )≤8(x, s, µt )−
1
4
α∗2σ

2
``. 2

REMARK 5. Following the results of Theorems 4.4 and 4.5, and the fact that the value
of the proximity function approaches infinity when the barrier parameter approaches
zero or infinity, we can conclude that Equation (3.2) for the next iterate with step size
α = α∗1 , α

∗

2 , respectively, has two positive roots. We denote the smaller one by µt (α).

REMARK 6. Following the statements of Theorems 4.4 and 4.5, and using the fact
that µ∗(α) is the global minimizer of the proximity function as a function of µ(α)
for (x(α), s(α)) > 0, one has µt (α) < µ

∗(α). Moreover, Lemma 3.7 implies that the
complementarity gap after each iteration is strictly decreasing.

The following technical lemma plays a crucial role in deriving an upper bound for
the number of iterations for our hybrid adaptive algorithm.

LEMMA 4.6. Let 0< θ < 1 and v+ = v/
√

1− θ . Then

8(x, s, (1− θ)µt )≤
8(x, s, µt )

1− θ
+

2nθ

1− θ
.
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PROOF. From the definition of the proximity function,

8(x, s, (1− θ)µt ) =
‖v+‖

2
− n

2
+

∥∥v+−log n/2
∥∥2
− n

log n

=

1
1−θ ‖v‖

2
− n

2
+
(1− θ)log n/2

∥∥v−log n/2
∥∥2
− n

log n

=
1

1− θ

(
‖v‖2 − n

2
+

∥∥v−log n/2
∥∥2
− n

log n

)

+
nθ

2(1− θ)
+

nθ

log n(1− θ)

+

(
(1− θ)log n/2

−
1

1− θ

) ∥∥v−log n/2
∥∥2

log n

≤
8(x, s, µt )

1− θ
+

2nθ

1− θ
.

This completes the proof of the lemma. 2

LEMMA 4.7. Suppose that τ ≥ 6, n ≥ 4, and (1x, 1y, 1s) is the solution of System
(3.3) with µ= µt as the target value. Then for

θ =
α∗σ`q

√
τ log n/(2+log n) − 2

(τ + 3)n1/2 ,

we have

8(x(α), s(α), (1− θ)µt )≤8(x, s, µt ), ∀α ≤ α∗ where α∗ = α∗1 or α∗2 .

PROOF. By Lemma 4.6 we know that

8(x(α), s(α), (1− θ)µt )≤
1

1− θ
8(x(α), s(α), µt )+

2nθ

1− θ
.

Therefore the statement of the lemma holds whenever

1
1− θ

8(x(α), s(α), µt )+
2nθ

1− θ
≤8(x, s, µt ),

or
8(x(α), s(α), µt )+ 2nθ ≤ (1− θ)8(x, s, µt ).

Now using Theorem 4.4 or 4.5,

(τ + 3)θn

2
≤
α∗σ 2

`q

4
,
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where α∗ = α∗1 , or α∗2 , and q = 1 or 1+ log n. Using Lemma 4.2, this inequality
definitely holds for

θ =
α∗σ`q

√
τ log n/(2+log n) − 2

2(τ + 3)n1/2 . 2

COROLLARY 4.8. After each iteration with step size α∗ = α∗1 or α∗2 , Equation (3.2)
has two positive roots. Moreover,

µt (α)≤ (1− θ)µt , ∀α ≤ α∗. (4.3)

PROOF. Since the value of the proximity function8(x(α∗), s(α∗), µ) goes to infinity
when µ approaches zero, then by Lemma 4.7, Equation (3.2) has a root smaller than
(1− θ)µt . Furthermore, let µ∗(α∗) be the global minimizer of 8(x(α∗), s(α∗), µ).
Then by Theorem 4.4 or 4.5,

8(x(α∗), s(α∗), µ∗(α∗)) <
(τ − 1)n

2
.

Therefore, since the left-hand side of (3.2) as a function of µ is strictly convex, it has
another root. We denote the smaller one by µt (α

∗), which is less than (1− θ)µt . 2

In the following lemma we give lower bounds for θ for different choices of q .

LEMMA 4.9. We have

q = 1 ⇒ θ ≥
C1
√
τ log n/(2+log n) − 2

2e1/2(τ + 3)
(
τ + 2

log n

)1/ log n
(1+ C1)n1/2 log n

,

q = 1+ log n ⇒ θ ≥

√
τ log n/(2+log n) − 2

12e(τ + 3)
(
τ + 2

log n

)1/ log n
n1/2 log n

.

PROOF. This follows from the definition of θ and choice of α∗. 2

In the following theorem we give an upper bound for the number of iterations
required by the hybrid adaptive algorithm in the worst case to find an ε-approximate
solution.

THEOREM 4.10. The hybrid adaptive algorithm stops after at most O(
√

n log n
log(x0)T s0/ε) iterations with a solution (x, y, s) for which xT s ≤ ε.

PROOF. In light of inequality (4.3) and Lemma 4.9, after at most O(
√

n log n
log(x0)T s0/ε) iterations one has µt ≤ ε/((τ + 2/log n)n). Then from Lemma 3.6,
we have xT s ≤ ε. 2
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5. Concluding remarks

In this paper, using the framework of self-regularity, we have proposed an adaptive
hybrid algorithm which employs both the classical and SR search directions depending
on the position of the current iterate with respect to the central path. The hybrid
structure has enabled us to achieve the best iteration bound that can be achieved by
pure SR search directions and improve on the classical algorithms.

Appendix A. Proofs

In this section we present the proofs of some lemmas and a theorem presented in
the paper. The following two technical lemmas are used in the proof of Theorem 4.4.

LEMMA A.1. Suppose that α ∈ [0, 1]. Then (1+ t)α ≤ 1+ αt , for all t ≥−1.

PROOF. See [6, Lemma 1.3.1]. 2

LEMMA A.2. Suppose h(·) is a twice differentiable convex function with h(0)= 0 and
h′(0) < 0. Suppose that h(·) attains its global minimum at its stationary point t∗ > 0
and h′′(t) is increasing with respect to t . Then for any t ∈ [0, t∗], h(·)≤ h′(0)t/2.

PROOF. See [6, Lemma 1.3.3]. 2

PROOF OF LEMMA 3.5. If µg = τµh , then from Equation (3.2) one has µt = µh
which is strictly less than µ∗ as µg = τµh > µh . Moreover, since 8 is a strictly
decreasing function ofµ forµ < µ∗, we have that8(x, s, µ∗) < (τ − 1)n/2 and (3.2)
has exactly one root less than µ∗. Furthermore, since 8 as a function of µ going to
infinity for µ > µ∗, then (3.2) has exactly one root that is greater than µ∗. Now let us
assume that µg = τ1µh , where 1≤ τ1 < τ . Then

8(x, s, µh)=
(τ1 − 1)n

2
<
(τ − 1)n

2
.

We also know that the value of the proximity measure strictly increases to infinity
when µ approaches zero. All these together imply that (3.2) has exactly one solution
which is strictly less than µh . Similar to the previous case, another root which is
greater than µ∗ must also exist. 2

PROOF OF LEMMA 3.6. The right-hand-side inequality easily follows from (3.2).
For the left-hand-side inequality, since µ∗ is the global minimizer of the proximity
measure 8(x, s, µ) as a function of µ and the proximity measure approaches infinity
when µ approaches zero, µt ≤ µ

∗. Now let us consider the case where µg ≤ τµh .
Then 8(x, s, µg/τ)≤ (τ − 1)n/2. This itself implies that µt ≤ µg/τ . For the case
where µg > τµh , using the definition of µ∗ leads to µ∗ ≤ τ−log n/(2+log n)µg . Now,
since µt ≤ µ

∗, then

µt ≤max
(µg

τ
, τ−log n/(2+log n)µg

)
= τ−log n/(2+log n)µg. 2
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PROOF OF LEMMA 4.3. If vmin ≥ e−1/2(τ + 2/log n)−1/log n , then by Lemma 4.2,

v
1+log n
min σ`1 ≥ e−1/2n−1/2(τ log n/(2+log n)

− 2
)1/2(

τ +
2

log n

)−1−1/log n

n1/2

=
(τ log n/(2+log n)

− 2)1/2

e1/2
(
τ + 2

log n

)1+1/log n
:= C1,

completing the proof of (4.1). Finally, (4.2) follows from [6, Proposition 3.1.5]. 2

PROOF OF THEOREM 4.4. Let us define

g(α) : = 8 (x(α), s(α), µt )−8(x, s, µt )

=
‖v(α)‖2 − n

2
+

∥∥v(α)−log n
∥∥2
− n

log n
−
‖v‖2 − n

2
−

∥∥v−log n
∥∥2
− n

log n
,

where

v(α)=

√
x(α)s(α)

µt
= (v + αdx )

1/2(v + αds)
1/2.

After simplifying the expression, and using the arithmetic-geometric mean inequality,
we obtain

g(α) ≤
1
2
vT (dx + ds)α +

1
2 log n

n∑
i=1

[
(vi + α(dx )i )

−log n
+ (vi + α(ds)i )

−log n]
−

∥∥v−log n
∥∥2

log n
:= g1(α).

By the definition of σ`q , the derivative of g1(α) at zero is

g′1(0)=
1
2
vT (dx + ds)−

1
2
(v−1−log n)T (dx + ds)=−

σ 2
`1

2
.

Moreover, for the second derivative of g1(α), using Lemma 4.1 gives

g′′1 (α)≤
(1+ log n)σ 2

`1

2
(vmin − ασ`1)

−2−log n.

Now using the fact that

g1(0)= 0 and g1(α)= g1(0)+ g′1(0)α +
∫ α

0

∫ ζ

0
g′′1 (η) dη dζ,

one further has

g1(α)≤−
σ 2
`1

2
α +

(1+ log n)σ 2
`1

2

∫ α

0

∫ ζ

0
(vmin − ησ`1)

−2−log n dη dζ =: g2(α).
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It is easy to see, via use of simple calculus, that g2(α) is convex and twice continuously
differentiable for all α ∈ [0, αmax). Let ᾱ1 denote the global minimizer of g2(α). Then
it is the solution of the equation

−σ 2
`1 + σ`1

(
(vmin − ασ`1)

−1−log n
− v
−1−log n
min

)
= 0. (A.1)

From (A.1),

ᾱ1 =
vmin

σ`1

(
1− (σ`1v

1+log n
min + 1)−1/(1+log n)

)
, or

ᾱ1 =
vmin

σ`1

1−

(
1−

σ`1v
1+log n
min

1+ σ`1v
1+log n
min

)1/(1+log n)
.

Now using Lemma A.1 for the inner parentheses leads to

ᾱ1 ≥
vminσ`1v

1+log n
min

σ`1(1+ log n)(1+ σ`1v
1+log n
min )

≥
C1

e1/2
(
τ + 2

log n

)1/log n
(1+ C1)σ`1 log n

=: α∗1 , (A.2)

where the last inequality follows from part one of Lemma 4.3. Now, since g2(α)

satisfies all conditions of Lemma A.2,

8(x(α∗1), s(α∗1), µt )≤8(x, s, µt )−
1
4
α∗1σ

2
`1.
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