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THE MAXIMAL ^-EXTENSION OF A LOCAL FIELD 

MURRAY A. MARSHALL 

1. Let k denote a local field, that is, a complete discrete-valued field with 
perfect residue class field k. Let G denote the Galois group of the maximal 
separable algebraic extension M of k, and let g denote the corresponding object 
over k. For a given prime integer p, let G(p) denote the Galois group of the 
maximal ^-extension of k. The dimensions of the cohomology groups 

H*(G(p),Z/pZ),q= 1,2, 

considered as vector spaces over the prime field Z/pZ, are equal, respectively, 
to the rank and the relation rank of the pro-/>-group G(p); see [4; 9]. These 
dimensions are well known in many cases, especially when k is finite [6; 3; 
(Hoechsmann) 2, pp. 297-304], but also when k has characteristic p, or when 
k contains a primitive pth root of unity [4, p. 205]. 

Our aim in this article is to indicate a uniform method for computing 
Hq(G, Z/pZ), q = 1, 2, which applies whenever g has cohomological ^-dimen
sion less than two. Moreover, it is shown that if k has at least one totally 
ramified cyclic ^-extension, then H2(G(p), Z/pZ) = H2(G, Z/pZ). (The 
corresponding result in dimension one is trivial.) 

With these goals in mind, the following additional notation is introduced. 
For the prime p considered above, let 5 denote the group of pth roots of unity 
in T, where T denotes the maximal unramified extension of k. Further, let 
H denote the kernel of the natural homomorphism of G onto g. (Thus H is 
the Galois group of M over T.) Uv denotes the valuation on M normalized to k, 
then define e = v(p), and 5 = ep(p — 1). (e satisfies 0 ^ e S °° , and in the 
case that e = GO , we understand that s is also oo .) If K is any pro-finite group, 
then Z/pZ is a i£-module under the trivial action, and the cohomology groups 
HQ(K, Z/pZ), q ^ 0, will be denoted simply by H«(K). 

Let h denote the Galois group of the maximal elementary ^-extension of T. 
Let hx, x 6 R, denote the ramification subgroups of h. (See [1, pp. 119-120], 
for the definition of ramification for infinite extensions.) By the theorem of 
Hasse and Arf [7, p. 84], the jumps of the filtration {hx: x (z R} are integers, 
and so the filtration has the form 

(1) ^ ^ D ^ D J O . . . , 

Taking the completion of T, we may assume, without loss of generality, that T 
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is complete under v\ then the structure of the filtration (1) is given by local 
class field theory [8]. We have 

(2) (a) hn = hn+1 if 0 < n < s, and p\n; 
(b) hs ~ S canonically; 
(c) Hl(hn/hn+l) ÊË f, if 0 < n < s, p Kn. 

It should be noted that these mappings may be given explicitly as follows. 
In the non-trivial case, ord(/zs) = ord(5) ^ 1, the isomorphism hs —> S is 

given by a —> a(ir)1/p/ (T)1/P, where -K is a prime of T (see [8, §4.3]). This 
mapping is independent of the choice of ir. 

The isomorphism T —> H1(hn/hn+1) is given as follows. Let û 9^ 0, û Ç T. 
Let y = 1 + uir~'n, where IT is a fixed prime of J1. Choose x Ç M t o satisfy 
xp — x = 3>, and let L = T(x). Then L|T is cyclic of degree p with a single 
jump w, and if a Ç /zw, then ax — # is an integer of L, and its image in the residue 
class field L = T is actually in the prime field Z/pZ. Define 

x: hn/hn+1 -> Z/pZ by xO) = <rx - x. 

Then zZ —» x is the required isomorphism (see [8, § 4.4]). 
Since g = G(T\k) = G(T\k), T and r are naturally g-modules. Clearly 5 is a 

g-submodule of T\ the action of g on S being trivial if and only if S Q k. g also 
acts on the groups hn/hn+1 and hs by inner automorphism. In this way, 
H1(hn/hn+1) = Hom(An/#H"1» Z/pZ) becomes a g-module in the standard way. 
We note the following important fact. If it is chosen to be a prime in k, then the 
isomorphisms of (2) are g-module isomorphisms. 

THEOREM 1. Suppose that cdP(g) g 1. Then 
(a) H*(G) ^ IP(g) ® (@U kt) 0 IP(S'), and 
(b) H2(G) ^ Hl{gj Hl(S)) canonically. 

{Here kt denotes a copy of the additive group k.) 

Proof. One notes readily that there are e integers n satisfying 0 < n < s> 
p \n. Un is any such integer, then by (2) (c) we have the exact sequence of 
g-modules: 

Q->T-*Hl(hn)-±HlQf+l) -* 0. 

Applying the cohomology sequence together with the well-known fact that 
Ha(g, T) — 0 for all q ^ 1, we obtain the following sequences: 

(3) 0 -> k -> Hl(hny -> Hl(hn+lY -* 0, 

(4) 0 -> H*{g, Hi(hn)) - • Hl{g, H^h"*1)) -> 0. 

The sequence (3) splits, since the groups are elementary ^-groups. Thus, 
combining (2) and (3) we obtain 

(5) H\h)9^ © ki®H\sy. 
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On the other hand, combination of (2) and (4) yields 

(6) #>(g, HKh)) S IP(g,IP(h')) S IP (g, W{S)). 

The exact sequence 
0 -> H -> G -+ g -> 0 

yields the 5-term exact sequence 

(7) o ->H\g) ™H\G) ™H\Hy %H2(g) ™H\G) 

(see [4 or 9]). Since cdp(g) ^ 1, we have H2(g) = 0; thus (7) yields 

(8) H1 (G) ^ m {g) © m {jay. 

Since H 1 ^ ) = Hl{h) and / P ( 5 ) ' = Hl(S°), combining (5) and (8) we obtain 
(a). 

To prove (b), recall that the Brauer group is trivial over finite extensions 
of T; see [7]. By the results in [4, pp. 203-206], this yields cdp(H) ^ 1. Thus, 
by the theory of spectral sequences [4, p. 208], we have 

(9) EP(G)^Hi(g,Hi(H)). 

Combining (6) and (9), we obtain (b). 
In view of the introductory remarks, we really wish to compute HQ(G(p)), 

q = 1, 2, rather than H«(G). Of course, H'(G(p)) = H'(G) when q = 1. The 
following lemma prepares the way for a corresponding result in the case q = 2. 

LEMMA. Suppose that kt is a local field and that Gt and gi are defined as above, 
i — 1, 2. Further, suppose that k2\k± is cyclic totally ramified of degree p, and that 
cdp(gt) g 1, i = 1, 2. Then the natural restriction homomorphism 

R e s : # 2 ( G i ) - + # 2 ( G 2 ) 
is trivial. 

Proof. We have 

HKG^^HKguH^H^^H^guH^h,)), i= 1,2. 

Let Ti denote a prime of kif i = 1, 2. Then by the hypothesis, TI = UTT2
P, 

where u is a unit of k2. Let L — Ti((7Ti)1/p). Then LT2 = T2((u)1/P), and so the 
jump of LT2\T2 is less than s2 = e2p/(p — 1) [10, p. 143]. Thus, the natural 
mapping h2 —* hi factors through h2/S\ and so, in turn, the natural mapping 

Res: Hi(gl9 &Qn))-* &(git H^h2)) 

factors through H'(g2l &{h2/S)) = 0. 

THEOREM 2. Assume that cdv{g) :§ 1. If k has no totally ramified cyclic 
p-extensions, then H2(G(p)) — 0. Otherwise, 

H*(G(p))Ç^H2(G) 
canonically. 
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Proof. The condition that k has no totally ramified cyclic ^-extensions is 
clearly equivalent to the equality G(p) = g(p), and the result comes im
mediately from the assumption that cdû(g) g 1; see [4, p. 201]. 

To prove the second assertion, let K denote the kernel of the natural 
homomorphism of G onto G(p). Since G(p) is the maximal ^-factor group of G, 
we have Hl(K) = 0, and so we obtain the exact sequence 

0->H\G{p))™H\G)™H\K). 

But by the lemma, this restriction is trivial. This completes the proof. 

2. Applications. The most interesting prime is p = char(&). In this case, 
cdp(g) ^ 1, and so Theorems 1 and 2 apply. Theorem 1 yields the rank formula: 

rank G{p) = rank g (p) + ef + rank S°, 

where / denotes the dimension of k as a vector space over Z/pZ. The results 
concerning the relation rank may be interpreted in several cases. 

(1) The condition that S = 1 is equivalent to the condition that 5 = 
ep/(p — 1) is not an integer (i.e. it is a rational number or infinity); see 
[9, p. 114]. In this case G(p) is a free pro-^?-group. 

(2) Suppose that S° ^ 1. Thus g operates trivially on 5 = S°, and hence 

H2{G{p)) 9* Hi(g, H*(S)) 9* W{g) ^ k/^(k), 

where & (x) = xv — x. Thus G(p) is a free pro-^-group if and only if k has 
no cyclic ^-extensions. This result may also be derived in a more direct manner 
using Kummer theory; see Hoechsmann [2, pp. 297-304]. 

(3) Suppose that S ^ 1, Sg = 1. Let kx = k(S), let (r) = G(kx\k), and 
suppose that i Ç Z/pZ is defined by œT = co* for co £ S. Then 

^H^GiTlh))^ ^ ( Ê i / W i ) ) ' - ' , 
where A7'1 — {a £ A: aT — a1}. Thus, H2(G(p)) corresponds to a certain 
class of non-Galois extensions of degree p over k. In particular, G(p) will be 
free if k has only abelian ^-extensions, as in the quasi-finite case. 

Let p = char (£), and let A denote the Galois group of the maximal abelian 
extension of k. Clearly A (p) is a free abelian pro-£-group if cdp(G(p)) g 1. 
The converse may also be shown, and in this case, the topological group A, 
together with its ramification subgroups 

A 3 A0 3 A1 3 A2 3 . . . 3 An 3 A"*1 3 . . . , 

is completely characterized as a topological filtered group; see [5, pp. 142-143]. 
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