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This paper analyses the turbulent energy cascade from the perspective of statistical
mechanics, and relates interscale energy fluxes to statistical irreversibility and information
entropy production. The microscopical reversibility of the energy cascade is tested by
constructing a reversible three-dimensional turbulent system using a dynamic model for
the sub-grid stresses. This system, when reversed in time, develops a sustained inverse
cascade towards the large scales, evidencing that the characterisation of the inertial energy
cascade must consider the possibility of an inverse regime. This experiment is used to
study the origin of statistical irreversibility and the prevalence of direct over inverse
energy cascades in isotropic turbulence. Statistical irreversibility, a property of statistical
ensembles in phase space related to entropy production, is connected to the dynamics
of the energy cascade in physical space by considering the space locality of the energy
fluxes and their relation to the local structure of the flow. A mechanism to explain the
probabilistic prevalence of direct energy transfer is proposed based on the dynamics of
the rate-of-strain tensor, which is identified as the most important source of statistical
irreversibility in the energy cascade.
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1. Introduction

The turbulence cascade is a scientific paradigm that dates back to the beginning of the
20th century. It has been addressed in different ways, and the objects used to describe
it are many. From the classical view of Richardson (1922) to the recent analysis of
coherent structures (Cardesa, Vela-Martín & Jiménez 2017), through the statistical theory
of Kolmogorov (1941) or the spectral representation (Waleffe 1992), all descriptions focus
on the same phenomena through diverse approaches. In all cases, the cascade tries to
account for the gap between the scales where energy is produced and those at which it
is dissipated. A concept of energy flux or energy transport from large to small scales
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is always present. We know that this cascade must take place because this gap must be
bridged, but the mechanisms that underlie it are to date poorly or ambiguously identified.
A thorough description of these mechanisms and their causes is needed if a complete
theory of turbulence is to be constructed, and necessarily involves exploring multiple
representations of the turbulence cascade.

In this paper we expand the investigation of the energy cascade from the perspective of
dynamical system theory and statistical mechanics. We explore microscopical reversibility
in the inertial range dynamics, and its implications for the representation of the turbulence
cascade as a process driven by entropy production (Kraichnan 1967), emphasising that
the prevalence of a direct energy transfer is probabilistic, rather than an unavoidable
consequence of the equations of motion.

Turbulence is a highly dissipative and essentially irreversible phenomenon. An intrinsic
source of the irreversibility of the Navier–Stokes equations is viscosity, which accounts
for the molecular diffusion of momentum. However, when the Reynolds number is high,
only the smallest scales with locally low Reynolds numbers are affected. At scales
much larger than the Kolmogorov length, viscous effects are negligible and dynamics is
only driven by inertial forces, which, as we will demonstrate, generate time-reversible
dynamics. This is clear from the truncated Euler equations, which are known to be
reversible and to display features specific to fully developed turbulent flows under certain
conditions (She & Jackson 1993; Cichowlas et al. 2005). Although these equations are
invariant to a reversal of the time axis, statistical irreversibility appears as a tendency
towards preferred evolutions when the flow is driven out of equilibrium. The energy
cascade is an important manifestation of this irreversibility. Thus, we should distinguish
between intrinsic irreversibility, which is directly imposed by the equations of motion, and
statistical irreversibility, which is a consequence of the dynamical complexity of highly
chaotic systems with many degrees of freedom. In the absence of an intrinsic irreversible
mechanism, a dynamical system can be microscopically reversible and statistically, or
macroscopically, irreversible. This idea, which is widely understood in the study of
dynamical systems, has not been sufficiently investigated in the context of the turbulence
cascade.

The concept of microscopically reversible turbulence has been treated in the literature.
Gallavotti (1997) proposed a reversible formulation of dissipation in an attempt to apply
the theory of hyperbolic dynamical systems to turbulence, and to study fluctuations out of
equilibrium. This idea was later applied by Biferale, Pierotti & Vulpiani (1998) to study a
reversible shell model of the turbulence cascade under weak departures from equilibrium.
Rondoni & Segre (1999) and Gallavotti, Rondoni & Segre (2004) further extended
reversible models to two-dimensional turbulence, proving that reversible dissipative
systems can properly represent some aspects of turbulence dynamics. Reversibility is
also a property of some common large-eddy simulation models, which reproduce the odd
symmetry of the energy fluxes on the velocities and yield fully reversible representations
of the sub-grid stresses (Bardina, Ferziger & Reynolds 1980; Germano et al. 1991;
Winckelmans et al. 2001). Despite the statistical irreversibility of the energy cascade,
previous investigations have also shown that it is possible to reverse turbulence in time.
Carati, Winckelmans & Jeanmart (2001) constructed a reversible system using a standard
dynamic Smagorinsky model from which molecular dissipation has been removed. When
reversed in time after decaying for a while, this system recovers all its lost energy and
other turbulent quantities; during the inverse evolution, the system develops a sustained
inverse energy cascade towards the large scales. This numerical experiment shows that,
even if we empirically know that spontaneously observing an extended inverse cascade

915 A36-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.105


Entropy, irreversibility and cascades

is extremely unlikely, such cascades are possible, thus exposing their probabilistic nature.
We exploit here the experimental system in Carati et al. (2001) as a tool to explore the
statistical irreversibility of the energy cascade.

As originally argued by Loschmidt (1876), the analysis of the equations of motion of
any reversible dynamical system reveals that for each direct evolution there exists a dual
inverse evolution, leading to the paradox of how macroscopically irreversible dynamics
stem from microscopically reversible dynamics. This apparent inconsistency is bridged
with the concepts of entropy and entropy production, which account for the disparate
probabilities of direct and inverse evolutions. The concept of entropy is supported on
the description of physical systems by time-invariant probability distributions in a highly
dimensional phase space. While this approach has been successfully applied to describe
equilibrium systems, its application to out-of-equilibrium systems is still incomplete.

In the case of turbulence, the application of entropy to justify the direction of
the cascade dates back several decades. Kraichnan (1967) used absolute equilibrium
ensembles of the inviscid Navier–Stokes equations to predict the inverse cascade of
energy in two-dimensional turbulence. These equilibrium ensembles are derived from
the equipartition distribution, which maximises a Gibbs entropy, implicitly suggesting a
quantitative connection between entropy and energy fluxes. Although this approach has
proved successful to predict or justify the direction of fluxes in diverse out-of-equilibrium
turbulent systems, including magnetohydrodynamic turbulence (Frisch et al. 1975) and
incompressible three-dimensional turbulence (Orszag 1974), it fails to offer useful
information on the mechanisms that cause the prevalence of a particular direction
of the fluxes. For that purpose, rather than time-invariant equilibrium distributions,
we must consider the dynamical information encoded in the temporal evolution of
out-of-equilibrium probability distributions towards absolute equilibrium. Unfortunately,
turbulence exhibits a wide range of spatial and temporal scales, which renders its
description in a highly dimensional phase space all but intractable.

The main contribution of this work is to bridge the gap between the evolution of
probability distributions in phase space, and the physical structure of turbulent flows. We
characterise the energy cascade as a local process in physical space, which can be robustly
quantified independently of the definition of energy fluxes. These results extend previous
works on the locality of the energy cascade (Meneveau & Lund 1994; Eyink 2005;
Domaradzki & Carati 2007; Eyink & Aluie 2009; Cardesa et al. 2015, 2017; Doan et al.
2018). We consider the statistics of local energy transfer events to study the probability of
inverse cascades over restricted domains, connecting statistical irreversibility, a property
of phase-space ensembles related to entropy production, with the local dynamics of
turbulence in physical space.

The probabilistic nature of the cascade requires that we characterise its mechanism
also from a probabilistic perspective. A meaningful description of the energy cascade
must first identify the dynamically relevant mechanisms related to energy transfer, and
subsequently establish the causes of the prevalence of the direct mechanisms over the
inverse ones. We address both by analysing the filtered velocity gradient tensor through
its invariants (Naso & Pumir 2005; Lozano-Durán, Holzner & Jiménez 2016; Danish &
Meneveau 2018), and by determining their relation to the local energy fluxes in physical
space. These invariants describe the local geometry of turbulent flows, and offer a compact
representation of the structure and dynamics of the velocity gradients. We will show that
the structure of the direct cascade differs substantially from that of the inverse cascade, and
that differences are most significant in regions where the dynamics of the rate-of-strain
tensor dominates over the vorticity vector. Moreover, we show that strain-dominated
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regions are responsible for most of the local energy fluxes, evidencing the relevant role
of the rate-of-strain tensor in the energy cascade and in the statistical irreversibility of
turbulent flows.

Following these results we propose a probabilistic argument to explain the prevalence
of direct energy transfer by taking into consideration the interaction of the rate-of-strain
tensor with the non-local component of the pressure Hessian. In this frame, we justify
the higher probability of direct over inverse cascades by noting that the latter require the
organisation of a large number of spatial degrees of freedom, whereas the direct cascade
results from space-local dynamics.

This paper is organised as follows. In § 2 we review the origin of statistical irreversibility
in the turbulence cascade as explained by the evolution of out-of-equilibrium ensembles
and the production of information entropy. In § 3 we present the reversible sub-grid
model and the experimental set-up for the reversible turbulent system that constitutes the
foundations of this investigation. In order to examine the entropic (probabilistic) nature of
the turbulence cascade, we conduct different numerical experiments on this system, which
are detailed in § 4. In § 5 we characterise the distribution of inverse trajectories in phase
space and the structure of the energy cascade in physical space. In § 6 we compare the
structure and dynamics of the direct and inverse evolutions through the invariants of the
velocity gradient tensor and their relation to the local energy fluxes. Finally, conclusions
are offered in § 7.

2. Entropy production and the turbulence cascade

We explore in this section the origin of irreversibility in the inertial energy cascade
from the perspective of statistical mechanics. We use the concept of entropy and entropy
production to justify the prevalence of direct energy cascades, and suggest a connection
between these quantities and the interscale energy fluxes. Previous papers in this direction
are Orszag (1974) and Holloway (1986).

Let us consider an n-dimensional state vector in phase space, χ = (χ1, χ2, . . . , χn),
representing the n degrees of freedom of a deterministic dynamical system, and its
probability density, P(χ). Assuming that this representation of the system satisfies the
Liouville theorem, i.e. that the dynamics preserve phase-space volume and, therefore,
probability density along trajectories, we partition the accessible phase space in γ =
1, 2, . . . ,m coarse-grained subsets of volume ωγ . The probability of finding a state in
γ is

Pγ =
∫
ωγ

P(χ) dχ , (2.1)

where the integral is taken over ωγ . We define a Gibbs coarse-grained entropy,

H = −
∑
γ

Pγ log
(

Pγ
Υ

ωγ

)
, (2.2)

where Υ = ∑
γ ωγ , and the summation is done over all the sub-volumes of the partition.

This entropy is maximised for the coarse-grained probability distribution Pγ /ωγ = const,
although the value of this maximum depends on the geometrical properties of the partition,
such as the volume of the subsets, and can only be defined up to a constant. This definition
of entropy can also be connected with information theory, such that the information on an
ensemble of realisations is proportional to minus its entropy (Latora & Baranger 1999).
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Let us consider the Euler equations projected on a truncated Fourier basis, k � kmax,
where k is the wavenumber magnitude. This system conserves energy and satisfies
Liouville’s equation for the Fourier coefficients of the fluid velocity (Orszag 1974;
Kraichnan 1975). If we choose an ensemble of states far from equilibrium, such as a set
of velocity fields with a given total kinetic energy and an energy spectrum proportional to
k−5/3 (Kolmogorov 1941), H is initially low because the states are localised in a special
subset of phase space. As the ensemble evolves, the probability density is conserved
along each trajectory, P(χ(t)) = const, and the chaotic interaction of a large number of
degrees of freedom leads to the phase-space ‘mixing’ of the probability density, resulting
in the homogenisation of the coarse-grained probabilities, Pγ . As a consequence, H
increases until the coarse-grained probability over each element of the partition reaches
Pγ /ωγ = const, which maximises (2.2) and corresponds to absolute equilibrium. The
evolution of H towards a maximum manifests the second law of thermodynamics, and
explains the emergence of statistical irreversibility in microscopically reversible systems
out of equilibrium.

In the phase-space representation in terms of the Fourier coefficients, mixing is
implemented by the conservative exchange of energy among triads of Fourier modes,
which distributes energy evenly across all modes (Kraichnan 1959), so that the
equilibrium energy spectrum is proportional to the number of modes in each wavenumber
shell, 4πk2. This is the spectrum of the most probable macroscopic state, i.e. the
spectrum that represents the largest number of microscopic realisations. States in the
equilibrium ensemble have more energy in the small scales than the states in our initial
out-of-equilibrium ensemble, implying that the evolution towards equilibrium and the
increase of entropy corresponds, on average, to energy flux towards the small scales.
However, note that the scale is not a property of the phase space itself, nor of the
entropy. In our example, the scale has been overlaid on the system by labelling the Fourier
coefficients by their wavenumbers, where a greater number of coefficients are tagged as
‘small scale’ than as ‘large scale’. Moreover, the evolution towards equilibrium is true
only in a statistical sense. Since there is no deterministic ‘force’ driving the system to
equilibrium, it is possible to find trajectories in the ensemble for which energy sloshes
back and forth among different scales. One cascade direction is simply more probable
than the other.

In the previous discussion we have disregarded the dynamics of the flow, whose
evolution has been reduced to the chaotic mixing in phase space. In reality, the system
is restricted by the equations of motion, and not all evolutions are possible. At the very
least, the system only evolves on the hypersurfaces defined by its invariants, which thus
determine different equilibrium spectra. The most obvious invariant of the inviscid Euler
equations is the total energy, which can be written as E = ∑

k χ
2
k . But, because this

formula does not explicitly involve the scale, the restriction to an energy shell does not
modify energy equipartition, nor the k2 spectrum. When there is more than one invariant,
the accessible phase space is the intersection of their corresponding isosurfaces, which
generically depends on the relative magnitude of the total conserved quantities. This
is the case of the two-dimensional inviscid Euler equations, which also conserve the
enstrophy (Kraichnan & Montgomery 1980), or the inviscid and infinitely conducting
magnetohydrodynamic equations, which also conserve the magnetic helicity (Frisch et al.
1975).

Unfortunately, although the form of the equilibrium spectrum suggests where the system
‘would like to go’, it does not by itself determine the direction of the cascades in
out-of-equilibrium steady states. These states can be established by imposing boundary
conditions in phase space, such as forcing the large scales, and adding dissipation at the
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small ones, resulting in a steady flux of energy from one boundary to the other. The
intuition is that the cascade develops as the energy moves among scales, trying to establish
the equilibrium spectrum, but this final state is never achieved because the boundary
conditions sustain the energy flux and maintain the system out of equilibrium.

In summary, statistical irreversibility and the direct energy cascade arise in
out-of-equilibrium ensembles of the truncated Euler equations as consequences of three
aspects of inertial dynamics: the first one is the conservation of phase-space probabilities
along trajectories, due to Liouville; the second one is the strongly mixing nature of
turbulent dynamics in the inertial range; and the third one is that small scales are
represented by a much higher number of degrees of freedom than larger ones. These
properties intuitively answer the central question of why direct cascades are more probable
than inverse ones. Although possible, the latter are inconsistent with the tendency of
turbulent flows to evolve towards equilibrium, because they take energy from the more
numerous small eddies and ‘organise’ it into less common larger ones.

However, these general statistical concepts say little about the dynamics of the cascade.
The main contribution of our work is to explain the origin of statistical irreversibility
by considering the structure of the energy cascade in physical space, connecting the
description of turbulence as a dynamical system evolving in a highly dimensional phase
space to the space-local physical structure of isotropic turbulence. We do so by describing
the physical mechanisms that locally determine the prevalence of the direct over the inverse
energy cascade.

3. The reversible sub-grid model

A popular technique to alleviate the huge computational cost of simulating industrial
turbulent flows is large-eddy simulation, which filters out the flow scales below a
prescribed cutoff length, and only retains the dynamics of the larger eddies. We use it
here to generate microscopically reversible turbulence. The equations governing the large
scales are obtained by filtering the incompressible Navier–Stokes equations,

∂tūi + ūj∂jūi = −∂ip̄ + ∂jτij,

∂iūi = 0,

}
(3.1)

where the overline (·̄) represents filtering at the cutoff length Δ̄, ui is the i-th component
of the velocity vector u = (ui), with i = 1, . . . , 3, ∂i is the partial derivative with respect
to the i-th direction, p is a modified pressure and repeated indices imply summation. We
assume that the cutoff length is much larger than the viscous scale, and neglect in (3.1)
the effect of viscosity on the resolved scales. The interaction of the scales below the cutoff
filter with the resolved ones is represented by the sub-grid stress (SGS) tensor, τij = ūiūj −
uiuj, which is unknown and must be modelled.

One of the consequences of this interaction is an energy flux towards or from the
unresolved scales, which derives from triple products of the velocity field and its
derivatives, and is implicitly time reversible. However, this flux is often modelled as a
dissipative energy sink, destroying time reversibility and the possibility of inverse energy
fluxes (backscatter). In an attempt to yield a more realistic representation of the dynamics
of the energy cascade, some SGS models try to reproduce backscatter, which also restores
the time reversibility of energy fluxes. This is the case for the family of dynamic models,
which are designed to adapt the effect of the unresolved scales to the state of the resolved
flow, eliminating tuning parameters. A widely used reversible model is the dynamic
Smagorinsky model of Germano et al. (1991), based upon the assumption that the cutoff
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filter lies within the self-similar inertial range of scales, and that the sub-grid stresses at
the filter scale can be matched locally to those at a coarser test filter. This idea is applied
to the classical Smagorinsky (1963) model in which sub-grid stresses are assumed to be
parallel to the rate-of-strain tensor of the resolved scales, S̄ij = (∂iūj + ∂jūi)/2, such that
τT

ij = 2νsS̄ij, where νs is referred to as the eddy viscosity and the ‘T’ superscript refers
to the traceless part of the tensor. Introducing Δ̄ and |S̄| as characteristic length and time
scales, respectively, and a dimensionless scalar parameter C, the model is

τT
ij = 2CΔ̄2|S̄|S̄ij, (3.2)

where νs = CΔ̄2|S̄| and |S| = √
2SlmSlm. Filtering (3.1) with a test filter of width Δ̃ = 2Δ̄,

denoted by (·̃), we obtain expressions for the sub-grid stresses at both scales, which are
matched to obtain an equation for C,

CMij + LT
ij = 0, (3.3)

where Mij = Δ̃
2| ˜̄S| ˜̄Sij − Δ̄

2
˜|S̄|S̄ij and Lij = (˜̄uiūj −˜̄uĩūj)/2. A spatially local least-square

solution, C
, is obtained by contracting (3.3) with Mij,

C
(x, t; Δ̄) =
LT

ijMij

MijMij
. (3.4)

This formulation occasionally produces local negative dissipation, C
(x, t) < 0, which
may lead to undesirable numerical instabilities (Ghosal et al. 1995; Meneveau, Lund &
Cabot 1996). To avoid this problem, (3.3) is often spatially averaged after contraction to
obtain a mean value for the dynamic parameter (Lilly 1992),

Cs(t; Δ̄) =
〈LT

ijMij〉
〈MijMij〉 , (3.5)

where 〈·〉 denotes spatial averaging over the computational box. Since τijS̄ij = CsΔ̄
2|S̄ij|3,

a positive Cs implies that energy flows from the resolved to the unresolved scales, and
defines a direct cascade. The sign of Cs depends on the velocity field through Mij, which is
odd in the rate-of-strain tensor, so that Cs(−u) = −Cs(u). Given a flow field with Cs > 0,
a change in the sign of the velocities leads to another one with negative eddy viscosity.

This property allows us to construct a reversible turbulent system using the dynamic
Smagorinsky model and removing molecular viscosity. The equations for the resolved
velocity field, ū, are

∂tui + uj∂jui = −∂ip + CsΔ̄
2∂j|S|Sij,

∂iui = 0,

}
(3.6)

together with (3.5), where the filtering notation has been dropped for conciseness.
Equations (3.6) are invariant to the transformation t → −t and u → −u, and changing
the sign of the velocities is equivalent to inverting the time axis (Carati et al. 2001).

4. Experiments on turbulence under time reversal

4.1. Numerical set-up
A standard Rogallo (1981) code is used to perform a series of experiments on decaying
triply periodic homogeneous turbulence in a (2π)3 box. Equations (3.6) are solved with
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the dynamic Smagorinsky model described in the previous section. The three velocity
components are projected on a Fourier basis, and the nonlinear terms are calculated using
a fully dealiased pseudo-spectral method with a 2/3 truncation rule (Canuto et al. 2012).
We denote the wavenumber vector by k, and its magnitude by k = |k|. The number
of physical points in each direction before dealiasing is N = 128, so that the highest
fully resolved wavenumber is kmax = 42. An explicit third-order Runge–Kutta is used for
temporal integration, and the time step is adjusted to a constant Courant–Friedrichs–Lewy
number equal to 0.2. A Gaussian filter whose Fourier expression is

G(k;Δ) = exp(−Δ2k2/24), (4.1)

where Δ is the filter width (Aoyama et al. 2005), is used to evaluate Cs in (3.5). The
equations are explicitly filtered at the cutoff filter Δ̄, and at the test filter Δ̃ = 2Δ̄ = Δg

√
6,

where Δg = 2π/N is the grid resolution before dealiasing. Although the explicit cutoff
filter is not strictly necessary, it is used for consistency and numerical stability.

The energy spectrum is defined as

E(k; u) = 2πk2〈ûiû∗
i 〉k, (4.2)

where ûi(k) are the Fourier coefficients of the i-th velocity component, the asterisk is
complex conjugation and 〈·〉k denotes averaging over shells of thickness k ± 0.5. The
kinetic energy per unit mass is E = 〈uiui〉/2 = ∑

k E(k, t), where
∑

k denotes summation
over all wavenumbers.

Meaningful units are required to characterise the simulations. The standard reference
for the small scales in Navier–Stokes turbulence are Kolmogorov units, but they are
not applicable here because of the absence of molecular viscosity. Instead we derive
pseudo-Kolmogorov units using the mean eddy viscosity, 〈νs〉 = CsΔ̄

2〈|S|〉, and the mean
sub-grid energy transfer at the cutoff scale, 〈εs〉 = CsΔ̄

2〈|S|3〉. The time and length scale
derived from these quantities are τs = (〈νs〉/〈εs〉)1/2 and ηs = (〈ν〉3

s/〈εs〉)1/4, respectively.
We find these units to be consistent with the physics of turbulence, such that the peak of
the enstrophy spectrum, k2E(k), is located at ∼25ηs. In direct numerical simulations, this
peak lies at ∼20η.

The larger eddies are characterised by the integral length, velocity and time scales
(Batchelor 1953), respectively defined as

L = π

∑
k

E(k, t)/k∑
k

E(k, t)
, (4.3)

u′ = √
2E/3 and T = L/u′. The Reynolds number based on the integral scale is defined as

ReL = u′L/〈νs〉, and the separation of scales in the simulation is represented by the ratio
L/ηs.

In the following we study the energy flux both in Fourier space, averaged over the
computational box, and locally in physical space.

The energy flux across the surface of a sphere in Fourier space with wavenumber
magnitude k can be expressed as

Π(k) =
∑
q<k

4πq2Re〈û∗
i (q)D̂i(q)〉q, (4.4)

where Di = uj∂jui and a negative Π denotes energy flowing to larger scales.
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We use two different definitions of the local interscale energy flux in physical space,

Σ(x, t;Δ) = τijSij,

Ψ (x, t;Δ) = −ui∂jτij,

}
(4.5)

where the velocity field, the rate-of-strain tensor and τij are filtered with (4.1) at scale
Δ. Both are standard quantities in the analysis of the turbulence cascade (Meneveau &
Lund 1994; Borue & Orszag 1998; Aoyama et al. 2005; Cardesa et al. 2015), and are
related by Ψ = Σ − ∂j(uiτij). The second term on the right-hand side of this relation
is the divergence of an energy flux in physical space, which has zero mean over the
computational box, so that 〈Σ〉 = 〈Ψ 〉. Positive values ofΣ andΨ indicate that the energy
is transferred towards the small scales.

Because the decaying system under study is statistically unsteady, averaging over an
ensemble of many realisations is required to extract time-dependent statistics. This is
generated using the following procedure. All the flow fields in the ensemble share an
initial energy spectrum, derived from a forced statistically stationary simulation, and an
initial kinetic energy per unit mass. Each field is prepared by randomising the phases of
ûi, respecting continuity, and integrated for a fixed time tstart up to t0 = 0, where a fully
turbulent state is deemed to have been reached, the experiment begins, and statistics start
to be compiled. The initial transient, tstart, common to all the elements in the ensemble,
is chosen so that t0 is beyond the time at which dissipation reaches its maximum, and
the turbulent structure of the flow is fully developed. Quantities at t0 are denoted by a ‘0’
subindex. Following this procedure, we generate an ensemble of Ns = 2000 realisations,
which are evolved on graphic processing units. The statistics below are compiled over all
the members of this ensemble.

It is found that both the small- and large-scale reference quantities defined above vary
little across an ensemble prepared in this way, with a standard deviation of the order of
5 % with respect to their mean.

4.2. Turbulence with a reversible model
The basic numerical experiment is conducted as in Carati et al. (2001). After preparing
the ensemble of turbulent fields at t = t0 = 0, they are evolved for a fixed time tinv , during
which some of the initial energy is exported by the model to the unresolved scales. The
simulations are then stopped and the sign of the three components of velocity reversed,
u → −u. The new flow fields are used as the initial conditions for the second part of the
run from tinv to 2tinv , during which the flows evolve back to their original state, recovering
their original energy and the value of other turbulent quantities.

It is found that ηs only changes by 5 % during the decay of the flow, while τs increases
by a factor of 1.5 from t = 0 to tinv . On the other hand, the large-scale quantities L and
u′ vary substantially as the flow decays. The main parameters of the simulations, and the
relation between large- and small-scale quantities, are given in table 1.

Figure 1(a,b) presents the evolution of the kinetic energy E and of Cs as a function
of time for a representative experiment. We observe a clear symmetry with respect to
tinv in both quantities, and we have checked that this symmetry also holds for other
turbulent quantities, such as the sub-grid energy fluxes and the skewness of the velocity
derivatives. Quantities that are odd with respect to the velocity display odd symmetry in
time with respect to tinv , and even quantities display even symmetry. In particular, we
expect u(2tinv) 	 −u(0).
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N kmax ReL kmaxηs Δg/ηs tinv/T0 L/ηs L/Δg εsL/u′3 Ns

t = 0 128 42 214 0.94 2.2 1.3 63.3 28.3 1.3 2000
t = tinv — — 248 0.87 2.3 — 63.1 26.1 1.0 —

Table 1. Main parameters of the simulation averaged over the complete ensemble at time t0 = 0 and tinv . See
the text for definitions.
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Figure 1. Evolution of (a) mean kinetic energy, normalised with the initial energy E0, and (b) CsΔ̄
2 as a

function of time (arbitrary units). The dashed line in (a,b) is t = tinv , and the dotted lines in (a) are t = tstats,
used in § 6. (c) Energy spectrum E(k). ——, t = 0 and t = 2tinv ; – – –, t = tinv . The diagonal line is E(k) ∝
k−5/3. (d) Spectrum of the error between the velocity fields at t = 2tinv and t = 0, as a function of wavenumber.
The dashed line denotes k4.

Figure 1(c) shows the energy spectrum E(k) at times t = 0, tinv and 2tinv . Although
there are no observable differences between the initial and final spectra, we quantify this
difference in scale using the spectrum of the error between the velocity field at t = 0 and
minus the velocity field at 2tinv ,

ρ(k) = 2E(k; u(0)+ u(2tinv))
E(k; u(0))+ E(k; u(2tinv))

, (4.6)

which is presented in figure 1(d). The spectrum of the error is of the order of 0.01 in
the cutoff wavenumber and decreases as k4 with the wavenumber, confirming that the
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flow fields in the forward and backward evolution are similar, except for the opposite
sign and minor differences in the small scales. This suggests that the energy cascade is
microscopically reversible in the inertial scales. Sustained reverse cascades are possible
in the system, even if only direct ones are observed in practice, supporting the conclusion
that the one-directional turbulence cascade is an entropic (probabilistic) effect, unrelated
to the presence of an energy sink at the small scales.

This conclusion is in agreement with the empirical evidence that the kinetic energy
dissipation in turbulent flows is independent of the Reynolds number (Sreenivasan 1984).
This phenomenon, known as the dissipative anomaly, exposes the surrogate nature of
kinetic energy dissipation, which is controlled by large-scale dynamics through the energy
cascade process (Taylor 1935; Kolmogorov 1941). In agreement with the dissipative
anomaly, we will present evidence that the energy dissipation is a consequence, rather
than a cause, of the energy cascade.

4.3. The reverse cascade without the model
The validity of the conclusions in the previous section depends on the ability of the model
system to represent turbulence dynamics. In particular, since the object of our study is
the turbulence cascade rather than the SGS model, it is necessary to assess whether
the reversibility properties of the system, and the presence of a sustained backwards
energy cascade, stem from the SGS model, or whether intrinsic turbulent mechanisms are
involved. In this subsection we show that the model injects energy at the smallest resolved
scales, but that the energy travels back to the large scales due to inertial mechanisms. In
the next subsection we further demonstrate that the inverse cascade can exist for some time
even for irreversible formulations of the sub-grid model.

If the SGS model contributed substantially to the presence of a sustained inverse
cascade, its removal during the backward leg of the simulation would have an immediate
effect on the system, resulting in the instantaneous breakdown of the reverse cascade. This
is shown not to be the case by an experiment in which the model is removed at tinv by
letting Cs = 0. The system then evolves according to the Euler equations

∂tui + uj∂jui = −∂ip,

∂iui = 0,

}
(4.7)

which are conservative and include only inertial forces. The resulting evolution of the
inertial energy flux across Fourier scales, Π(k, t), defined in (4.4), is displayed in
figure 2(a) as a function of wavenumber and time.

At tinv , energy fluxes are negative at all scales and energy flows towards the large
scales. Shortly after, at t − tinv = 0.1T0, the inverse cascade begins to break down at
the small scales, while it continues to flow backwards across most wavenumbers. This
continues to be true at t = 0.15T0, where the direct cascade at the smallest scales coexists
with a reverse cascade at the larger scales. The wavenumber separating the two regimes
moves progressively towards larger scales, and the whole cascade becomes direct after
t 	 0.25T0.

Figure 2(b) shows the dependence on the wavenumber of the time trev(k) at which
Π(k, trev) = 0. It is significant that, for wavenumbers that can be considered inertial,
kL0 � 1, it follows that trev/T0 ≈ 2(kL0)

−2/3, which is consistent with the Kolmogorov
(1941) self-similar structure of the cascade. If we assume a Kolmogorov spectrum,
E(k) = CKε

2/3
s k−5/3, where CK ≈ 1.5 is the Kolmogorov constant (Pope 2001) and εs

is the energy flux through wavenumber k, which is equal to the energy dissipation, the
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Figure 2. (a) Energy flux Π(k) as a function of the time after removing the SGS model, t/T0: �, solid black
line, 0; •, solid red line, 0.1; �, solid blue line, 0.15; �, solid magenta line, 0.25. Energy flux normalised with
ε0 = u′

0
3
/L0. (b) Reversal time trev/T0 at which Π = 0 as a function of wavenumber kL0. Initial condition

before the inversion of the velocities and the removal of the model obtained with: ——, red, reversible dynamic
SGS model (N = 128); – – –, irreversible spectral SGS model (N = 512). The solid black line corresponds to
trev/T0 = 2(kL0)

−2/3.

‘All’ ‘+’ ‘−’ ‘All’ ‘+’ ‘−’

RΣ(5Δg, 10Δg) 0.74 0.73 0.2 RΣ(5Δg, 20Δg) 0.33 0.34 −0.01
RΨ (5Δg, 10Δg) 0.70 0.60 0.4 RΨ (5Δg, 20Δg) 0.24 0.29 −0.09

Table 2. Auto-correlation coefficient among scales of Σ and Ψ , evaluated for: ‘All’, the complete field; ‘+’,
conditioned to positive energy transfer events at 5Δg; ‘−’, conditioned to negative energy transfer events at
5Δg.

energy above a given wavenumber is

E(k) =
∫ ∞

k
E(q) dq ≈ 3

2 CKε
2/3
s k−2/3. (4.8)

When the SGS model is removed, an inverse cascade can only be sustained by drawing
energy from this reservoir. Independently of whether the cascade can maintain its integrity
from the informational point of view, the time it takes for a flux −εs to drain (4.8) can be
expressed as

tmax

T0
≈ 3

2
CK

(
u′3

L0εs

)1/3

(kL0)
−2/3 ≈ 2(kL0)

−2/3, (4.9)

where we have used values from table 2. As shown in figure 2(b), this approximation is
only 50 % larger than the observed reversal time for the initial conditions prepared with
the reversible SGS model.

The simplest conclusion is that the model just acts as a source to provide the small scales
with energy as they are being depleted by the flux towards larger eddies. If this source is
missing, the predominant forward cascade reappears, but the inertial mechanisms are able
to maintain the reverse cascade process as long as energy is available.
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4.4. The effect of irreversible models
We have repeated the same experiment for an irreversible spectral SGS model (Métais &
Lesieur 1992) with a higher resolution (N = 512). Results of trev(k) for this experiment
are shown by the dashed line in figure 2(b). The behaviour is similar to the experiment
in the previous section, but the wider separation of scales in this simulation allows
the preservation of an inverse cascade for times of the order of the integral time. This
experiment confirms that the microscopic reversibility of the inertial scales is independent
of the type of dissipation, and holds as long as the information of the direct cascade process
is not destroyed by the LES model. This experiment suggests that microscopic reversibility
should also hold in the inertial range of fully developed Navier–Stokes turbulence. Note
that the good agreement of the reversal time with the energy estimate in (4.9) implies that
trev is very close to the maximum possible for a given energy.

5. Phase- and physical-space characterisation of the energy cascade

5.1. The geometry of phase space
In the first place we confirm, by perturbing the inverse cascade, that in the neighbourhood
of each inverse evolution there exist a dense distribution of phase-space trajectories that
also display inverse dynamics. Each inverse trajectory is ‘unstable’, in the sense that it is
eventually destroyed when perturbed, but inverse dynamics is easily found considerably
far from the original phase-space trajectories, even for distances of the order of the size of
the accessible phase space, suggesting that inverse and direct trajectories lie in separated
regions of phase space, rather than mostly being intertwined in the same neighbourhood.
Hereafter we refer to the phase space of the Fourier coefficients, and consider, unless
stated, experiments with the reversible SGS model.

In this experiment we generate a backwards initial condition by integrating the equations
of motion until tinv , changing the sign of the velocities uι = −u(tinv), and introducing a
perturbation, δu. The perturbed flow field, up = uι + δu, is evolved and compared with
the unperturbed trajectory, uι(t). We choose the initial perturbation field in Fourier space
as

δûi(k) = ûιi(k) · μ exp(iφ), (5.1)

where φ is a random angle with uniform distribution between 0 and 2π and μ is a real
parameter that sets the initial energy of the perturbation. The same φ is used for the
three velocity components, so that incompressibility also holds for up. Figure 3(a,b) shows
the evolution of the mean kinetic energy of the perturbed field, Ep = 〈up〉2/2, and of the
perturbation field, δE = 〈δu2〉/2, for μ = 0.1, 0.01 and 0.001. The energy of the perturbed
fields increases for a considerable time in the three cases, demonstrating the presence
of inverse energy transfer and negative mean eddy viscosity, Cs < 0. Even under the
strongest initial perturbation, μ = 0.1, the inverse cascade is sustained for approximately
0.5T0. Note that δE grows exponentially at a constant rate for some time under the
linearised dynamics of the system, indicating that perturbations tend to the most unstable
linear perturbation (Benettin et al. 1980), which is independent of the form of the initial
perturbation.

As shown in figure 3(b), by the time the inverse cascade is destroyed and the energy of
the perturbed fields has evolved to a maximum and Cs = 0, the energy of the perturbation
is comparable to the total energy in all cases, δE ∼ E , which indicates that the states
that separate inverse and direct dynamics are considerably far in phase space from the
unperturbed trajectories, at least when the initial perturbations are small. If we estimate
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Figure 3. (a) Evolution of the energy of the perturbed fields Ep and (b) of δE = 1/2〈δu2〉, normalised with E0,
for: ——, μ = 0.1; – – –, red, μ = 0.01; − · −, blue, μ = 0.001; · · · · · · ·, energy of the unperturbed trajectory,
E(t)/E0. (c) Perturbed trajectories for μ = 0.1 and μ = 0.01, represented in the energy-dissipation space.
Symbols as in (a). The solid circle represents the beginning of the inverse trajectory at tinv , the empty circles
represent the end of the perturbed trajectories at 2tinv , and the solid square represents the end of the direct
trajectory at time tinv . The dotted lines and arrows represent the direct and inverse trajectories. (d) Evolution of
the probability density function of εs as a function of time starting from random initial conditions at tstart. From
left to right: (t − tstart)/T0 =: 0.0; 0.008; 0.017; 0.033; 0.067; 1.0. εs normalised with the ensemble average at
T0.

distances as the square root of the energy (L2 norm of the velocity field), the maximum
of Ep is located approximately at δE1/2 	 0.4E1/2

0 from the unperturbed phase-space
trajectory. In figure 3(c) we represent the evolution of the perturbed trajectories in the
dissipation-energy space. This plot intuitively shows that a typical direct trajectory is
located far apart in phase space from inverse trajectories, and that perturbed inverse
trajectories must first cross the set of states with zero dissipation, Cs = 0, before
developing a direct cascade.

In figure 3(d) we show the evolution of the probability density function of the sub-grid
energy transfer, εs, in the direct evolution of the ensemble, starting at tstart, when the initial
condition is a random field with a prescribed energy spectrum. The initial probability
distribution of εs is symmetric and has zero mean, indicating that the probabilities of
direct and inverse evolutions are similar. As the system evolves in time and develops the
turbulence structure, the probability of finding a negative value of εs decreases drastically.
At t − tstart = 0.008T0, we do not observe any negative values of εs in the ensemble. The
standard deviation of εs is small compared with the mean at t − tstart = T0, which indicates
the negligible probability of observing negative values of εs after a time of the order of an
eddy-turnover time.
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Although decaying turbulent flows have no attractor in the strict sense, i.e. a set of
phase-space points to which the system is attracted and where it remains during its
evolution, we use the term here to denote the set of phase-space trajectories with a fully
turbulent structure and a direct energy cascade. As we have shown, this set of states is
in fact ‘attracting’, but the flow does not remain indefinitely turbulent due to its decaying
nature. Let us note that it is possible to construct a reversible turbulent system with a
proper turbulent attractor by including a reversible forcing in the large scales, for instance,
a linear forcing that keeps the total energy of the system constant in time.

Inverse evolutions sustained in time are almost only accessible from forward-evolved
flow fields with changed sign. These trajectories lie in the antiattractor, which is
constructed by applying the transformation u → −u to the turbulent attractor. However,
we have shown in this analysis that inverse trajectories exist in a larger set of states
outside the antiattractor, which can be escaped by perturbing the reversed flow fields. The
destruction of the inverse cascade under perturbations reflects the negligible probability
of inverse evolutions, and indicates that they can only be accessed temporarily. Moreover,
the small standard deviation of the sub-grid energy transfer with respect to the mean in the
turbulent attractor reflects the negligible probability that the system spontaneously escapes
the attractor and develops and inverse energy cascade.

The reversible turbulent system under study provides access to trajectories outside the
turbulence attractor, which contains almost exclusively direct cascades. By studying these
inverse trajectories, we identify the physical mechanisms that lead to the prevalence of
direct over inverse cascades.

5.2. The structure of local energy fluxes in physical space
Up to now we have only dealt with the mean transfer of energy over the complete domain.
In this section we characterise the energy cascade as a local process in physical space.
We study here two markers of local energy transfer in physical space, Σ(x, t;Δ) and
Ψ (x, t;Δ), previously defined in (4.5), calculated at filter scalesΔ = 5Δg andΔ = 10Δg.
Figure 4(a,b) show the probability distribution of these quantities in the direct evolution.
We observe wide tails in the probability distribution of the two quantities, and skewness
towards positive events, which is more pronounced for Σ than for Ψ . Energy fluxes
change sign under u → −u, and, as shown in figure 4, their odd-order moments are in
general non-zero and have a definite sign in turbulent flows. This sign denotes statistical
irreversibility, i.e, the privileged temporal direction of the system in an out-of-equilibrium
evolution. The spatial average, which marks the direction of the cascade, is an important
example, 〈Σ〉 = 〈Ψ 〉 > 0.

To characterise the non-local spatial properties of the local energy fluxes, we define the
correlation coefficient between two scalar fields, ψ and ζ , as

Sψ,ζ (�x) = 〈ψ ′(x +�x)ζ ′(x)〉√
〈ψ ′2〉〈ζ ′2〉

, (5.2)

where we subtract the spatial average from quantities marked with primes. Due to isotropy,
S only depends on the spatial distance, �x = |�x|. We also define the auto-correlation
coefficient Sψ,ψ(�x) and the auto-correlation length as


ψ =
∫ ∞

0
Sψ,ψ(ξ) dξ, (5.3)
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Figure 4. (a,b) Probability density function of local markers of the energy cascade without volume averaging:
(a) Σ ; (b) Ψ . Symbols correspond to: �, dashed red line, Σ(5Δg); �, dashed blue line, Σ(10Δg); �,
solid magenta line, Ψ (5Δg); •, solid black line, Ψ (10Δg). The dashed–dotted lines represent −〈ψ〉/σV for
quantities calculated at 5Δg, and the open symbols represent the probability density function of 〈Σ(5Δg)〉V

and 〈Ψ (5Δg)〉V for V = (16Δg)
3.

which measures the typical length over which ψ decorrelates, and is related to the typical
size of events in ψ . The correlation lengths of Σ and Ψ are proportional to the filter size
Δ, 
Σ = 0.47Δ and 
Ψ = 0.51Δ.

We use 〈Σ〉V and 〈Ψ 〉V to study the spatial structure of energy fluxes, where 〈·〉V
represents the volume-averaging operation over a sphere of volume V . The standard
deviation of the probability distribution of the volume-averaged fields,

σV =
√

〈(〈ψ〉V − 〈ψ〉)2〉, (5.4)

is shown in figure 5(a) as a function of the averaging volume, where σ0 = (〈ψ2〉 −
〈ψ〉2)1/2 is the standard deviation of the test field without volume averaging. When
the averaging volume is sufficiently large, V/
3 � 103, the standard deviation becomes
inversely proportional to the square root of N = V/
3 in all cases, where N is a measure
of the number of independent energy transfer events within the averaging volume. These
results suggest statistical independence of the events within the averaging volumes and
some degree of space locality in the energy cascade.

Despite this locality, Σ and Ψ are very different pointwise, which might suggest that
local energy fluxes are not uniquely defined, and that only global averages are robust with
respect to the particular definition of fluxes, 〈Σ〉 = 〈Ψ 〉. In fact, the correlation betweenΣ
and Ψ for �x = 0 is low, SΣ,Ψ (0) ∼ 0.05, at both filter scales, 5Δg and 10Δg. However,
when these quantities are averaged, the correlation coefficient increases rapidly with the
averaging volume. In figure 5(b) we show the dependence of S〈Σ〉V ,〈Ψ 〉V (0) on V . For
averaging volumes V ∼ (4
)3, the correlation increases to approximately 0.7 for both filter
widths, indicating that Σ and Ψ are similar when averaged over volumes of the order of
their cubed correlation length.

5.3. The structure of local energy fluxes in scale space
We extend this analysis to scale space by considering the correlation of the energy fluxes
at different scales, defined as

Rψ(Δ1,Δ2) = 〈ψ ′(x;Δ1)ψ
′(x;Δ2)〉√

〈(ψ ′(Δ1))2〉〈(ψ ′(Δ2))2〉
, (5.5)
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Figure 5. (a) Plot of σV as a function of V/
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correspond to: �, dashed red line, Σ(5Δg); �, dashed blue line, Σ(10Δg); �, solid magenta line, Ψ (5Δg);
•, dashed black line, Ψ (10Δg). (b) Correlation coefficient between Σ and Ψ as a function of the averaging
volume: �, solid dash red, S〈Σ〉V ,〈Ψ 〉V (0) at 5Δg; •, solid blue line, S〈Σ〉V ,〈Ψ 〉V (0) at 10Δg. Error bars
are calculated from the average standard deviation of logP when partitioning the complete dataset in four
subsets. (c) Interscale auto-correlation coefficient as a function of the averaging volume: �, solid black line,
R〈Σ〉V (5Δg, 10Δg); �, solid magenta line, R〈Ψ 〉V (5Δg, 10Δg); �, dashed black line, R−

〈Σ〉V
(5Δg, 10Δg); �,

solid dash magenta, R−
〈Ψ 〉V

(5Δg, 10Δg). (d) Asymmetry function, P , as a function of 〈ψ〉2/σ 2
V . Symbols as

in (a). The dashed line is the exact solution of P for a Gaussian, which approaches logP = 1/2〈ψ〉2/σ 2
V for

large 〈ψ〉2/σ 2
V . (e, f ) Probability density function of local markers of the energy cascade averaged at scale

V1/3 = 1.2L0 = 32Δg: (e) Σ ; ( f ) Ψ . The dashed–dotted lines represent −〈ψ〉/σV for quantities calculated at
5Δg. Symbols as in (a).

and calculate the same quantity conditioning the averages to positive or negative energy
transfer events at scale Δ1. We denote the conditional correlations by R+ when
conditioning to ψ(Δ1) > 0, and R− when conditioning to ψ(Δ1) < 0. These interscale
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auto-correlation coefficients are presented in table 2. We find correlation values of
approximately 0.7 for scale increments of 2 in both quantities. Table 2 also includes results
for Δ2 = 20Δg. It shows that all fluxes substantially decorrelate for Δ2/Δ1 = 4 (Cardesa
et al. 2017), and that this is especially true for the backscatter.

Figure 5(c) shows the dependence of R〈Σ〉V (5Δg, 10Δg) and R〈Ψ 〉V (5Δg, 10Δg) on the
averaging volume V . The interscale auto-correlation increases with the averaging volume
when we consider all direct events (not shown). On the other hand, the correlations
conditioned to backscatter increase up to volumes of the order of V1/3 ≈ 2
, and then
decrease. Beyond V1/3 ≈ 4
, the number of averaged inverse energy transfer events is not
enough to compute reliable correlations.

5.4. Physical-space estimates of the probability of inverse cascades
We have shown in § 5.1 that the probability of spontaneously observing an inverse cascade
over extended regions of a turbulent flow is negligible, making it impractical to quantify
the probability of such evolutions by direct observation. However, as shown in § 5.2, we
frequently observe local inverse energy transfer events over restricted regions of physical
space. We attempt to estimate the probability of observing an inverse cascade using the
integral asymmetry function,

P = P(〈ψ〉V > 0)
P(〈ψ〉V < 0)

, (5.6)

which compares the probability of observing a direct to an inverse cascade in a volume
V . This approach follows the methodology of the fluctuation relations (Evans & Searles
2002) and its local versions (Ayton, Evans & Searles 2001; Michel & Searles 2013).

We evaluate the integral asymmetry function of Σ and Ψ for different averaging
volumes, and display it as a function of 〈ψ〉2/σ 2

V in figure 5(d). The statistical
independence of the energy transfer events reported in § 5.2 suggests that, when the
averaging volume is large enough, the integral asymmetry function should behave as that
of a Gaussian distribution with non-zero mean, which for large 〈ψ〉2/σ 2

V is

logP 	 2〈ψ〉2/σ 2
V . (5.7)

If we assume that the number of independent events in a volume V is N ∼ V/
3, we
can conclude that log P ∼ N ∼ V/
3, and the probability of direct over inverse cascades
increases exponentially with the number of independent energy transfer events considered.
The exponential dependence in (5.7) is well satisfied in figure 5(d), but the prefactor is not,
and logP > 2〈ψ〉2/σ 2

V . Since the prefactor is a property of the Gaussian distributions
that arise from the application of the central limit theorem, this failure can be traced
to the strong dependence of P on the negative tails of the statistical distributions of Σ
and Ψ , which are not Gaussian. The fast growth of logP in figure 5(d) signals that the
probability of inverse-transfer events decreases with volume averaging faster than what
could be expected for independent events, in agreement with the evidence in figure 5(c)
that inverse energy transfer is shallow in scale space. In figure 4(a,b) we show the
probability density function of 〈Σ(5Δg)〉V and 〈Σ(5Δg)〉V for V = (16Δg)

3. The negative
tails decrease considerably with the averaging, and do not collapse with those ofΣ(10Δg),
and Ψ (10Δg), while the positive tails are less affected. This asymmetry in the tails persists
for large averaging volumes, as shown in figure 5(e, f ), where we display the probability
distribution of 〈Σ〉V and 〈Ψ 〉V for a volume of the order of the integral scale of the flow,
V1/3 = 1.2L0 = 32Δg. Neither of the two probability distributions are Gaussian, specially
in its negative tails.
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These results point to essential differences between inverse and direct energy transfer
events, which seem to emerge from different dynamical processes. While direct energy
fluxes are correlated with fluxes at larger scales, inverse energy fluxes are not, suggesting
that local backscatter, measured as Σ < 0 or Ψ < 0, does not necessarily imply a
net inverse cascade of energy. This is corroborated by the strong depletion of inverse
energy transfer events with volume averaging, which suggest that backscatter might be
a consequence of space-local conservative fluxes, which cancel out when averaged, rather
than of interscale interactions. Let us note thatΣ and Ψ differ in fact by a spatial flux, and
that the intensity and probability of backscatter events are a specially noticeable difference
between the two definitions. These space-local fluxes seem to cause a higher probability
of backscatter in Ψ than in Σ , suggesting that they are also, to some extent, the cause
of backscatter in Σ . In view of these results, it is unlikely that the probability of inverse
cascades can be quantified from the probability of local backscatter. Even if we could
do so by analysing a massive database, and by devising a local definition of the energy
transfer free of spatial fluxes, our results suggest that the energy cascade is sufficiently out
of equilibrium for these predictions to have little practical importance.

6. The structure of the inverse and direct cascades

The velocity gradients constitute a convenient descriptor of the fundamental structure
of turbulent flows and some of their statistics reflect the out-of-equilibrium nature of
turbulence. Although they describe only the structure of the small scales, the statistical
distributions of the filtered velocity gradients are invariant across scales and reveal the
self-similar structure of the inertial range (Borue & Orszag 1998; Lüthi et al. 2007;
Lozano-Durán et al. 2016; Danish & Meneveau 2018). Some investigations suggest a
connection between the velocity gradients in the inertial scales and the energy cascade
(Borue & Orszag 1998; Meneveau & Katz 1999; Goto 2008), and common SGS
models rely on the assumption that energy transfer towards the unresolved scales can
be reproduced using the velocity gradients of the resolved scales (Smagorinsky 1963;
Bardina et al. 1980; Nicoud & Ducros 1999). The structure of the velocity gradients
is compactly represented by the invariants of the velocity gradient tensor. Supported on
the space locality of the energy cascade reported in § 5.2, we will relate these invariants,
which are strictly local in space, with local energy fluxes, connecting the energy cascade
in physical space to the local structure of the flow.

6.1. Dynamics of the invariants of the velocity gradient tensor
Let Aij = ∂jui be the velocity gradient tensor of an incompressible flow. The second and
third invariants of Aij are

Q = −1
2AijAji = 1

4ωiωi − 1
2 SijSij, (6.1)

R = −1
3AijAjkAki = −1

3 SijSjkSki − 1
4ωiSijωj, (6.2)

where ωi is the i-th component of the vorticity vector. Considering R and the discriminant
D = 27/4R2 + Q3, the flow can be classified in four different topological types: positive
D corresponds to rotating topologies and negative D to saddle-node topologies; negative R
accounts for topologies with a stretching principal direction and positive R for topologies
with a compressing principal direction. These invariants are also related to the vorticity
vector and the rate-of-strain tensor, such that Q indicates the balance between enstrophy
and strain, denoted by |S|2 = 2SijSij and |ω|2 = ωiωi, and R represents the balance between
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vortex stretching and strain self-amplification, ωiSijωj and SijSjkSki. These terms appear in
the evolution equations of |S|2 and |ω|2,

1
4 Dt|S|2 = −SijSjkSki − 1

4ωiSijωj − Sij∂ijp, (6.3)
1
2 Dt|ω|2 = ωiSijωj, (6.4)

where Dt = ∂t + uj∂j is the substantial derivative along a Lagrangian trajectory. Note that
for simplicity we have considered the evolution of an inviscid flow for simplicity.

The statistical distribution of Q and R in turbulent flows has a typical teardrop shape,
which is shown in figure 6(e). For ease of reference, we have divided the Q–R plane into
four quadrants, where q1 corresponds to Q > 0 and R > 0, q2 to Q > 0 and R < 0, q3
to Q < 0 and R < 0, and q4 to Q < 0 and R > 0. The teardrop shape is characterised by
a lobe in q2, where the enstrophy is dominant over the strain and the vortex stretching
over the strain self-amplification, and a tail in q4, which is known as the Vieillefosse
(1984) tail, and represents dominant strain self-amplification over vortex stretching in
strain-dominated regions. The high absolute values of Q in the Vieillefosse tail and in
the upper semiplane indicate the spatial segregation of |S| and |ω|. Low absolute values of
Q do not in general imply low values of |S| or |ω|, but rather that |S| ∼ |ω|. We actually
find that |S| ∼ 〈|S|〉 in regions where Q ∼ 0 and R ∼ 0. For a detailed interpretation of the
Q–R plane, we refer the reader to Tsinober (2000).

The dynamics of the velocity gradients can be statistically represented by the probability
transport velocities in the Q–R plane, which are obtained from the average Lagrangian
evolution of Q and R (Ooi et al. 1999). Taking spatial derivatives in the evolution equations
of the velocity field described by (3.6) and considering (6.1), (6.2), the Lagrangian
evolution of the invariants reads as

DtQ = −3R + AijHji, (6.5)

DtR = 2
3 Q2 − AijAjkHki, (6.6)

where Hij = HP
ij + HM

ij comprises the contribution of the non-local component of the
pressure Hessian and the SGS model, HP

ij = ∂ijp − ((∂kkp)δij)/3 and HM
ij = ∂jMi. Here,

Mi is the i-th component of the SGS model in the momentum equation and δij is the
Kronecker’s delta. The total probability transport velocity is defined as

ΦT = {〈DtQ〉Ct3Q, 〈DtR〉Ct4Q}, (6.7)

where 〈·〉C is the probability conditioned to Q and R, and tQ = 1/〈Q2〉1/4 is a characteristic
time extracted from the standard deviation of Q. Let us note that the probability density
flux in the Q–R plane is P(Q,R)ΦT , where P(Q,R) is the joint probability density of Q and
R. The probability transport velocities are integrated to yield conditional mean trajectories
(CMTs) in the Q–R plane (Ooi et al. 1999), which are shown also in figure 6(e).

To analyse the dynamics of the invariants, we decompose the CMTs into the contribution
of the different terms in the evolution equation of Q and R,

ΦE = {−3R, 2/3Q2}, (6.8)
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Figure 6. Line arrow, solid line, conditional mean trajectories in the Q–R plane for the inverse (a–d) and
direct (e–h) evolutions due to different contributions. (i–l) Modulus of the probability transport velocities
|Φ| in the Q–R plane in the direct evolution due to the different contributions. (a,e,i) All contributions ΦT ,
(b, f, j) SGS model ΦM , (c,g,k) restricted Euler ΦE and (d,h,l) non-local component of the pressure Hessian
ΦP. Contours of the probability density function of Q and R contain 0.9 and 0.96 of the total data. All quantities
are normalised using tQ = 〈Q2〉1/4.

ΦP = {〈AijHP
ji〉C, 〈−AijAjkHP

ki〉C}, (6.9)

ΦM = {〈AijHM
ji 〉C, 〈−AijAjkHM

ki 〉C}, (6.10)

where ΦT = ΦE + ΦP + ΦM , and the normalisation with tQ has been dropped for
simplicity. This decomposition separates the strictly space-local dynamics of restricted
Euler (RE) (Cantwell 1992), ΦE, which depends exclusively on Q and R, and includes
advection and the local action of the pressure Hessian, from the non-local action of the
pressure Hessian and the SGS model, which are included in ΦP and ΦM , respectively.
This separation into local and non-local dynamics is convenient to justify the prevalence
of direct over inverse cascades. In order to compare the importance of the different terms,
we consider the norm of the probability transport velocities,

|Φ| =
√
(t3Q〈DtQ〉C)2 + (t4Q〈DtR〉C)2. (6.11)

Statistics of Q and R and their CMTs have been compiled for two different times in
the ensemble of realisations, tstats = (1 ± 0.12)tinv , which correspond to the direct and
inverse evolutions and are marked in figure 1(a). If we assume that the decay of the system
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is self-similar, conclusions drawn from this analysis should be independent of tstats. The
total probability transport velocity, ΦT , has been calculated directly from the expression of
the substantial derivative, computing separately the temporal and convective derivatives.
Appropriate numerical methods have been used in all the computations (Lozano-Durán,
Holzner & Jiménez 2015). Results show that the number of realisations in our database is
sufficient to converge the statistics.

The different contributions to the CMTs and the norm of the probability transport
velocities in the inverse and direct evolutions are shown in figures 6(a–h) and 6(i–l). In the
direct evolution, the CMTs develop an average rotating cycle characteristic of turbulent
flows, which exposes causality between the different configurations of the flow in an
average sense. The CMTs rotate clockwise: from dominant vortex stretching to dominant
vortex compression in the upper semiplane, to the Vieillefosse tail in q4, and again to
dominant vortex stretching in enstrophy-dominated regions.

The CMTs move from negative to positive R, and finally to the Vieillefosse tail, due to
the effect of the RE dynamics. This trend would cause the appearance of infinite gradients
in a finite time (Vieillefosse 1984), but the non-local effect of the pressure Hessian and the
SGS model, or viscosity in the case of direct numerical simulations, prevent it by bringing
the CMTs back to q3 and restarting the cycle. For closed steady states, CMTs describe a
closed cycle (Lozano-Durán et al. 2016), while in our decaying flow they spiral inwards
due to the action the SGS model, which contracts the probability distribution, resembling
the action of the viscosity in direct numerical simulations (Meneveau 2011). The CMTs of
the non-local component of the pressure Hessian evolve from positive to negative values
of R, following the same behaviour observed by Chevillard et al. (2008) and Meneveau
(2011). The norm of the probability transport velocities reveals that the RE dynamics is
mostly counteracted by the non-local component of the pressure Hessian in regions where
Q and R are large. These observations are in agreement with Lüthi, Holzner & Tsinober
(2009), and evidence a secondary role of the model in the dynamics of intense gradients.

In the inverse evolution we identify substantial changes. As explained in § 4, time
reversal changes only the sign of quantities which are odd with the velocity: Q remains
unaltered while R changes sign, leading to an inverse teardrop shape. The Vieillefosse
tail lies now in q3, forming an antitail, and a higher probability of vortex compression
appears in enstrophy-dominated regions. This transformation also affects the CMTs, and
is most relevant in the effect of the SGS model, which now expands the probability
distribution and leads to an average outward spiralling. The behaviour of ΦE and ΦP is
similar to the direct evolution in the upper semiplane, but undergoes fundamental changes
in the lower semiplane. In the direct evolution the non-local component of the pressure
Hessian counteracts the RE dynamics, preventing the formation of intense gradients in the
Vieillefosse tail. Conversely, in the inverse evolution, ΦP favours the growth of intense
gradients in the antitail, while the RE opposes it.

This analysis compares the structure of the ‘attractor’ with that of the ‘antiattractor’,
and can be simply derived by considering the effect that the transformation u → −u has
on the dynamics of the velocity gradients. However, we have identified in § 5.1 inverse
trajectories outside the antiattractor. We will show that, for these trajectories, this analysis
yields non-trivial results.

6.2. Asymmetry in the Q–R space
The statistical irreversibility of the cascade is clearly manifest in the statistics of the
invariants through the asymmetry of the probability distribution with respect to R = 0.
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Figure 7. (a) Colour plot of the asymmetry function �(Q,R). Isocontours contain 0.7 and 0.85 of the
total data. Dashed lines represent the contours of the asymmetry function when R → −R. (b) Asymmetry
function averaged along the R axis, 〈�(Q)〉R, for R in the interval (−2, 2). Quantities are normalised using
tQ = 〈Q2〉1/4.

To characterise statistical irreversibility in the Q–R plane, we use an asymmetry function

�(Q,R) = log
P+(Q,R)
P−(Q,R)

, (6.12)

where P+ and P− denote the probability density of Q and R in the direct and inverse
evolutions, respectively. Figure 7(a) shows the distribution of �(Q,R), while 7(b) shows
the absolute values of the asymmetry function averaged along the R axis,

〈�(Q)〉R =

∫
|�(Q,R)| dR∫

dR
. (6.13)

Most of the temporal asymmetry of the velocity gradients is related to Q < 0, where the
strain is dominant over the vorticity. In enstrophy-dominated regions vortex stretching is on
average dominant in the direct evolution, but the probability of vortex compression is not
negligible. Both processes also occur in the inverse cascade, in which vortex compression
is more probable but coexists with vortex stretching. On the other hand, the structure of
strain-dominated regions depends strongly on the direction of the system in time. Intense
velocity gradients in Q < 0 are either in q3 or q4, depending on the direction of the
cascade, but not simultaneously in both quadrants. The dynamics of strain-dominated
regions are more fundamentally related to the direction of the system in time than the
dynamics of enstrophy-dominated regions.

6.3. Energy fluxes in the Q–R plane: inverse evolutions outside the ‘antiattractor’
We now analyse the relation between the local structure of the flow and the energy
cascade by conditioning the statistics of the local energy fluxes to the invariants of the
filtered velocity gradients. First, we study the experiments on the inverse cascade without
the model, which are presented in § 4.3. These experiments provide non-trivial inverse
evolutions outside the ‘antiattractor’, for which this analysis identifies the structures that
support the inverse energy cascade.

We calculate the invariants of the filtered velocity gradients and their CMTs at scale
Δ̌ = 5Δg. We use a Gaussian filter (4.1), and calculate the CMTs using the substantial
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Figure 8. Conditional mean trajectories in the Q–R plane of the inverse evolution without the model (see
§ 4.3) for (a–d) the unfiltered case and (e–h) filtered at Δ̌ = 5Δg, and (i–l) conditional average of Σ at scale
Δ̌ = 5Δg, at different times: (a,e) t/T0 = 0; (b, f ) t/T0 = 0.1; (c,g) t/T0 = 0.15; (d,h) t/T0 = 0.25. ——, solid
magenta line, contours of the probability density function of Q and R containing 0.8 and 0.9 of the data. Here
Q and R are normalised with tQ = 〈Q(tinv)2〉1/4. Conditional-averaged energy fluxes in (i–l) are normalised
with the absolute value of 〈Σ〉 at each time.

derivative of the filtered field, Ďt = ∂t + ǔi∂i. We analyse these quantities in the inverse
evolutions when the model is removed, and connect them to the evolution of the local
energy fluxes in physical space, Σ(x, t), and in scale space, Π(k, t). The analysis of Ψ
yields qualitatively similar results.

Figure 8(a–h) show the probability distribution of the invariants of the unfiltered (a–d),
and filtered (e–h) velocity gradients, and the their CMTs, in the inverse evolution without
the model. Figure 8(i–l) show the averaged Σ(5Δg) conditioned to the invariants of the
filtered velocity gradients.

Initially, the statistics of the filtered and unfiltered velocity gradients are similar, and
resemble those of the inverse evolutions. The average Σ conditioned to Q and R is
predominantly negative and most intense in q3 and q1, suggesting a relevant role of the
antitail and of vortex compression in the inverse cascade.

At time 0.1T0 after the inversion, the antitail of the unfiltered gradients has contracted,
while the antitail of the filtered gradients remains unaltered. We do not yet see changes in
the upper semiplane, where the probability distribution remains similar to the initial state
in both cases. According to Π(k, t) in figure 2(a), at this time the direct cascade has not
yet regenerated at the small scales. At the filter scale, Π(k, t) and 〈Σ〉 are still negative,
and have a similar magnitude to the initial state.
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At 0.15T0, the unfiltered velocity gradients start developing dominant vortex stretching,
represented by a prominent lobe in q2, and a regular Vieillefosse tail. The antitail, although
reduced, is still observable in the filtered gradients and 〈Σ〉 < 0. At this stage, as shown in
figure 2(a), an inverse cascade at the filter scale, and a direct cascade in the small scales
coexist. Finally, at 0.25T0, when the filtered velocity gradients develop structures in the
Vieillefosse tail, the direct cascade regenerates at the filter scale and 〈Σ〉 > 0.

These results indicate a strong connection between the direction of the cascade and the
orientation of the Vieillefosse tail. First, the conditional averages of Σ in the Q–R plane
show that, at 0.25T0, when the energy cascade starts to regenerate at the filter scale, direct
local energy fluxes are most intense in the q4 quadrant. Second, the differences in the
invariants of the filtered velocity gradients between 0.1T0 and 0.15T0 are only significant
in the Vieillefosse tail, but the inverse energy fluxes are reduced by a half, 〈Σ(0.15T0)〉 	
0.5〈Σ(0.1T0)〉.

The symmetry in the statistics of enstrophy-dominated regions reported in § 6.2 also
holds during the transition from inverse to direct phase-space trajectories. At the filter
scale, the probability distribution or the CMTs in the upper semiplane do not substantially
change during the regeneration of the energy cascade.

6.4. Energy fluxes in the Q–R plane: direct evolutions in the turbulent ‘attractor’
We perform the same analysis for the direct evolutions with the SGS model. Figure 9(a)
shows the average Σ conditioned to Q and R. To discriminate between direct and inverse
energy transfer, we condition the probability distribution of Q and R to the sign of the local
energy fluxes, and present the results in figure 9(b,c). We quantify in table 3 the relevance
of each quadrant to the energy cascade by calculating the average of Σ conditioned to
Q and R belonging to a quadrant, 〈Σ〉qi = 〈Σ |(Q,R) ∈ qi〉, and the total contribution of
each quadrant to the energy fluxes, {Σ}qi = 〈Σ〉qiPqi , where Pqi is the probability that Q
and R belong to qi, so that 〈Σ〉 = ∑

i=1,4{Σ}qi . We have also calculated these quantities
conditioning the averages to the direction of the energy fluxes, being

〈Σ〉+qi
= 〈Σ |Σ > 0, (Q,R) ∈ qi〉, (6.14)

the average energy transfer conditioned to the quadrant qi and to Σ > 0. Accordingly,
{Σ}+qi

= 〈Σ〉+qi
P+

qi
is the total contribution of the quadrant qi to the positive energy fluxes.

Here P+
qi

is the probability that Q and R belongs to qi and thatΣ > 0. Statistics conditioned
to negative fluxes are marked with a minus superscript.

The most intense direct energy transfer events are related to structures in the Vieillefosse
tail, and q4 has the highest average energy transfer, 〈Σ〉q4 ∼ 1.5〈Σ〉, and contributes with
approximately 50 % of the total energy transfer. Also structures in q2 are relevant to the
cascade, with a contribution of around 30 % to the total fluxes. Conversely, the contribution
of q1 to direct energy transfer is negligible. When we condition these statistics to direct
energy fluxes, we obtain qualitatively similar results. The statistics of Q and R conditioned
to positive Σ yield almost a complete teardrop, except for a lower probability of events
in q1.

When we condition to negative energy transfer events, the average inverse energy
transfer is roughly similar in the four quadrants, but the q1 quadrant contributes the most
to the total, with a 56 %. This is a consequence of inverse energy transfer events being
mostly located in q1. As shown in figure 9(c), the statistics of Q–R conditioned to inverse
energy transfer resemble an inverse teardrop without the antitail. In the same figure we
have plotted the probability density function of Q and R conditioned to inverse energy
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Figure 9. (a) Conditional average of Σ at scale Δ̌ = 5Δg in the Q–R plane of the filtered velocity gradients
for the direct evolution with the model. (b) Average Σ over Q and R conditioned to Σ > 0. (c) Absolute value
of the average Σ over Q and R conditioned to Σ < 0. Values of Σ normalised with 〈Σ〉 at tstats. ——, solid
magenta line, contours of the probability density function of Q and R containing 0.85 and 0.9 of the data. In
(c), − · − marks isocontours of Q and R conditioned to negative Σ for the inverse evolutions. The dashed line
corresponds to D = 0. Here Q and R are normalised with tQ = 〈Q2〉1/4.

All ‘+’ ‘−’

q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4

〈Σ〉qi/〈Σ〉 0.11 1.05 0.81 1.54 0.37 0.89 0.85 1.3 1.16 0.72 0.91 0.89
{Σ}qi/〈Σ〉 0.01 0.28 0.17 0.54 0.03 0.27 0.16 0.52 0.56 0.11 0.17 0.16

Table 3. Conditional averages of energy transfer and contributions to the total energy fluxes of each quadrant
in the Q–R plane during the direct evolution. In the first table we have considered all data, in the second only
direct energy transfer events, and in the last only backscatter events. Quantities are normalised with the average
Σ in the first case, and with the averages conditioned to positive and negative fluxes in the other two cases.

transfer in the inverse evolutions. By time symmetry, the antitail in q3 contributes the
most to inverse energy transfer in the inverse cascade, but this tail is absent in the direct
evolution.

6.5. An entropic argument for the prevalence of direct energy fluxes
We have presented in the previous section compelling evidence that topologies in the
antitail are strongly connected to the inverse cascade, but that these topologies have
negligible probability in the direct cascade. Here we provide arguments that explain the
low probability of these topologies, and, consequently, of inverse cascades.

Consider the evolution of R in regions where the strain is dominant over the
enstrophy, |S|2 ∼ 〈|S|2〉 � |ω|2. Neglecting the contribution of the enstrophy, we
obtain

R ≈ −1
3 SijSjkSki = −α1α2α3, (6.15)

where α1 � α2 � α3 are the eigenvalues of the rate-of-strain tensor. This is a good
approximation to the Vieillefosse tail and the antitail, where |S|2 ∼ 100|ω|2. Due to
compressibility α1 + α2 + α3 = 0, and the sign of R is determined by the sign of the
intermediate eigenvalue. Topologies in the Vieillefosse tail are characterised by α2 > 0,
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while in the antitail α2 < 0. We describe the evolution of R in terms of the evolution of
α2, whose equation reads as

Dtα2 = −α2
2 −

(
Λ

3
+ Γ2

)
, (6.16)

where Λ = ∂kkp ≈ −(|S|2)/2 = −α2
1 − α2

2 − α2
3 is the trace of the pressure Hessian,

which is local, and Γ2 is the contribution of HP
ij = ∂ijp − (∂kkpδij)/3 to the evolution of

α2, which is non-local. We have discarded quadratic terms in the vorticity and the action
of the SGS model, which we show above to have a negligible contribution to the dynamics
of intense gradients (Nomura & Post 1998). Disregarding the action of the non-local
component of the pressure Hessian, Γ2, the equation reads as

Dtα2 = 1
3 (α

2
1 + α2

3 − 2α2
2) > 0, (6.17)

where we have used the fact that, from their definition, α2
1 > α2

2 and α2
3 > α2

2. The
evolution of any initial value of α2 results in the growth of the intermediate eigenvalue,
leading to positive values of R. This is the effect of the RE dynamics, which depletes
the antitail in the direct cascade. Left to itself, it generates intense strain in the Vieillefosse
tail, and is independent on the non-local structure of the velocity gradients. From (6.17) we
conclude that the only inertial mechanism capable of preventing the rate-of-strain tensor
from developing a positive intermediate eigenvalue is the non-local action of the pressure
Hessian through Γ2. This analysis is consistent with the results presented in § 6.1, where
we show that this term sustains the antitail in the inverse cascade.

The non-local pressure Hessian depends on the complete flow field. In the absence of
boundaries it can be expressed as a singular integral, which depends on all the points of the
domain (Speziale, Sarkar & Gatski 1991; Ohkitani & Kishiba 1995). As a consequence,
the non-local pressure Hessian is in general decorrelated from the local dynamics of the
velocity gradients (She et al. 1991). Figure 10(a) shows the joint probability distribution of
the two components of ΦP = {AijHP

ji,−AijAjkHP
ki} in the centre of the Q–R plane, and in

the Vieillefosse tail during the inverse and direct evolutions. See figure 10(b) for reference.
In regions where gradients are not strong, the non-local component of the pressure Hessian
appears decorrelated from the local dynamics, with a large scatter of the data with respect
to the mean. In the Vieillefosse tail the non-local component of the pressure Hessian
counteracts the RE dynamics and the action of the non-local component of the pressure
Hessian over Q and R appears more correlated. When time is reversed, these correlations
are necessary to sustain the antitail. As shown in § 6.3, the contraction of the antitail is
the first identifiable process in the transition from the inverse to the direct cascade, which
indicates that these correlations are quickly destroyed under perturbations.

While the generation of topologies in the Vieillefosse tail is a direct consequence of
the local self-amplification of the rate-of-strain tensor, the generation of topologies in the
antitail requires a global configuration of the complete flow field that counteracts this
amplification through the non-local action of the pressure Hessian. This scenario appears
intuitively unlikely, suggesting that only specially organised flows are able to produce
such action (Popper 1956). This is the case of the initial conditions used for the inverse
evolutions, which conserve all the information of the direct cascade process. In particular,
they retain the correlations between the rate-of-strain tensor and the non-local contribution
of the pressure Hessian in the Vieillefosse tail, thus inhibiting the breakdown of the antitail
in the inverse cascade.
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Figure 10. (a) Joint probability density function of the components of the probability transport velocities due
to the non-local part of the pressure Hessian, {AijHP

ji ,−AijAjkHP
ki}, conditioned to different areas in the Q–R

plane: − · −, |Q| < 1 and |R| < 1, dashed region in (b); – – –, dashed blue line, Q < −1 in the direct evolution,
shaded region in (b); ——, solid red line, Q < −1 in the inverse evolution, shaded region in (b). Quantities
normalised with tQ.

7. Conclusions

We have studied a microscopically reversible turbulent system constructed using a
reversible SGS model to explore the energy cascade as an entropy-driven process. In this
system inverse and direct energy cascades over the full domain are possible, but only the
latter are experimentally observed due to the statistical irreversibility of the dynamics in
the inertial range. In this paper we explain the origin of this irreversibility by focusing on
the dynamics of the energy cascade in physical space.

We show in § 4.3 that, in this reversible system, sustained inverse cascades are a
consequence of inertial mechanisms, while the SGS model only acts as a source of
energy. By reversing the energy cascade of a system with an irreversible SGS model,
we present strong evidences that microscopic reversibility is a fundamental property of
inertial dynamics, independent of the dissipation.

In § 5.1 we characterise the distribution of inverse trajectories in phase space. By
perturbing inverse phase-space trajectories within the ‘antiattractor’, i.e the set of turbulent
flows generated by evolving direct cascades backwards in time, we show that inverse
evolutions exist in a wide region of phase space, separated from the direct evolutions. The
perturbed inverse trajectories diverge from the original trajectories, and eventually evolve
towards the turbulence ‘attractor’, which is composed almost exclusively by trajectories
with a direct energy cascade. Inverse cascades are ‘unstable’. They can only be observed
for a finite time, and it is extremely unlikely that they develop spontaneously.

In order to connect phase-space dynamics with the energy cascade, we have studied
the spatial structure of the local energy fluxes in physical space using two common
definitions of the fluxes, which are calculated at different scales by filtering the velocity
field. The auto-correlation length of these fluxes is of the order of the filter width, and,
when volume averaged for different sizes, their statistics are consistent with a space-local
process. Although the two fluxes have similar mean, they are very different pointwise,
particularly in the intensity and probability of backscatter. These differences disappear
when the fluxes are averaged over volumes of the order of the filter width cubed. We
conclude that the energy cascade is approximately local in physical space and robust to the
definition of the energy fluxes on an average sense.
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We have extended this analysis by studying the spatial correlation between local energy
fluxes at different scales. The correlation between fluxes at scales separated by a factor
of two is substantial, but significantly decreases when scales are separated by a factor of
four, corroborating the reported scale locality of the cascade (Eyink 2005; Domaradzki,
Teaca & Carati 2009; Eyink & Aluie 2009; Cardesa et al. 2017). When conditioning these
correlations to the sign of the fluxes, we find that they are strong for direct energy fluxes
but weak for energy backscatter, revealing that, unlike direct energy transfer, backscatter
is very shallow in scale space. Moreover, backscatter is very sensitive to the choice of the
fluxes, and disappears when volume averaged over volumes of the order of the cubed filter
width, suggesting that it represents spatial fluxes at the scale of the filter rather than an
inverse energy cascade involving interactions at different scales.

Although the present work strongly emphasises the bidirectionality of the cascade,
our results suggest that the dynamical significance of backscatter to the energy cascade
is limited. Following the local fluctuation relations (Michel & Searles 2013), we have
attempted to estimate the probability of inverse energy cascades over the complete domain
by quantifying the probability of volume-averaged inverse energy transfer events, but our
results are not conclusive because these events disappear almost completely for small
averaging volumes. Turbulence is sufficiently far from equilibrium as to preclude the
observation of local inverse cascades, even in reduced regions of space. Although some
representations of the energy fluxes can be negative locally, this does not seem to imply
a local inverse energy cascade that develops against the tendency of the system towards
equilibrium.

Finally, we have compared the structure of the direct and inverse cascades through the
study of the invariants of the velocity gradient tensor, Q and R, and its CMTs. In the
direct evolutions the joint probability density function of Q and R forms the classical
teardrop, with dominant vortex stretching in Q > 0 and a Vieillefosse (1984) tail in Q < 0,
while in the inverse evolutions Q and R form an inverse teardrop, with dominant vortex
compression in Q > 0 and an antitail in Q < 0. We have quantified these differences
using an asymmetry function in the Q–R plane, which reveals that most of the temporal
asymmetry is located in the Q < 0 semiplane, suggesting a strong connection between
the structure of the rate-of-strain tensor and the direction of the system in time. In the
direct cascade the rate-of-strain tensor has predominantly one negative and two positive
eigenvalues, while in the inverse cascade it has two negative eigenvalues and one positive
eigenvalue. On the other hand, it is more challenging to distinguish the inverse from
the direct cascade by only considering the dynamics of intense enstrophy regions: the
stretching and compression of intense vorticity are present in both the direct and the inverse
cascade.

The CMTs convey a similar picture. They display similar behaviour in Q > 0 regardless
of the direction of the cascade, but undergo fundamental changes in Q < 0 when the
system is reversed in time. In the direct evolution the non-local action of the pressure
Hessian opposes the formation of intense gradients in the Vieillefosse tail, counteracting
the RE dynamics, while in the inverse cascade it favours the formation of the antitail, also
counteracting the RE dynamics.

We have extended this analysis to inverse phase-space trajectories outside the
antiattractor. The transition from an inverse to a direct cascade is marked by
the disappearance of the antitail and the appearance of a regular Vieillefosse tail, but the
statistics of enstrophy-dominated regions do not change substantially in this transition.

To further corroborate the strong connection between the Vieillefosse tail and the
direction of the cascade, we have conditioned the statistics of local energy fluxes to the
invariants of the filtered velocity gradient tensor at the same scale. In the direct evolutions
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the most intense energy transfer events are related to structures in the Vieillefosse tail,
which contribute the most to the total energy fluxes. On the other hand, the antitail is
responsible for most inverse energy transfer in the inverse evolutions.

In view of these results, we point to the negligible probability of topologies in the antitail
as the cause of the low probability of inverse cascades, and propose an entropic argument
to explain this fact. The generation of topologies along the Vieillefosse tail is encoded
in the pointwise interaction of the velocity gradients, and is strictly local. Any possible
organisation of the vorticity vector and the rate-of-strain tensor will generate topologies
in the Vieillefosse tail under the action of RE dynamics. On the other hand, the formation
and maintenance of the antitail requires the global action of the non-local component of
the pressure Hessian, which involves a large number of degrees of freedom, to generate
intense strain with a negative intermediate eigenvalue. While the dynamics of any flow
field, even random ones, leads to the generation of a Vieillefosse tail due to RE dynamics,
only very special flow fields are sufficiently organised so as to counteract the RE dynamics
and form an antitail. Assuming that global fluctuation relations (Evans & Searles 2002)
apply to turbulent flows, the probability of observing such organised states is inversely
proportional to the exponential of the number of degrees of freedom of the system, which
explains why stochastic and deterministic reduced-order models of the cascade exhibit
statistical irreversibility despite their reduced number of degrees of freedom (Biferale
2003; Meneveau 2011).

Our results stress the importance of the rate-of-strain tensor on the dynamics of the
energy cascade, and agree with other studies that suggest that the role of vorticity in
turbulence dynamics is perhaps overemphasized (Tsinober 1998; Carbone & Bragg 2020;
Johnson 2020). While a change in the sign of vorticity does not change the fundamental
dynamics of vortices, for instance, in the Burgers (1948) model, a change in the sign of
the rate-of-strain tensor reverses the evolution of both the enstrophy and the strain in the
inviscid case. This is evident in the evolution equations of the strain and the enstrophy,
(6.3) and (6.4), which are odd in the rate-of-strain tensor and even in the vorticity vector.
Although the rate-of-strain tensor and the vorticity vector are not independent, but tied by
kinematic relations, and changing the sign of one changes the sign of the other, it is the
rate-of-strain tensor that reflects most of the statistical irreversibility of turbulent flows.
A local observer wishing to establish the direction of the cascade in the inertial scales of
turbulence should focus on the dynamics of the rate-of-strain tensor, rather than on the
dynamics of the vorticity vector.
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