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Abstract

It is shown that a normed linear space admitting (Chebyshev) centers is complete. Then the ideas in
the proof of this fact are used to show that every incomplete CLUR (compactly locally uniformly
rotund) normed linear space contains a closed bounded convex subset B with the following properties:
(a) B does not contain any farthest point; (b) B does not contain any nearest point (to the elements of
its complement).
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1. Introduction

Given a normed linear space X and a bounded subset A c X, the farthest
distance function FA: X -* R is defined by

FA(x) = sup ||JC - a\\, x e X.

Also, by definition, the Chebeshev radius of A is defined by
r(A) = m f ^ ( x ) .

The bounded subset A is said to have a .(Chebyshev) center if there exists some
c e A'such that FA(c) = r(A). The normed linear space A'is said to admit centers
if each nonempty bounded subset in X has at least one center. A. L. Garkavi
(1964) has given sufficient conditions for a normed linear space to admit centers;
these imply that all conjugate Banach spaces, and the spaces Ll(\i), admit centers.
He has also established the fact that the uniform convexity of the norm in every
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direction (see Garkavi (1964) for the definition) is a necessary and sufficient
condition for a normed linear space to admit at most one center to every bounded
subset. It is also known that the space CR(Q) of real-valued bounded continuous
functions, on the paracompact topological space B, admits centers (see Holmes
(1972)). In the present paper we show that completeness is a necessary condition
for a normed linear space to admit centers. This is done by constructing a
bounded subset B (in an incomplete normed linear space X) with no center. It is
then shown (when assuming that X is also CLUR) that the same subset B serves
as a closed bounded convex set in X containing no farthest point and no nearest
point. Since the closure of B in the completion of X is a closed ball, we naturally
call B a " virtual ball" in X.

2. Results

The following theorem implies that a normed linear space admitting centers
must be complete.

THEOREM 1. Let X be an incomplete normed linear space. Then X contains a
closed bounded and convex subset with no center.

PROOF. Since Xis incomplete, it contains a Cauchy sequence {an} which does
not converge in norm. However for each x e X, since

and since the real line is complete, the sequence {\\x — an\\} converges to a real
number r(x). We may assume without loss of generality that r(0) = limB||an|| = 1.
Observe that for each Jc in the completion of X we have limn||jc — an\\ =
||x — limn an\\, so that r(x) equals the restriction of the continuous convex
function ||Jc — limn an\\ to X. It follows that r(x) is also continuous and convex,
and hence the subset B = {x e X: r(x) < 1} is a non-empty closed bounded and
convex set in X. We show that X does not admit a center to B. To this end it is
enough to show that

(i) for each x & X, FB(x) = sup6eB||x — b\\ > 1, and
(ii) for each e > 0 there exists a e X with FB(a) < 1 + e.
To prove (i) let JC G X be arbitrary. Then 0 < r(x) (otherwise an —» x which is

absurd). Now from limn||x — an\\ = r{x) and limm J|am — an\\ = 0 we can choose
a natural number N such that

(1) Vn>N, \\aN-an\\<^-<\\x-aN\l
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where M is some fixed positive number for which r(x)/M < 1 < M. Next we put
b = aN + ((aN - x)/\\aN - JC||)(1 - r(x)/M), and consider that by (1)

V n > N, \\b- aji < \\b - aj + \\aN - an\\ = 1 - ^ = \\aN - an\\ < 1,

from which it follows r(b) < 1 and hence b e B. Now, again by (1),

||* - b\\ = ||x -aN- ((aN - x)/\\aN - x||)(l - r(x)/M)\\

= \\x-aN\\+l-r(x)/M>l,

from which we deduce FB(x) > \\x — b\\ > 1 and (i) is proved.
To show (ii) let 0 < e be arbitrary. Since {«„} is Cauchy we first choose a

natural number N such that for n > N, \\aN — an\\ < e/4.
We show that FB(aN) < 1 + e: given an arbitrary b e B, r(b) < 1 implies the

existence of an n > N such that \\b — an\\ < 1 + e/4. Hence

\WN ~ H < ||fljv - a J + ||fl|1 - b\\ < e/4 + 1 + e/4.

Therefore for each b e B we get Ha^ - 6|| < 1 + e/2 and hence FB(aN) < 1 + c
This completes the proof of the theorem.

We naturally propose to call the set B, constructed in the proof of Theorem 1, a
"virtual ball", as it is the intersection with X of the ball 2?(limnan, 1) in the
completion of X. Our next theorem shows that in an incomplete CLUR space, a
virtual ball contains neither a farthest point (to any element of X), nor a nearest
point (to any element of its complement). Recall that a normed linear space X is
called CLUR (or X is said to have property (M) in the terminology of Panda and
Kapoor (1975)); if x, xn e X, \\x\\ = 1, ||xn|| < 1, and limn||xB + x\\ = 2 implies
that {xn } has a convergent subsequence. The CLUR normed linear spaces were
first introduced by L. P. Vlasov (1967), and were studied in some detail by Panda
and Kapoor (1975). In the proof of our Theorem 2 we shall make use of the
following lemma. The two parts of this lemma are modified versions of Lemma
l(ii) and Lemma 2(ii) in Astaneh (1983). As the second implication was stated
there without a proof, and for the sake of completeness, we present here a short
proof.

LEMMA. Let X be a CLUR normed linear space.
(i) Given any closed ball B(z, r) and x (¥= z) e X, each maximizing sequence for

x in B(z, r) has a convergent subsequence.
(ii) Given any open ball B°(z, r) and any x (# z) e B°(z, r), each minimizing

sequence for x in X ~ B°(z, r) has a convergent subsequence (X ~ B°(z, r) denotes
the complement ofB°(z, r) in X).
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PROOF, (i) Let x and B(z,r) be as stated and let {yn} be a maximizing
sequence for x in B(z, r). Without loss of generality we may translate and scale
so that x = 0 and r + ||z|| = 1, in which case we will have ||_yj| -» 1. Then for
each n,

2 > kll -
2 -

1 - r

1 - r '

1 - r

— z

2 - r
1 - / •yn-

l

1 - r 1 - r

\ - r

= 2.

Therefore ||^n + z/(l - r)|| -» 2, and by the CLUR property of X, {yn} has a
convergent subsequence.

(ii) Let x and B°(z, r) be as stated and let { yn } be a minimizing sequence for x
in .Y ~ B°(z, r). Again without loss of generality we may translate and scale, but
this time in such a way that z = 0 and r = 1. Then ||_yj| > 1 and ||^n|| -> 1, and
hence

•X V

I I * -

Therefore

and, X being CLUR, {
HyJI -• 1 the result follows.

+ M-2
11*11 l l ^ l l II

has a convergent subsequence. From this and

THEOREM 2. Let X be an incomplete CLUR normed linear space. Then any virtual
ball B in X is a closed bounded convex subset with the following properties:

(i) B does not admit a nearest point to any element of its coplement;
(ii) B does not admit a farthest point to any element of X.

PROOF, (i) Let B be the set constructed in Theorem 1. We show that no element
belonging to the complement of B has a nearest point in B. To this end let x £ B;
then r(x) > 1 and therefore r(x) - 1 > 0. We first note that

(1) i n f \ \ x - b\\ = r ( x ) - l .
bB
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To show (1) we only need to consider the ball B(limn an, 1) in the completion of
X, and note that B is dense in this ball. Then, having observed this, we have

inf ||x - b\\ = inf(||;t - "b\\: b e B(]iman,
freB I \ n

= be — l imaj — 1 = r(x) — 1.
II n II

To show that B does not admit a nearest point to x we assume otherwise, and get
a contradiction. Thus let b0 e B and

II* ~ ôll = m^ \\x ~ b\\ = r(x) — 1.

Since b0 must belong to the boundary of B, by the definition of B we have
r(b0) = limJ|Z>0 - an\\ = 1. We next consider the ball B(bQ, 1) and note that the
sequence a'n = bQ + {an — bo)/\\zn — bo\\ lies on the boundary of B(b0,1), since
\\a'n ~ ^oll = 1- On the other hand

From (2) and limn||jc — an\\ = r(x), it follows that limn||x - a^|| = r(x). Now
considering a'n e B(b0,1) and the fact that r(x) = \\x - bo\\ + 1, we deduce that
{a'n} is a maximizing sequence for x in B(bQ, 1). Therefore, noting X is CLUR
and by part (i) of the above Lemma, we see that {a'n} must have a convergent
subsequence. But (since an = \\an — bQ\\(a'n — b0) + b0), this would imply that
{an} has a convergent subsequence, which is a contradiction. Hence the proof is
complete,

(ii) Let x & Xbe arbitrary. We first note that

(3) sap\\x-b\\=r(x) + l.
beB

To show (3) it is again enough to consider the ball B(limn an, 1) in the completion
of X, and that B is dense in this ball, so that

sup ||x - b\\ = sup(||x - b\\: b e B()hnan, =\\x -

Hence

(4) sup ||x - b\\ = r(x) + l.
b(=B

To show B does not admit a farthest point to x we assume otherwise. Thus
suppose c G B is such that \\x — c\\ = supfceB||x — b\\ = r(x) + 1. Let z = x +
(JC - c)/| |x - c\\, and also for each n let a'n = c + {an - c)/||an - c\\. As in the
proof of (i) we have l imja^ - an\\ = 0 and therefore limn \\x - a'n\\ = r(x). We
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next consider that
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\\z ~ x — c
I I* - c\\

— c —
a- - c

- c
- c\\

- 1 = (||JC - c|| + 1) - 1 = r(x) + 1.

This means that a'ne X ~ B°(z, r(x) + 1). On the other hand

inf{||x -y\\:yex~ B°(z, r(x) + 1)} = r{x) + 1 - |l* " z|| = r(x).
Hence {a'n} is a minimizing sequence for x e B°(z, r(x) + 1) in X ~ B°(z, r(x)
+ 1). Now since x =£ z by part (ii) of the above lemma {a'n} must have a
convergent subsequence. But then (by limj|aj, — an|| = 0) this would mean that
{ an} has a convergent subsequence in X, which is absurd. Hence (ii) follows.

EXAMPLE. Consider the normed linear space (X, \\ ||2) where X = C([ -1,1]) is
the space of continuous functions on [ — 1,1] and ||x||2 = (/Lx \x{t)\2dt)x/2.
Being an inner product space, X is uniformly convex and hence a CLUR normed
linear space. The Cauchy sequence

«„(') =

0, - :

nt, 0 *

i. i

1_
n

does not converge in (X, \\ ||2), though in the completion X (= L2([ —1,1])) of A'it
converges to x<o i] ( tne characteristic function of (0,1]). Now it follows from
Theorem 1 that

[x G X: \\x - X ( o , i ] | | 2 < l }

e CQ-1,1]):/^ \x{t)\2dt + £ |JC(O - l|2dt < l}

B

is a closed bounded convex subset with no (Chebyshev) center. Moreover by
Theorem 2, B contains neither a nearest point (to the elements of its complement),
nor a farthest point.
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